XML Query Languages
XPATH
XQUERY

Zaki Malik
November 11, 2008

The XPath/XQuery Data Model

€ Corresponding to the fundamental
“relation” of the relational model is:
sequence of items.

€ An /tem is either:
1. A primitive value, e.g., integer or string.
2. A node.

1.

2.

Principal Kinds of Nodes

Document nodes represent entire
documents.

Elements are pieces of a document
consisting of some opening tag, Its
matching closing tag (if any), and
everything in between.

Attributes are names that are given values
Inside opening tags.

Document Nodes

€ Formed by doc(URL) or document(URL)
(or doc(filename) or document(filename)

€ Example:
doc(“/usr/class/cs145/bars.xml”)

@ All XPath (and XQuery) queries refer to a
doc node, either explicitly or implicitly.

Example DTD

<IDOCTYPE Bars [
<!ELEMENT BARS (BAR*, BEER*)>
<!ELEMENT BAR (PRICE+)>
<IATTLIST BAR name = ID>
<!ELEMENT PRICE (#PCDATA)>
<IATTLIST PRICE theBeer = IDREF>
<IELEMENT BEER ()>

<IATTLIST BEER name = ID, soldBy = IDREFS>
1=

Example Document

An el‘e}mnt node

] et el catal ~
Qe ™Y R D B
] BEEGATE INo AVA VA SIS =AY
oy e, B g, e oY 5 — 14 7~ =N I N
e LA LJd [. laVal*FaVa) — —\7IMMN =~ Il V" TLIOLIIRT B ™S
~S PPNl ITCLOITC — 1 AL) ~ 7 LW A B | | AW | -
8 BN e N B P R /N N L 2 2 L
(DDII"\I ~AD A A~ PRy Y A N P ~ 7 ~IDDINTr -
(B | |] [Yy =T 1 > < 1< = = 1 | > |
o] | ENENY PINS LI A] | | K] AL VAV A] IENINvL.”
£ g,
e | d | D BN
b EDY Ve
“f B s VR AT s wa

<BEER|[name = "Export’|soldBy = "JoesBar
SuesBar ... "/> ...
</BARS> An attribute node

Document node is all of this, plus
the header (<? xml version...).

Nodes as Semistructured Data

®‘ Blue =document
Q‘i’" JC Green = element
Orange = attribute

Purple = primitive
value

XPATH and XQUERY

€ XPATH is a language for describing paths in

XML documents.

¢ Really think of the semi-structured data graph and /ts
paths.

* The result of the described path is a sequence of items.

¢+ Compare with SQL:

e SQL is a language for describing relations in terms of other
relations.

e The result of a query is a relation (bag) made up of tuples

€ XQUERY is a full query language for XML
documents with power similar to SQL.

Path Descriptors

€ Simple path descriptors are sequences of
tags separated by slashes (/).

+ The format used is strongly reminiscent of UNIX
naming conventions.

+ Construct the result by starting with just the doc
node and processing each tag from the left.

@ If the descriptor begins with /, then the path
starts at the root and has those tags, In
order.

@ If the descriptor begins with //, then the
path can start anywhere.

Example: /BARS/BAR/PRICE

<BARS>
<BAR name = “JoesBar'>
<PRICEtheBeer = “Bud”>2.50£/PRICE=
<PRICE theBeer = “Miller">3.00</PRICE=
</BAR> ...
<BEER name =
SuesBar,.."> /BARS/BAR/PRICE describes the
</BEER> ... set with these two PRICE objects

</BARS> as well as the PRICE objects for
any other bars.

J

ud”, soldBy = “JoesBar,

Example: //PRICE

<BARS>
<BAR name = “JoesBar’>
<PRICErheBeer = “Bud”>2.50/PRICE=
<PRICE [theBeer = “I\/IiIIer”>3.00<,'PHiiiCE%
</BAR> ...

<BEER name =

o 11>
SuesBar, //PRICE describes the same PRICE
</BEER> ... objects, but only because the DTD
forces every PRICE to appear within
< =
/BARS a BARS and a BAR.

ud”, soldBy = “JoesBar,

Wild-Card *

@ A star (*) in place of a tag represents
any one tag.

