Final Review

Zaki Malik
November 20, 2008

Basic Operators Covered

» Remove parts of a single relation:

» projection: ma g(R) and SELECT A, B FROM R.
» selection: o¢(R) and SELECT * FROM R WHERE C.
» combining projection and selection:

> 7as(oc(R))
» SELECT A, B FROM R WHERE C.
» Set operations (R and S must have the same attributes, same
attribute tyes, and same order of attributes):

» union: RUS and (R) UNION (S).
» intersection: RS and (R) INTERSECT (S).
» difference: KR — S and (R) EXCEPT (8).

» Combine the tuples of two relations:
» Cartesian product: R x Sand ... FROMR, S

» Theta-join: R[:EJ Sand ... FROM R, S WHERE C.

» Natural join: Ra5; in SQL, list the conditions that the common
attributes be equal in the WHERE clause.

Renaming

* If two relations have the same attribute, disambiguate the
attributes by prefixing the attribute with the name of the
relation it belongs to.

* How do we answer the query “Name pairs of students who
live at the same address”? Students(Name, Address)
— We need to take the cross-product of Students with itself?
— How do we refer to the two “copies” of Students?
— Use the rename operator.

RA: pS (AL,A2, . . .An)(R) : give R the name S; R has n attributes, which are
called A1,A2,...,AninS

SQL: Use the AS keyword in the FROM clause: Students AS Students1
renames Students to Studentsl.

SQL: Use the AS keyword in the SELECT clause to rename attributes.

Q5: Find the names of sailors who
have reserved a red or a green boat

Reserves(sid, bid, day) Sailors(sid, sname, rating, age)
Boats(bid, bname, color)

o Solution:

"sname(acolor:‘red’or color = green’ Boats ~ Reserves ~ Sailors)

Q6: Find the names of sailors who
have reserved a red and a green boat

Reserves(sid, bid, day) Sailors(sid, sname, rating, age)
Boats(bid, bname, color)

e Solution:

Boats « Sailors)

=Ted’ and color = ‘green’

A ship cannot have TWO colors at the same time

1T

<name T color=req- BOALS © Reserves « Sailors)

n

sname(Tcolor = green’ BOALS © Reserves ~ Sailors)

Basic SQL Query

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification;

e Relation-list: A list of relation names (possibly with range-
variable after each name).

* Target-list: A list of attributes of relations in relation-list
* Qualification: conditions on attributes

e DISTINCT: optional keyword for duplicate removal.
— Default = no duplicate removal!

Representing “Multiplicity”

 Show a many-one relationship by an arrow entering
the “one” side. Many One

* Show a one-one relationship by arrows entering both
entity sets. One One

* In some situations, we can also assert “exactly one,”
i.e., each entity of one set must be related to exactly
one entity of the other set. To do so, we use a

rounded arrow. ——) Exactly One

1. (3 points)
Assume the schema consists of two relations R(A,B,C) and S(D,E). Consider the following expressions:

a) | [ac(Ob=2 (R Oa=£ (S)))
) (] [a.c(R)) O0a=e (ODp=2(S))

Are algebraic expressions (a) and (b) equivalent? Use no more than two sentences to
explain your answer.

SOLUTION
No: Note that the arity (number of attributes) of the relation output of expression (a) is 2 while the
arity of the relation output of expression (b) is 4

5. (22 points: 11 + 11)

This question tests how well you understand the algorithm for converting E/R diagrams to relational
schemas. An E/R diagram when converted to relations (using the mechanical construction that we know
and love) gives rise to the following relations:

R(a,b,c)

S(a,d)

T(a,d f,g)

You may assume that the same symbols refer to the same attribute and different symbols refer to
different attributes (e.g., the attributes a in the relations R, S, and T are the same). Your task is to
reverse-engineer the E/R diagram from these relations; in other words, what E/R diagram could have
produced these relations? For full credit, give two different E/R diagrams that could have produced
these relations.

