
XML Q LXML Query Languages
XPATH

XQUERY

Zaki Malik

N b 11 2008November 11, 2008

h h/ d lThe XPath/XQuery Data Model

Corresponding to the fundamental
“relation” of the relational model is:
sequence of items.

A it i ithAn item is either:
1. A primitive value, e.g., integer or string.
2. A node.

Principal Kinds of Nodesp

1. Document nodes represent entire1. Document nodes represent entire
documents.

2 Elements a e pieces of a doc ment2. Elements are pieces of a document
consisting of some opening tag, its
matching closing tag (if any) andmatching closing tag (if any), and
everything in between.

b h l3. Attributes are names that are given values
inside opening tags.

Document Nodes

Formed by doc(URL) or document(URL)
(or doc(filename) or document(filename)

Example:
doc(“/usr/class/cs145/bars.xml”)doc(/usr/class/cs145/bars.xml)

All XP th (d XQ) i f tAll XPath (and XQuery) queries refer to a
doc node, either explicitly or implicitly.

lExample DTD

<!DOCTYPE Bars [
<!ELEMENT BARS (BAR*, BEER*)>
<!ELEMENT BAR (PRICE+)>

<!ATTLIST BAR name = ID>
<!ELEMENT PRICE (#PCDATA)><!ELEMENT PRICE (#PCDATA)>

<!ATTLIST PRICE theBeer = IDREF>
<!ELEMENT BEER ()><!ELEMENT BEER ()>

<!ATTLIST BEER name = ID, soldBy = IDREFS>
]>]

Example Document

<BARS> An element node<BARS>
<BAR name = ”JoesBar”>

<PRICE theBeer = ”Export”>2.50</PRICE>
<PRICE theBeer = ”Gr.Is.”>3.00</PRICE>

</BAR> …
<BEER name = ”Export” soldBy = ”JoesBary

SuesBar … ”/> …
</BARS> An attribute node

Document node is all of this, plus
the header (<? xml version)the header (<? xml version…).

Nodes as Semistructured Data

bars.xml

BARS

BEERBAR name = SoldByname =BEERBAR name
”JoesBar”

SoldBy
= ”…”

name
”Export”

PRICEPRICE theBeer =
”Gr.Is.”

theBeer
= ”Export”

Bl d
3.002.50

Blue =document
Green = element
Orange = attributeg
Purple = primitive

value

XPATH and XQUERY
XPATH is a language for describing paths in
XML documents.

Really think of the semi-structured data graph and its
paths.
The result of the described path is a sequence of items.
Compare with SQL:

• SQL is a language for describing relations in terms of other• SQL is a language for describing relations in terms of other
relations.

• The result of a query is a relation (bag) made up of tuples

XQUERY is a full query language for XML
documents with power similar to SQL.

Path Descriptors
Simple path descriptors are sequences of
tags separated by slashes (/).g p y (/)

The format used is strongly reminiscent of UNIX
naming conventions.g
Construct the result by starting with just the doc
node and processing each tag from the left.

If the descriptor begins with /, then the path
starts at the root and has those tags, in g ,
order.
If the descriptor begins with // then theIf the descriptor begins with //, then the
path can start anywhere.

l / / /Example: /BARS/BAR/PRICE

<BARS>
<BAR name = “JoesBar”>

<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR> …
<BEER name = “Bud”, soldBy = “JoesBar,

S B ”SuesBar,…”>
</BEER> …
/BARS

/BARS/BAR/PRICE describes the
set with these two PRICE objects
as well as the PRICE objects for</BARS> as well as the PRICE objects for
any other bars.

l //Example: //PRICE

<BARS>
<BAR name = “JoesBar”>

<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR> …
<BEER name = “Bud”, soldBy = “JoesBar,

S B ”SuesBar,…”>
</BEER> …
/BARS

//PRICE describes the same PRICE
objects, but only because the DTD
forces every PRICE to appear within</BARS> forces every PRICE to appear within
a BARS and a BAR.