&®Example: /*/*/PRICE represents all
price objects at the third level of
nesting.

Example: /BARS/*

<BARS>

-

IIIIIIIIIIIIIIIIIIIIIIIII

A et

<P; CE theBeer = “Miller’>3.00</PRICE>

ig”"””“%‘l e A B a A B e e B S AN BaH AL E A b b e A e e A o EER A A AR T
R s st /BARS/* captures all BAR
</BARS> and BEER objects, such

as these.

Attributes

€ In XPATH, we refer to attributes by
prepending @ to their name.

@ Attributes of a tag may appear in paths
as If they were nested within that tag.

Example: /BARS/*/@name

<BARS>

<BAR|N

&
B
J

ar’e

<

<3RICE th Be

“Bud”>2.50</PRICE>

PRICE theBeer = “Miller’>3.00</PRICE>
</BAR> ...

<BEER nam

s (Li"}\\ ,J”

SuesBar, .. ”>'\\

</BEER> .
</BARS>

, soldBy = “JoesBar,

/BARS/*/@name selects all

name attributes of immediate
subobjects of the BARS object

Selection Conditions

@ A condition inside [...] may follow a tag.

@ If so, then only paths that have that
tag and also satisfy the condition are
Included in the result of a path
expression.

Example: Selection Condition

€ /BARS/BAR/PRICE[PRICE < 2.75]
<BARS>

<BAR name = “JoesBar’>
<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer Willer”>3.00</PRlCE>
</BAR> ...

The condition that the PRICE be
< $2.75 makes this price, but not
the Miller price

Example: Attribute In Selection

€ /BARS/BAR/PRICE[@theBeer = “Miller”]
<BARS>
<BAR name = “JoesBar’>
<PRICE theBeer = “Bud”>2.50</PRICE>

~—DDIrE thoRoor — iHoar’ 2 NO—/DDICE~
<rFRICLE lNhepeer = Wlwlilli‘ A= O AN S T NI L -

</BAR> ... T

Now, this PRICE object is
selected, along with any
other prices for Miller.

AXxes

€ In general, path expressions allow us to
start at the root and execute a sequence
of steps to find a set of nodes at each
step.

& At each step, we may follow any one of
several axes.

€ The default axis is child:: --- go to any
child of the current set of nodes.

Example: Axes

€ /BARS/BEER is really shorthand for
/BARS/child::BEER .

€ @ is really shorthand for the attribute::
axis.

¢ Thus, /BARS/BEER[@name = “Bud”] Is
shorthand for

/BARS/BEER[attribute::name = “Bud”]

More Axes

€ Some other useful axes are:

1. parent:: = parent(s) of the current
node(s).

2. descendant-or-self.: = the current
node(s) and all descendants.

+ Note: // is really a shorthand for this axis.
3. ancestor::, ancestor-or-self, etc.

XQuery

€ XQuery extends XPath to a query language
that has power similar to SQL.

€ Uses the same sequence-of-items data
model as XPath.

€ XQuery is an expression language.

+ Like relational algebra --- any XQuery expression
can be an argument of any other XQuery
expression.

FLWR Expressions

B The most important form of XQuery expressions
iInvolves for-, let-, where-, return- (FLWR) clauses.

1. A gurey begins with one or more for and/or let clauses.
The for's and let's can be interspersed.

2. Then an optional where clause.

3. A single return clause.

Form:
for variable in expression
let variable := expression
where condition
return expression

Semantics of FLWR Expressions

& Each for creates a loop.
+ |et produces only a local variable assignment.

& At each iteration of the nested loops, if any,
evaluate the where clause.

@ If the where clause returns TRUE, invoke
the return clause, and append its value to
the output.

* So return can be thought of as “add to result”

FOR Clauses

FOR <variable> IN <path expression>,...
@ Variables begin with $.

€ A FOR variable takes on each object in

the set denoted by the path expression,
In turn.

€ Whatever follows this FOR is executed
once for each value of the variable.

