Manipulating Functional Dependencies

Zaki Malik

September 30, 2008
Definition of Functional Dependency

• If \(t \) is a tuple in a relation \(R \) and \(A \) is an attribute of \(R \), then \(t_A \) is the value of attribute \(A \) in tuple \(t \).

• The FD AdvisorId \(\rightarrow \) AdvisorName holds in \(R \) if in every instance of \(R \), for every pair of tuples \(t \) and \(u \)

\[
\text{if } t_{\text{AdvisorId}} = u_{\text{AdvisorId}}, \text{ then } t_{\text{AdvisorName}} = u_{\text{AdvisorName}}
\]
Rules for Manipulating FDs

• Learn how to reason about FDs.
• Define rules for deriving new FDs from a given set of FDs.
• Use these rules to remove “anomalies” from relational designs.
• **Example:** A relation R with attributes A, B, and C, satisfies the FDs $A \rightarrow B$ and $B \rightarrow C$. What other FDs does it satisfy?

 $A \rightarrow C$

• What is the key for R?

 – A, because $A \rightarrow B$ and $A \rightarrow C$
Splitting and Combining FDs

• Can we split and combine left hand sides of FDs?

For the relation Courses is the FD

\[\text{Number} \rightarrow \text{DeptName} \rightarrow \text{CourseName} \]

equivalent to the set of FDs

\[\{ \text{Number} \rightarrow \text{CourseName}, \text{DeptName} \rightarrow \text{CourseName} \} \]?

– No!
Triviality of FDs

An FD $A_1 A_2 \ldots A_n \rightarrow B_1 B_2 \ldots B_m$ is

- *trivial* if the B’s are a subset of the A’s,
 $\{B_1, B_2, \ldots B_n\} \subseteq \{A_1, A_2, \ldots A_n\}$

- *non-trivial* if at least one B is not among the A’s,
 $\{B_1, B_2, \ldots B_n\} - \{A_1, A_2, \ldots A_n\} \neq \emptyset$

- *completely non-trivial* if none of the B’s are among the A’s, i.e.,
 $\{B_1, B_2, \ldots B_n\} \cap \{A_1, A_2, \ldots A_n\} = \emptyset$.

- *Trivial dependency rule:* The FD $A_1 A_2 \ldots A_n \rightarrow B_1 B_2 \ldots B_m$ is equivalent to the FD $A_1 A_2 \ldots A_n \rightarrow C_1 C_2 \ldots C_k$, where the C’s are those B’s that are not A’s, i.e.,
 $\{C_1, C_2, \ldots, C_k\} = \{B_1, B_2, \ldots, B_m\} - \{A_1, A_2, \ldots, A_n\}$.

- What good are trivial and non-trivial dependencies?
 - Trivial dependencies are always true.
 - They help simplify reasoning about FDs.
Closure of FD sets

• Given a relation schema R and set S of FDs
 – is the FD F logically implied by S?
• Example
 – R = {A,B,C,G,H,I}
 – S = A → B, A → C, CG → H, CG → I, B → H
 – would A → H be logically implied?
 – yes (you can prove this, using the definition of FD)
• Closure of S: S^+ = all FDs logically implied by S
• How to compute S^+?
 – we can use Armstrong's axioms
Armstrong's Axioms

• **Reflexivity** rule
 - \(A_1 A_2 \ldots A_n \rightarrow \text{a subset of } A_1 A_2 \ldots A_n \)

• **Augmentation** rule
 - \(A_1 A_2 \ldots A_n \rightarrow B_1 B_2 \ldots B_m \)
 then
 \[
 A_1 A_2 \ldots A_n \ C_1 C_2 \ldots C_k \rightarrow B_1 B_2 \ldots B_m C_1 C_2 \ldots C_k
 \]

• **Transitivity** rule
 - \(A_1 A_2 \ldots A_n \rightarrow B_1 B_2 \ldots B_m \) and
 \(B_1 B_2 \ldots B_m \rightarrow C_1 C_2 \ldots C_k \)
 then
 \[
 A_1 A_2 \ldots A_n \rightarrow C_1 C_2 \ldots C_k
 \]
Inferring S^+ using Armstrong's Axioms

- $S^+ = S$
- Loop
 - For each F in S, apply reflexivity and augmentation rules
 - add the new FDs to S^+
 - For each pair of FDs in S, apply the transitivity rule
 - add the new FD to S^+
- Until S^+ does not change any further
Additional Rules

• **Union** rule
 - \(X \rightarrow Y \) and \(X \rightarrow Z \), then \(X \rightarrow YZ \)
 - (\(X, Y, Z \) are sets of attributes)

• **Decomposition** rule
 - \(X \rightarrow YZ \), then \(X \rightarrow Y \) and \(X \rightarrow Z \)

• **Pseudo-transitivity** rule
 - \(X \rightarrow Y \) and \(YZ \rightarrow U \), then \(XZ \rightarrow U \)

• These rules can be inferred from Armstrong's axioms
Example

 $F = \{ A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H \}$

- some members of F^+

 - $A \rightarrow H$

 • by transitivity from $A \rightarrow B$ and $B \rightarrow H$

 - $AG \rightarrow I$

 • by augmenting $A \rightarrow C$ with G, to get $AG \rightarrow CG$

 and then transitivity with $CG \rightarrow I$

 - $CG \rightarrow HI$

 • from $CG \rightarrow H$ and $CG \rightarrow I$: “union rule” can be inferred from

 – definition of functional dependencies, or

 – Augmentation of $CG \rightarrow I$ to infer $CG \rightarrow CGI$, augmentation of $CG \rightarrow H$ to infer $CGI \rightarrow HI$, and then transitivity
Closures of Attributes

Suppose a relation with attributes A, B, C, D, E, and F satisfies the FDs

$$AB \rightarrow C \quad BC \rightarrow AD \quad D \rightarrow E, \quad CF \rightarrow B$$

Given these FDs,

- what is the set X of attributes such that $AB \rightarrow X$ is true?
 $X = \{A, B, C, D, E\}$, i.e., $AB \rightarrow ABCDE$.