CA2AOCbh ODC e D ~d
N
/ AN
R =X X > S
\\:\\ //
S _.-'J'--._I
Iy
z/-’.
z'-’
Y
— T
o
t

5. (22 points: 11 + 11)

This question tests how well you understand the algorithm for converting E/R diagrams to relational
schemas. An E/R diagram when converted to relations (using the mechanical construction that we know
and love) gives rise to the following relations:

R(a,b,c)

S(a,d)

T(a,d f,g)

You may assume that the same symbols refer to the same attribute and different symbols refer to
different attributes (e.g., the attributes a in the relations R, S, and T are the same). Your task is to
reverse-engineer the E/R diagram from these relations; in other words, what E/R diagram could have
produced these relations? For full credit, gwe two different E/R diagrams that could have produced

these relations. arnYd —q

m:vll'-h'

Triviality of FDs

An FD A1A2 .. A, — B1B>... By is
» trivial if the B's are a subset of the A's,
{B1.Bs,...B,} € {A1,As.... Ay}
» non-trivial if at least one B is not among the A's,
{B1,B2,...Bp} —{A1.Aa, .. . Ay} £ 1

» completely non-trivial if none of the B's are among the A's, i.e.,

{81. Bs. ... Bn} N {A1. Ao, ... An} = (.

» Trivial dependency rule: The FD A1A>.. A, — B1B> ... By is
equivalent to the FD A1A>.. A, — C1 G ... Ck, where the C's are
those B's that are not A's, i.e.,

(C1,Co.o. Gl = (B1. B Bt — {A1, Ag, .. An).

» What good are trivial and non-trivial dependencies?

» Trivial dependencies are always true.
» [hey help simplify reasoning about FDs.

11

Boyce-Codd Normal Form

» Condition on the FDs in a relation that guarantees that anomalies do
not exist.

» A relation R is in Boyce-Codd Normal Form (BCNF) if and only if for

every non-trivial FD AjA, ... A, — B for R, {A1, Ay, ..., A} is a
superkey for R.

» Informally, the left side of every non-trivial FD must be a superkey.

» A relation R violates BCNF if it has an FD such that the attributes of
the left side of an FD do not form a superkey.

Closures of FDs vs. Closures of Attributes

» Both algorithms take as input a relation R and a set of FDs F.

» Closure of FDs:

» Computes {F} T the set of all FDs that follow from F.
» Output is a set of FDs.
» Qutput may contain an exponential number of FDs.

» Closure of attributes:
» In addition, takes a set {A1, Ao, ..., An} of attributes as input.
» Computes {Aq, As. ;fi'l”}Jr, the set of all attributes B such that the
AiA> ... A, — B follows from F.

» Qutput is a set of attributes.
» Qutput may contain at most the number of attributes in R.

Checking for BCNF Violations

» List all FDs.
» Ensure that left hand side of each FD is a superkey.

» We have to first find all the keys!

» |s Courses(Number, DepartmentName, CourselName,
Classroom, Enrollment, StudentName, Address) in BCNF?

» FDs are
Number DepartmentName — CourseName
Number DepartmentName — Classroom
Number DepartmentName — Enrollment

» What is {Number, DepartmentName} " ?

{Number, DepartmentName, Coursename, Classroom, Enrollmen{}
» T[herefore, the key is

{Number, DepartmentlName, StudentName, Address}

» [he relation is not in BCNF

>
>

Decomposition into BCNF

Suppose R is a relation schema that violates BCNF.
We can decompose R into a set S of new relations such that
1. each relation in S is in BCNF and
2. we can “recover’ R from the relations in S, i.e., the relations in S
“faithfully” represent the data in K.

Let X be the set of all attributes of R.

Suppose the FD A;A> ... A,, — B violates BCNF.

Decomposition algorithm:
1. Compute {A1A> ..., Am}+ and augment the FD to
AAs A, — 1AL A AL

2. Decompose R into two relations containing
2.1 all the attributes in {A;, Ay .. HAm_}»J“
2.2 all the attributes on the left side of the FD and all the attributes of R
not on the right side of the FD, i.e.,
X —{A1, Ao An) T U{AL Az .., Am).
3. Find FDs in the new relations and decompose them if they are not in

BCNF.

Decomposing Courses

» Schema is Courses(Number, DepartmentName, CourseName,
Classroom, Enrollment, StudentName, Address).

» BCNF-violating FD is

Number DepartmentName — CourselName Classroom Enrollment.

» What is {Number, DepartmentName}" ?

{Number, DepartmentName, Coursename, Classroom, Enrollment}

» Decompose Courses into

Coursesl (Number, DepartmentName, CourseName, Classroom,
Enrollment) and

Courses2(Number, DepartmentName, StudentName, Address).

Decomposing Courses

» Decompose Courses into

Coursesl (Number, DepartmentName, CourseName, Classroom,
Enrollment) and

Courses2(Number, DepartmentName, StudentName, Address).

