Extended Operators in SQL and
Relational Algebra

Zaki Malik
September 11, 2008

Bags

e Abag (or multi-set) is like a set, but an element may
appear more than once.

e Example: {1,2,1,3}is a bag.

e Example: {1,2,3}is also a bag that happens to be a set.

Why Bags?

So far, we have said that relational algebra and SQL operate
on relations that are sets of tuples.

Real RDBMSs treat relations as bags of tuples.

— SQL, the most important query language for relational databases, is
actually a bag language.

Performance is one of the main reasons; duplicate elimination
IS expensive since it requires sorting.

— Some operations, like projection, are much more efficient on bags
than sets.

If we use bag semantics, we may have to redefine the
meaning of each relation algebra operator.

Operations on Bags

Selection applies to each tuple, so its effect on bags is like its
effect on sets.

Projection also applies to each tuple, but as a bag operator,
we do not eliminate duplicates.

Products and joins are done on each pair of tuples, so
duplicates in bags have no effect on how we operate.

Bag Semantics: Projection and
Selection

» Projection (7()): process each tuple independently; a tuple may
appear in the resulting relation multiple times.

» Selection (o()): process each tuple independently; a tuple may appear
in the resulting relation multiple times.

R ﬂA?B(R) Jcég(R)
AlB|C Al B AlB|C
123 1| 2 1123
11214 1| 2 1124
2134 2| 3 2134
2134 2| 3 2134

u

Bag Union

 An element appears in the union of two bags the sum of the
number of times it appears in each bag.

e RUS:iftupletappearsktimesinRand|timesinS§,t

appearsin RUS k + | times. RUS
A B
S 1]2
L A B BEFE
AlB 1] 2 12
REE 12 112
12 12 112
213 213 213
2|3 o4 213
213
214

Bag Intersection

 An element appears in the intersection of two bags the
minimum of the number of times it appears in either.

e RNS:iftupletappears k timesin Rand | timesin S, t appears
min {k, I} timesinRN S

N == ||

Bag Difference

 An element appears in the difference R -S of bags as many
times as it appears in R, minus the number of times it appears
in S.

— But never less than 0 times.

e R-S:if tuple t appears k timesinRand | timesin S, t appears
in R — S max{0, k — I} times.

R

N | 2

Bag Semantics: Products and Joins

e Product (x): If a tuple r appears k times in a relation R and
tuple s appears | times in a relation S, then the tuple rs
appears kl timesin R x S.

e Theta-join and Natural join (e=): Since both can be expressed
as applying a selection followed by a projection to a product,
use the semantics of selection, projection, and the product.

Extended Operators

Powerful operators based on basic relational operators and
bag semantics.

Sorting: convert a relation into a list of tuples.

Duplicate elimination: turn a bag into a set by eliminating
duplicate tuples.

Grouping: partition the tuples of a relation into groups, based
on their values among specified attributes.

Aggregation: used by the grouping operator and to
manipulate/combine attributes.

Extended projections: projection on steroids.

Outerjoin: extension of joins that make sure every tuple is in
the output.

Sorting

RA TALAQ,...(R)-
SQL SELECT ... FROM ...WHERE ... ORDER BY Aq.As.....

» The result is a list of tuples in R but with the tuples sorted by their
values in attributes Ay, As, ...

» In SQL, use DESC after an attribute to specify sorting in descending
order; ASC is the default.

» |f you use the result in another query, sorted order is lost.

11

Example: Sorting

w
N BN

TAU, (R) = [(5,2), (1,2), (3,4)]

Duplicate Elimination

RA 0(R) is the relation containing exactly one copy of each tuple
in R.
SQL SELECT DISTINCT ...

» Duplicate elimination is expensive, since tuples must be sorted or
partitioned.

» Set operations in SQL (UNION, INTERSECT, and EXCEPT) operate on
sets of tuples, i.e., they first eliminate duplicates.

» To make these operators treat relations as bags, follow the operation
with the keyword ALL.

