BCNF and Normalization

Zaki Malik
October 21, 2008
Relational Schema Design

• Goal of relational schema design is to avoid redundancy and anomalies.

 - *Redundancy*: information is repeated unnecessarily in several tuples.
 - *Update anomalies*: We change information in one tuple but leave the old information in another tuple.
 - *Insertion anomalies*: It is not possible to store some information unless some other, unrelated information is stored as well.
 - *Deletion anomalies*: If a set of values becomes empty, we may lose other information as a side effect.
Bad Design

<table>
<thead>
<tr>
<th>name</th>
<th>addr</th>
<th>beersLiked</th>
<th>manf</th>
<th>favBeer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Export</td>
<td>Molson</td>
<td>G.I. Lager</td>
</tr>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>G.I. Lager</td>
<td>Gr. Is.</td>
<td>G.I. Lager</td>
</tr>
<tr>
<td>Spock</td>
<td>Enterprise</td>
<td>Export</td>
<td>Molson</td>
<td>G.I. Lager</td>
</tr>
</tbody>
</table>

- **Redundancy**

- **Update anomaly**
 - if Janeway is transferred to *Intrepid*, will we remember to change each of her tuples?

- **Deletion anomaly**
 - If nobody likes Export, we lose track of the fact that Molson manufactures Export.
Another Example

<table>
<thead>
<tr>
<th>Number</th>
<th>DeptName</th>
<th>CourseName</th>
<th>Classroom</th>
<th>Enrollment</th>
<th>StudentName</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>4604</td>
<td>CS</td>
<td>E-Business</td>
<td>211 McBryde</td>
<td>32</td>
<td>Adam</td>
<td>71 Main Street</td>
</tr>
<tr>
<td>6722</td>
<td>CS</td>
<td>Advanced DB</td>
<td>210 McBryde</td>
<td>15</td>
<td>Adam</td>
<td>71 Main Street</td>
</tr>
<tr>
<td>4322</td>
<td>Electrical</td>
<td>DB</td>
<td>220 McBryde</td>
<td>29</td>
<td>Suri</td>
<td>54 Elm Street</td>
</tr>
<tr>
<td>5722</td>
<td>CS</td>
<td>DB</td>
<td>311 Durham</td>
<td>34</td>
<td>Suri</td>
<td>54 Elm Street</td>
</tr>
<tr>
<td>5722</td>
<td>CS</td>
<td>DB</td>
<td>311 Durham</td>
<td>34</td>
<td>Joe</td>
<td>33 Astoria Ave</td>
</tr>
<tr>
<td>6722</td>
<td>CS</td>
<td>Advanced DB</td>
<td>210 McBryde</td>
<td>15</td>
<td>Joe</td>
<td>33 Astoria Ave</td>
</tr>
</tbody>
</table>
Relational Decomposition

- Accepted way to eliminate anomalies is to “decompose” relations.
- Given a relation $R(A_1, A_2, \ldots, A_n)$, two relations $S(B_1, B_2, \ldots, B_m)$ and $T(C_1, C_2, \ldots, C_k)$ form a decomposition of R if
 1. the attributes of S and T together make up the attributes of R, i.e.,
 \[
 \{A_1, A_2, \ldots, A_n\} = \{B_1, B_2, \ldots, B_m\} \cup \{C_1, C_2, \ldots, C_k\}.
 \]
 2. the tuples in S are the projections into $\{R_1, R_2, \ldots, R_m\}$ of the tuples in R.
 3. the tuples in T are the projections into $\{C_1, C_2, \ldots, C_k\}$ of the tuples in R.
 4. S and T do not contain duplicate tuples.
Example of Decomposition

- Decompose
 - Courses into
 - Courses1(Number, DepartmentName, CourseName, Classroom, Enrollment) and
 - Courses2(Number, DepartmentName, StudentName, Address).
- Are the anomalies removed?
 - Redundancy
 - Update
 - Insertion
 - Deletion
Triviality of FDs