ld d *Wild-Card *

A star (*) in place of a tag represents
any one tag.y g

Example: /*/*/PRICE represents allExample: /*/*/PRICE represents all
price objects at the third level of
nestingnesting.

l / /*Example: /BARS/*

<BARS>
<BAR name = “JoesBar”>

<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR> …
<BEER name = “Bud”, soldBy = “JoesBar,

S B ”SuesBar,…”>
</BEER> …
/BARS

/BARS/* captures all BAR
d BEER bj t h</BARS> and BEER objects, such

as these.

bAttributes

In XPATH, we refer to attributes by
prepending @ to their name.p p g @

Attributes of a tag may appear in pathsAttributes of a tag may appear in paths
as if they were nested within that tag.

l / /*/Example: /BARS/*/@name

<BARS>
<BAR name = “JoesBar”>

<PRICE theBeer = “Bud”>2.50</PRICE>
<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR> …
<BEER name = “Bud”, soldBy = “JoesBar,

S B ”SuesBar,…”>
</BEER> …
/BARS

/BARS/*/@name selects all
name attributes of immediate

</BARS> subobjects of the BARS object.

l dSelection Conditions

A condition inside […] may follow a tag.

If so, then only paths that have that
tag and also satisfy the condition aretag and also satisfy the condition are
included in the result of a path
expressionexpression.

l l dExample: Selection Condition

/BARS/BAR/PRICE[PRICE < 2.75]
<BARS><BARS>

<BAR name = “JoesBar”>
<PRICE theBeer = “Bud”>2 50</PRICE><PRICE theBeer Bud >2.50</PRICE>
<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR></BAR> …
The condition that the PRICE be
< $2.75 makes this price, but not
the Miller pricep

l b lExample: Attribute in Selection

/BARS/BAR/PRICE[@theBeer = “Miller”]
<BARS><BARS>

<BAR name = “JoesBar”>
<PRICE theBeer = “Bud”>2 50</PRICE><PRICE theBeer Bud >2.50</PRICE>
<PRICE theBeer = “Miller”>3.00</PRICE>

</BAR></BAR> …
Now, this PRICE object is
selected, along with any
other prices for Millerother prices for Miller.

Axes

In general, path expressions allow us to
start at the root and execute a sequence q
of steps to find a set of nodes at each
step.p
At each step, we may follow any one of
several axesseveral axes.
The default axis is child:: --- go to any
child of the current set of nodeschild of the current set of nodes.

lExample: Axes

/BARS/BEER is really shorthand for
/BARS/child::BEER ./ /
@ is really shorthand for the attribute::
axisaxis.

Thus, /BARS/BEER[@name = “Bud”] is
shorthand forshorthand for
/BARS/BEER[attribute::name = “Bud”]

More Axes

Some other useful axes are:
1. parent:: = parent(s) of the current1. parent:: parent(s) of the current

node(s).
2. descendant-or-self:: = the current

node(s) and all descendants.
Note: // is really a shorthand for this axis.

3. ancestor::, ancestor-or-self, etc.

XQuery

XQuery extends XPath to a query language
that has power similar to SQLthat has power similar to SQL.
Uses the same sequence-of-items data

d l XP hmodel as XPath.
XQuery is an expression language.

Like relational algebra --- any XQuery expression
can be an argument of any other XQuery
expression.

FLWR Expressions
The most important form of XQuery expressions
involves for-, let-, where-, return- (FLWR) clauses.

1. A qurey begins with one or more for and/or let clauses.
The for’s and let’s can be interspersed.

2 Th ti l h l2. Then an optional where clause.
3. A single return clause.

Form:
for variable in expressionfor variable in expression
let variable := expression
where condition
return expression

Semantics of FLWR Expressions

Each for creates a loop.
let produces only a local variable assignment.

At each iteration of the nested loops if anyAt each iteration of the nested loops, if any,
evaluate the where clause.

If the where clause returns TRUE, invoke
the return clause, and append its value to
the output.