- what is the set Y of attributes such that $BCF \rightarrow Y$ is true?
 $Y = \{A, B, C, D, E, F\}$, i.e., $BCF \rightarrow ABCDEF$.

- $\{B, C, F\}$ is a superkey.
Closures of Attributes: Definition

Given

- a set of attributes \(\{A_1, A_2, \ldots, A_n\} \) and
- a set of FDs \(S \),

the closure of \(\{A_1, A_2, \ldots, A_n\} \) under the FDs in \(S \) is

- the set of attributes \(\{B_1, B_2, \ldots, B_m\} \) such that for \(1 \leq i \leq m \), the FD \(A_1 A_2 \ldots A_n \rightarrow B_i \) follows from \(S \).
- the closure is denoted by \(\{A_1, A_2, \ldots, A_n\}^+ \).

- Which attributes must \(\{A_1, A_2, \ldots, A_n\}^+ \) contain at a minimum? \(\{A_1, A_2, \ldots, A_n\} \). Why?

\[A_1 A_2 \ldots A_n \rightarrow A_i \] is a trivial FD.
Closures of Attributes: Algorithm

Given

▸ a set of attributes \(\{A_1, A_2, \ldots, A_n\} \) and
▸ a set of FDs \(S \),
▸ compute \(X = \{A_1, A_2, \ldots, A_n\}^+ \).

1. Set \(X \leftarrow \{A_1, A_2, \ldots, A_n\} \).
2. Find an FD \(B_1 B_2 \ldots B_k \rightarrow C \) in \(S \) such that \(\{B_1, B_2, \ldots B_k\} \subseteq X \) but \(C \not\in X \).
3. Add \(C \) to \(X \).
4. Repeat the last two steps until you cannot find such an attribute \(C \).
5. The final value of \(X \) is the desired closure.
Closures of Attributes: Algorithm

- **Basis:** $Y^+ = Y$
- **Induction:** Look for an FD’s left side X that is a subset of the current Y^+
 - If the FD is $X \rightarrow A$, add A to Y^+
Diagrammatically:
Why is the Concept of Closures Useful?

- Closures allow us to prove correctness of rules for manipulating FDs.
 - Transitive rule: if
 \[A_1 A_2 \ldots A_n \rightarrow B_1 B_2 \ldots B_m \]
 and
 \[B_1 B_2 \ldots B_m \rightarrow C_1 C_2 \ldots C_n \]
 then
 \[A_1 A_2 \ldots A_n \rightarrow C_1 C_2 \ldots C_n. \]
 - To prove this rule, simply check if
 \[\{C_1, C_2, \ldots, C_n\} \subseteq \{A_1, A_2, \ldots, A_n\}^+. \]
- Closures allow us to procedurally define keys. A set of attributes \(X \) is a key for a relation \(R \) if and only if
 - \(\{X\}^+ \) is the set of all attributes of \(R \) and
 - for no attribute \(A \in X \) is \(\{X - \{A\}\}^+ \) the set of all attributes of \(R \).
Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

• **Testing for superkey:**
 – To test if α is a superkey, we compute α^+, and check if α^+ contains all attributes of R.

• **Testing functional dependencies**
 – To check if a functional dependency $\alpha \rightarrow \beta$ holds (or, in other words, is in F^+), just check if $\beta \subseteq \alpha^+$.
 – That is, we compute α^+ by using attribute closure, and then check if it contains β.
 – Is a simple and cheap test, and very useful

• **Computing closure of F**
 – For each $\gamma \subseteq R$, we find the closure γ^+, and for each $S \subseteq \gamma^+$, we output a functional dependency $\gamma \rightarrow S$.
Example of Attribute Set Closure

- \(R = (A, B, C, G, H, I) \)
- \(F = \{ A \rightarrow B \ A \rightarrow C \ CG \rightarrow H \ CG \rightarrow I \ B \rightarrow H \} \)
- \((AG)^+\)
 1. \(\text{result} = AG \)
 2. \((A \rightarrow C \text{ and } A \rightarrow B) \ \text{result} = ABCG \)
 3. \((CG \rightarrow H \text{ and } CG \subseteq AGBC) \ \text{result} = ABCGH \)
 4. \((CG \rightarrow I \text{ and } CG \subseteq AGBCH) \ \text{result} = ABCGHI \)

- Is AG a super key?
- Is AG a key?
 1. Does \(A^+ \rightarrow R \)?
 2. Does \(G^+ \rightarrow R \)?
Example of Closure Computation

- Consider the “bad” relation Students(Id, Name, AdvisorId, AdvisorName, FavouriteAdvisorId).
- What are the FDs that hold in this relation?

 - Id → Name
 - Id → FavouriteAdvisorId
 - AdvisorId → AdvisorName

- To compute the key for this relation,

 1. Compute the closures for all sets of attributes.
 2. Find the minimal set of attributes whose closure is the set of all attributes.