An FD $A_1A_2\ldots A_n \rightarrow B_1B_2\ldots B_m$ is

- **trivial** if the B’s are a subset of the A’s,
 \[
 \{B_1, B_2, \ldots B_n\} \subseteq \{A_1, A_2, \ldots A_n\}
 \]

- **non-trivial** if at least one B is not among the A’s,
 \[
 \{B_1, B_2, \ldots B_n\} \setminus \{A_1, A_2, \ldots A_n\} \neq \emptyset
 \]

- **completely non-trivial** if none of the B’s are among the A’s, i.e.,
 \[
 \{B_1, B_2, \ldots B_n\} \cap \{A_1, A_2, \ldots A_n\} = \emptyset.
 \]

- **Trivial dependency rule**: The FD $A_1A_2\ldots A_n \rightarrow B_1B_2\ldots B_m$ is equivalent to the FD $A_1A_2\ldots A_n \rightarrow C_1C_2\ldots C_k$, where the C’s are those B’s that are not A’s, i.e.,
 \[
 \{C_1, C_2, \ldots, C_k\} = \{B_1, B_2, \ldots, B_m\} \setminus \{A_1, A_2, \ldots, A_n\}.
 \]

- What good are trivial and non-trivial dependencies?
 - Trivial dependencies are always true.
 - They help simplify reasoning about FDs.
Boyce-Codd Normal Form

- Condition on the FDs in a relation that guarantees that anomalies do not exist.

- A relation R is in Boyce-Codd Normal Form (BCNF) if and only if for every non-trivial FD $A_1A_2\ldots A_n \rightarrow B$ for R, $\{A_1, A_2,\ldots, A_n\}$ is a superkey for R.

- Informally, the left side of every non-trivial FD must be a superkey.

- A relation R violates BCNF if it has an FD such that the attributes of the left side of an FD do not form a superkey.
Closures of FDs vs. Closures of Attributes

- Both algorithms take as input a relation R and a set of FDs F.
- **Closure of FDs:**
 - Computes $\{F\}^+$, the set of all FDs that follow from F.
 - Output is a set of FDs.
 - Output may contain an exponential number of FDs.
- **Closure of attributes:**
 - In addition, takes a set $\{A_1, A_2, \ldots, A_n\}$ of attributes as input.
 - Computes $\{A_1, A_2, \ldots, A_n\}^+$, the set of all attributes B such that the $A_1A_2\ldots A_n \rightarrow B$ follows from F.
 - Output is a set of attributes.
 - Output may contain at most the number of attributes in R.
Checking for BCNF Violations

- List all FDs.
- Ensure that left hand side of each FD is a superkey.
- We have to first find all the keys!
- Is Courses(Number, DepartmentName, CourseName, Classroom, Enrollment, StudentName, Address) in BCNF?
- FDs are

 \[
 \begin{align*}
 \text{Number DepartmentName} & \rightarrow \text{CourseName} \\
 \text{Number DepartmentName} & \rightarrow \text{Classroom} \\
 \text{Number DepartmentName} & \rightarrow \text{Enrollment}
 \end{align*}
 \]
- What is \(\{\text{Number, DepartmentName}\}^+\)?
 \[
 \{\text{Number, DepartmentName, CourseName, Classroom, Enrollment}\}
 \]
- Therefore, the key is
 \[
 \{\text{Number, DepartmentName, StudentName, Address}\}
 \]
- The relation is not in BCNF.
Decomposition into BCNF

- Suppose R is a relation schema that violates BCNF.
- We can decompose R into a set S of new relations such that
 1. each relation in S is in BCNF and
 2. we can “recover” R from the relations in S, i.e., the relations in S “faithfully” represent the data in R.
- Let X be the set of all attributes of R.
- Suppose the FD $A_1A_2\ldots A_m \rightarrow B$ violates BCNF.
- Decomposition algorithm:
 1. Compute $\{A_1A_2\ldots A_m\}^+$ and augment the FD to $A_1A_2\ldots A_m \rightarrow \{A_1, A_2\ldots, A_m\}^+$.
 2. Decompose R into two relations containing
 2.1 all the attributes in $\{A_1, A_2\ldots, A_m\}^+$
 2.2 all the attributes on the left side of the FD and all the attributes of R not on the right side of the FD, i.e., $X - \{A_1, A_2\ldots, A_m\}^+ \cup \{A_1, A_2\ldots, A_m\}$.
 3. Find FDs in the new relations and decompose them if they are not in BCNF.
Decomposing Courses