Number DeptName | CourseName | Classroom Enroliment

4604 CS E-Business 211 McBryde | 32

6722 CS Advanced DB | 210 McBryde | 15

4322 Electrical DB 220 McBryde | 29

5722 CS DB 311 Durham | 34
Number DeptName | StudentName | Address
4604 CS Adam 71 Main Street
6722 CS Adam 71 Main Street
4322 Electrical Suri 54 Elm Street
5722 CS Suri 54 Elm Street
5722 CS loe 33 Astoria Ave
6722 CS loe 33 Astoria Ave

» Are there any BCNF violations in

the two new relations?

Third Normal Form (3NF)

» A relation R is in Third Normal Form (3NF) if and only if for every

non-trivial FD A1 A> ... A, — B for R, one of the following two
conditions is true:

1. {A1, A, ..., A,} is a superkey for R or

2. B is an attribute in some key.

» Teach(C. D, P, S, Y) has FDs PSY — CD and CD — S
» Keys are {P,S5,Y}and {C.D,P, Y}
» CD — S violates BCNF.

» However, Teach is in 3NF because S is a part of a key.

Definition of MVD

A multivalued dependency (MVD) X ->->Y
IS an assertion that if two tuples of a relation
agree on all the attributes of X, then their
components in the set of attributes Y may be
swapped, and the result will be two tuples
that are also in the relation.

Definition of MVD

» A multi-valued dependency (MVD or MD) is an assertion that two
sets of attributes are independent of each other.

» T he multi-valued dependency A1A> ... A, — B1B> ... B,, holds in a
relation R if in every instance of R,
for every pair of tuples t and u in R that agree on all the A's, we can
find a tuple v in R that agrees

1. with both t and v on A's,
2. with t on the B's, and
3. with v on all those attributes of R that are not A's or B's.

Number | DeptName Textbook | Professor
4604 CS FCDB Ullman
4604 CsS | SQL Made Easy Ullman
4604 CS FCDB Widom
4604 CsS | SQL Made Easy Widom

Example

Number | DeptName Textbook | Professor
4604 Cs FCDB Ullman
4604 CS SQL Made Easy Ullman

u 4604 Cs FCDB Widom
4604 CS SUL Made Easy Widom
2604 Cs | Data Structures Ullman
2604 CS | Data Structures Widom

» Number DeptName — Textbook is an MD. For every pair of tuples t and
u that agree on Number and DeptName, we can find a tuple v that agrees

1. with both t and v on Number and DeptName,
2. with t on Textbook, and with v on Professor.

» Number DeptName —» Professor is an MD. For every pair of tuples t
and u that agree on Number and DeptName, we can find a tuple v that
agrees

1. with both t and v on Number and DeptName,
2. with t on Professor, and with v on Textbook.

MVD Rules

* Every FD isan MVD

— If X->Y, then swapping Y ’s between two tuples that
agree on X doesn’t change the tuples.

— Therefore, the “new” tuples are surely in the
relation, and we know X ->->Y.

* Definition of keys depend on FDs and not MDs

ANF Definition

e Arelation R isin 4NF if whenever X ->->Y is
a nontrivial MVD, then X is a superkey.
— Nontrivial means that:

1. Y is not a subset of X, and
2. X and Y are not, together, all the attributes.

— Note that the definition of “superkey” still
depends on FD’s only.

Decomposition and 4NF

e If X->->Y is a 4NF violation for relation R, we
can decompose R using the same technique
as for BCNF.

1. XY is one of the decomposed relations.
2. All but Y- X is the other.

Example

Drinkers(name, addr, phones, beersLiked)

FD: name -> addr
MVD’s: name ->-> phones
name ->-> beersLiked
* Key is
— {name, phones, beersLiked}.

* Which dependencies violate 4NF ?
— All

Example, Continued

e Decompose using name -> addr:

1. Drinkersl(name, addr)

" |n 4NF only dependency is name -> addr.

2. Drinkers2(name, phones, beersLiked)

" Notin4NF. MVD’s name ->-> phones and
name ->-> beersLiked apply.

= Key?
= No FDs, so all three attributes form the key.

Example: Decompose Drinkers?2

e Either MVD name ->-> phones or name ->->
beersLiked tells us to decompose to:

— Drinkers3(name, phones)

— Drinkers4(name, beersLiked)

Midterm Points Distribution

* |[n Order of Point Percentage
— FDs, MDs, Normalization
— Relational Algebra and SQL

— ER Modeling