So return can be thought of as “add to result”g

lFOR Clauses

FOR <variable> IN <path expression>,…
Variables begin with $Variables begin with $.
A FOR variable takes on each object in
the set denoted by the path expressionthe set denoted by the path expression,
in turn.
Wh t f ll thi FOR i t dWhatever follows this FOR is executed
once for each value of the variable.

lExample: FOR

FOR $beer IN /BARS/BEER/@name
RETURNRETURN

<BEERNAME>$beer</BEERNAME>
$beer ranges over the name attributes of$beer ranges over the name attributes of
all beers in our example document.
Result is a list of tagged names likeResult is a list of tagged names, like
<BEERNAME>Bud</BEERNAME>
<BEERNAME>Miller</BEERNAME><BEERNAME>Miller</BEERNAME>…

lLET Clauses

LET <variable> := <path expression>,…
Value of the variable becomes the setValue of the variable becomes the set
of objects defined by the path
expressionexpression.
Note LET does not cause iteration; FOR
doesdoes.

lExample: LET

LET $beers := /BARS/BEER/@name
RETURNRETURN

<BEERNAMES>$beers</BEERNAMES>
Returns one object with all the names ofReturns one object with all the names of
the beers, like:
BEERNAMES B d Mill /BEERNAMES<BEERNAMES>Bud, Miller,…</BEERNAMES>

Order By ClausesOrder-By Clauses
FLWR is really FLWOR: an order by clause canFLWR is really FLWOR: an order-by clause can
precede the return.
Form: order by <expression>Form: order by <expression>

With optional ascending or descending.
The expression is evaluated for each assignment
to variables.
Determines placement in output sequence.

Example: Order-By
List all prices for Export, lowest price first.

let $d := document(”bars.xml”)
f $ ifor $p in

$d/BARS/BAR/PRICE[@theBeer=”Export”]
order by $p Generates bindings for $p to
return $p

Generates bindings for $p to
PRICE elements.Order those

bindings
by the values inside
the elementsthe elements.

Each binding is
l t d f thevaluated for the

output. The result
is a sequence of
PRICE elementsPRICE elements.

ll ’Following IDREF’s

XQUERY (but not XPATH) allows us to
use paths that follow attributes that are p
IDREF’s.
If x denotes a set of IDREF’s thenIf x denotes a set of IDREF s, then
x =>y denotes all the objects with tag
y whose ID’s are one of these IDREF’sy whose ID s are one of these IDREF s.

lExample

Find all the beer objects where the beer
is sold by Joe’s Bar for less than 3.00.y
Strategy:

1 $beer will for-loop over all beer objects1. $beer will for-loop over all beer objects.
2. For each $beer, let $joe be either the Joe’s-

Bar object if Joe sells the beer or theBar object, if Joe sells the beer, or the
empty set of bar objects.

3. Test whether $joe sells the beer for < 3.00.3. Test whether $joe sells the beer for < 3.00.

Example: The QueryExample: The Query
Attribute soldBy is of type
IDREFS. Follow each ref
to a BAR and check if its

FOR $beer IN /BARS/BEER
LET $joe := $beer/@soldBy=>BAR[@name=“JoesBar”]

to a BAR and check if its
name is Joe’s Bar.

LET $joePrice := $joe/PRICE[@theBeer=$beer/@name]
WHERE $joePrice < 3.00
RETURN <CHEAPBEER>$bee </CHEAPBEER>RETURN <CHEAPBEER>$beer</CHEAPBEER>

Find that PRICE subobjectOnly pass the values of j
of the Joe’s Bar object that
represents whatever beer is
currently $beer.

$beer, $joe, $joePrice to
the RETURN clause if the
string inside the PRICE
object $joeP ice is < 3 00object $joePrice is < 3.00

Aggregations

XQuery allows the usual aggregations, such
as sum, count, max, min.

They take any sequence as argumentThey take any sequence as argument.

E.g. find bars where all beers are under $5.
let $bars = doc(”bars.xml”)/BARS
for $price in $bars/BAR/PRICEfor $price in $bars/BAR/PRICE
where max($price) < 5
return $bar/BAR/@namereturn $bar/BAR/@name