- Schema is Courses(Number, DepartmentName, CourseName, Classroom, Enrollment, StudentName, Address).
- BCNF-violating FD is
 \[\text{Number DepartmentName} \rightarrow \text{CourseName Classroom Enrollment} \]
 - What is \(\{\text{Number, DepartmentName}\}^+ \)?
 \[\{\text{Number, DepartmentName, CourseName, Classroom, Enrollment}\} \]

- Decompose Courses into
 Courses1(Number, DepartmentName, CourseName, Classroom, Enrollment) and
 Courses2(Number, DepartmentName, StudentName, Address).
Decomposing Courses

- Decompose Courses into
 Courses1(Number, DepartmentName, CourseName, Classroom, Enrollment) and
 Courses2(Number, DepartmentName, StudentName, Address).

<table>
<thead>
<tr>
<th>Number</th>
<th>DeptName</th>
<th>CourseName</th>
<th>Classroom</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>4604</td>
<td>CS</td>
<td>E-Business</td>
<td>211 McBryde</td>
<td>32</td>
</tr>
<tr>
<td>6722</td>
<td>CS</td>
<td>Advanced DB</td>
<td>210 McBryde</td>
<td>15</td>
</tr>
<tr>
<td>4322</td>
<td>Electrical</td>
<td>DB</td>
<td>220 McBryde</td>
<td>29</td>
</tr>
<tr>
<td>5722</td>
<td>CS</td>
<td>DB</td>
<td>311 Durham</td>
<td>34</td>
</tr>
</tbody>
</table>

- Are there any BCNF violations in the two new relations?
Another Example of Decomposition

- Schema is Students(Id, Name, AdvisorId, AdvisorName, FavouriteAdvisorId)
- What are the FDs?
 - ID \rightarrow Name FavouriteAdvisorId
 - AdvisorId \rightarrow AdvisorName
- What is the key? \{ID, AdvisorId\}
- Is there a BCNF violation? Yes.
- Use ID \rightarrow Name Level FavouriteAdvisorId to decompose.
 - $\{ID\}^+$ is \{ID, Name, FavouriteAdvisorId\}
 - Schemas for new relations are
 - Students1(ID, Name, FavouriteAdvisorId)
 - Students2(ID, AdvisorId, AdvisorName)
Another Example of Decomposition (2)

- What are the FDs in \textbf{Student1}(ID, Name, FavouriteAdvisorId)?
 There are none that violate BCNF.

- What are the FDs in \textbf{Students2}(ID, AdvisorId, AdvisorName)?
 - AdvisorId \rightarrow AdvisorName

- Repeat the decomposition process.

- Use AdvisorId \rightarrow AdvisorName to decompose.
 - $\{\text{AdvisorId}\}^+$ is $\{\text{AdvisorId, AdvisorName}\}$
 - Schemas for new relations are
 - \textbf{Students2}(ID, AdvisorId)
 - \textbf{Students3}(AdvisorId, AdvisorName)
BCNFs and Two-Attribute Relationships

- True or False: Every two-attribute relation $R(A, B)$ is in BCNF.

- The statement is true. Why?

- Consider four possible cases:
 1. There are no non-trivial FDs.
 2. $A \rightarrow B$ is the only non-trivial FD.
 3. $B \rightarrow A$ is the only non-trivial FD.
 4. Both $A \rightarrow B$ and $B \rightarrow A$ hold in R.
Decomposition into BCNF

- Suppose \(R \) is a relation schema that violates BCNF.
- We can decompose \(R \) into a set \(S \) of new relations such that
 1. each relation in \(S \) is in BCNF and
 2. we can “recover” \(R \) from the relations in \(S \), i.e., the relations in \(S \) “faithfully” represent the data in \(R \).
- How does the normalisation algorithm guarantee the second condition?
Candidate Normalization Algorithm

- Every two-attribute relation is in BCNF.
- Can we bring any relation R into BCNF by arbitrarily decomposing it into two-attribute relations?
- No, since we may not be able to recover R correctly from the decomposition.
Joining Relations

Let R and S be two relations with one common attribute B.