Example: FOR

FOR $beer IN /BARS/BEER/@name

RETURN
<BEERNAME>$beer</BEERNAME>

& $beer ranges over the name attributes of
all beers in our example document.

@ Result is a list of tagged names, like
<BEERNAME>Bud</BEERNAME>
<BEERNAME=>Miller</BEERNAME>...

LET Clauses

LET <variable> := <path expression>,...

@ Value of the variable becomes the set
of objects defined by the path
expression.

& Note LET does not cause iteration; FOR
does.

Example: LET

LET $beers := /BARS/BEER/@name

RETURN
<BEERNAMES>%beers</BEERNAMES>

® Returns one object with all the names of
the beers, like:

<BEERNAMES>Bud, Miller,...</BEERNAMES>

Order-By Clauses

® FLWR is really FLWOR: an order-by clause can
orecede the return.

® Form: order by <expression>
With optional ascending or descending.

B The expression is evaluated for each assignment
to variables.

B Determines placement in output sequence.

Example: Order-By

m List all prices for Export, lowest price first.

let $d := document("bars.xml”)

dk on 1a (TS wm o~

I B 1 N YO R

I L/ :\J i
o, Fwme o g, e, @ weew, F S S el e - -
U N T PV B J8% TR 7% B 708 B0 J1 7 P | F VT N L N S W
IV IEADY YT Ay Y aYEns vl IR EIVIAEE iud Dl odwd N)
g Wt § T A) B et B BE WS OB B § N’ B |\ d? Bt N L

[] 1 o,

NAroar v iy

I WIRE o f 1% .yl

N NANed RS Y NN \

o W
= T Order those

VeuxTi irm SN ks

LUl il

i J .l

bindings
by the values inside
the elements.

Each binding is
evaluated for the
output. The result
IS a sequence of
PRICE elements.

Generates bindings for $p to
PRICE elements.

Following IDREF’s

€ XQUERY (but not XPATH) allows us to
use paths that follow attributes that are
IDREF’s.

€ If x denotes a set of IDREF’s, then
x ==>J) denotes all the objects with tag
¥y whose ID’s are one of these IDREF's.

Example

€ Find all the beer objects where the beer
IS sold by Joe’s Bar for less than 3.00.

€ Strategy:

1. $beer will for-loop over all beer objects.

2. For each $beer, let $joe be either the Joe’s-
Bar object, if Joe sells the beer, or the
empty set of bar objects.

3. Test whether $joe sells the beer for < 3.00.

Example: The Query

Attribute soldBy is of type
IDREFS. Follow each ref

to a BAR and check if its
FOR $beer IN /BARS/BEER / name is Joe's Bar.

- ERReRENRARRARAAE
LET $ oe : — | Rheaer/MenldRv=—>RARIMNname—"*“1nacRar”’l
WIVOCUE I \WOUIUILIY — ~ Lol \lL‘QEf‘JI I IG— JUCGCJILIAI j
i = Fr=y ==y B gy e B N, § =y i 0 | BV N . |
N VaVaWaEI I E ¥ L | I Fa Ak o 2 VARV oS L AN o VaVaS W NI AR Vol a2 lWaN |
LET $jOePrlce ploe/PRICE]@Thepeer=Deer/@namej
SR S wfr 2 8 8 R N e R LD DN L N R B Sap? B e Ve N ~’ 3
C | il A

Ik = A

=g N o e |

52‘3*

II\I\I I‘Y Bavg N t"
I l "‘I T e

WHERE|: e = o
RETURN <CHEAP]BEER>$beer</CHEAPBEER>

Only pass the values of Find that PRICE subobject
$beer, $joe, $joePrice to of the Joe’s Bar object that
the RETURN clause If the represents whatever beer is
string inside the PRICE currently $beer.

object $joePrice is < 3.00

Aggregations

€ XQuery allows the usual aggregations, such
as sum, count, max, min.

€ They take any sequence as argument.

€ E.g. find bars where all beers are under $5.
let $bars = doc(”bars.xml”)/BARS
for $price in $bars/BAR/PRICE

where max($price) < 5
return $bar/BAR/@name