Relation T is the join of R and S, denoted $R \bowtie S$ if and only if

- the attributes of T are the union of the attributes of R and S,
- every tuple $t \in T$ is the join of two tuples $r \in R$ and $s \in S$ that agree on the attribute B, i.e., t agrees with r on all the attributes in R and with s on all attributes in S,
- T contains all tuples formed in this manner.
Recovering Information from a Decomposition

- Suppose \(R \) is a relation schema that violates BCNF.
- We can decompose \(R \) into a set \(\{S_1, S_2, \ldots S_k\} \) of new relations such that

 1. each relation \(S_i, 1 \leq i \leq k \) is in BCNF and
 2. we can “recover” \(R \) from these relations:

 \[R = S_1 \bowtie S_2 \bowtie \ldots \bowtie S_k, \text{ i.e., the decomposition of } R \text{ into} \]

 \(\{S_1, S_2, \ldots S_k\} \) is a \textit{lossless-join} decomposition.
Correct Decompositions

A decomposition is *lossless* if we can recover:

$$R(A, B, C)$$

Decompose

$$R_1(A, B)$$ $$R_2(A, C)$$

Recover

$$R'(A, B, C)$$ should be the same as $$R(A, B, C)$$

$$R'$$ is in general larger than $$R$$. Must ensure $$R' = R$$
Example of Lossy-Join Decomposition

- Example: Decomposition of $R = (A, B)$
 $$R_1 = (A) \quad R_2 = (B)$$

\[
\begin{array}{c|c}
A & B \\
\hline
\alpha & 1 \\
\alpha & 2 \\
\beta & 1 \\
\end{array}
\quad
\begin{array}{c}
A \\
\hline
\alpha \\
\beta \\
\end{array}
\quad
\begin{array}{c}
B \\
\hline
1 \\
2 \\
\end{array}
\]

$\Pi_A(r) \Join \Pi_B(r)$
Example: BCNF Decomposition

Drinkers(name, addr, beersLiked, manf, favBeer)

FDs = name->addr, name -> favBeer, beersLiked->manf

• Pick BCNF violation name->addr.
• Close the left side: \{name\}^+ = \{name, addr, favBeer\}.
• Decomposed relations:
 1. Drinkers1(name, addr, favBeer)
 2. Drinkers2(name, beersLiked, manf)
Example -- Continued

• We are not done; we need to check Drinkers1 and Drinkers2 for BCNF.

• Is Drinkers1 in BCNF?
 – For Drinkers1(\texttt{name, addr, favBeer}), relevant FD’s are \texttt{name->addr} and \texttt{name->favBeer}.
 – Thus, \{\texttt{name}\} is the only key and Drinkers1 is in BCNF.
Example -- Continued

• For Drinkers2(name, beersLiked, manf), the only FD is beersLiked->manf, and the only key is
 \{name, beersLiked\}.
 – Violation of BCNF?
• beersLiked⁺ = \{beersLiked, manf\}, so we decompose Drinkers2 into:
 1. Drinkers3(beersLiked, manf)
 2. Drinkers4(name, beersLiked)
Example -- Concluded

• The resulting decomposition of *Drinkers*:
 1. Drinkers1(name, addr, favBeer)
 2. Drinkers3(beersLiked, manf)
 3. Drinkers4(name, beersLiked)

• Note:
 – *Drinkers1* tells us about drinkers,
 – *Drinkers3* tells us about beers, and
 – *Drinkers4* tells us the relationship between drinkers and the beers they like.
Summary of BCNF Decomposition

Find a dependency that violates the BCNF condition:

\[A_1, A_2, \ldots, A_n \rightarrow B_1, B_2, \ldots, B_m \]

Decompose:

- **Others**
- **A's**
- **B's**

Is there a 2-attribute relation that is not in BCNF?

Continue until there are no BCNF violations left.