13

Example: Duplicate Elimination

R= (

R W R
N A N

o

o(R) = A

=
N

Extended Projection

. Using the same Tt ; operator, we allow the list L to contain
arbitrary expressions involving attributes, for example:

e Arithmetic on attributes, e.g., A+B.

e Duplicate occurrences of the same attribute.

Example: Extended Projection

W >

N o

M 4544 (R) =

A+B Al A2
3 1 1
7 3 3

Aggregation Operators

Operators that summarize or aggregate the values in a single
attribute of a relation.

Operators are the same in relational algebra and SQL.
All operators treat a relation as a bag of tuples.
SUM: computes the sum of a column with numerical values.

AVG: computes the average of a column with numerical
values.

MIN and MAX:

— for a column with numerical values, computes the smallest or
larges value, respectively.

— for a column with string or character values, computes the
lexicographically smallest or largest values, respectively.

COUNT: computes the number of tuples in a column.

In SQL, can use COUNT (*) to count the number of tuples in a
relation.

Example: Aggregation

(JO(JOH:D
N &~ WO

SUM(A) = 7
COUNT(A) = 3
MAX(B) = 4
AVG(B) = 3

Grouping Operator

How do we answer the query “Count the number of classes
and the total enrollment of the classes each department
teaches”?

Can we answer the query using the operators discussed so
far?

We need to group the tuples of Teach by DeptName and then
aggregate within each group.
Use the grouping operator.

Applying 7,(R)

» How do we answer the query “Count the number of classes and total
enrollment of the classes each department teaches'?

1. Group Courses by DeptName.

2. For each group, create a new attribute that stores the number of
classes taught by the department.

3. For each group, create a new attribute that stores the total enrollment
of the classes taught by the department.

vL(Courses), where L is a list containing three elements:

1. DeptName: the grouping attribute,

2. COUNT (Number) — NumCourses: an aggregated attribute computing
the count of the Number attribute in each group and naming the new
attribute NumCourses, and

3. SUM(Enrollment) — TotalEnrollment: an aggregated attribute
computing the total of the Enrollment attribute and naming the new
attribute TotalEnrollment.

20

Example: Grouping/Aggregation

R=(|A B ch
1 2 3
4 5 6
1 2 5 Then, average C within
groups:
Vasaveig R =72 A B AVG(C)
First, group Aby Aand B 4 > ©

A B C

Outerjoin

Suppose we join R oo §.

A tuple of R that has no tuple of S with which it joins is said to
be dangling.

— Similarly for a tuple of S.

Outerjoin preserves dangling tuples by padding them with a
special NULL symbol in the result.

Example: Outerjoin

R=(| A B|)
1 2
4 5

R OUTERJOIN S =

N

~N WO

A B C
1 2 3
4 5 NULL
NULL | 6 I

Transactions, Views, Indexes

Zaki Malik
September 11, 2008

Why Transactions?

e Database systems are normally being accessed by many users
or processes at the same time.

— Both queries and modifications.

 Unlike operating systems, which support interaction of
processes, a DMBS needs to keep processes from
troublesome interactions.

Example: Bad Interaction

Joint account holders each take $S100 from different ATM’s at
about the same time.

— The DBMS better make sure one account deduction doesn’t get
lost.

Compare: An OS allows two people to edit a document at the
same time. If both write, one’s changes get lost.

Introduction to Transactions

Transaction = process involving database queries and/or
modification.

Normally with some strong properties regarding concurrency.

Formed in SQL from single statements or explicit programmer
control.

Depending on the implementation, a transaction may start:

— Implicitly, with the execution of a SELECT, UPDATE, ...
statement, or

— Explicitly, with a BEGIN TRANSACTION statement
Transaction finishes with a COMMIT or ROLLBACK statement

ACID Properties

* ACID Properties are:
: Whole transaction or none is done.
: Database constraints preserved.

. It appears to the user as if only one process executes at a
time.

. Effects of a process survive a crash.

e Optional: weaker forms of transactions are often supported as
well.

COMMIT

e The SQL statement COMMIT causes a transaction to
complete.

— Its database modifications are now permanent in the
database.

ROLLBACK

The SQL statement ROLLBACK also causes the transaction to
end, but by aborting.

— No effects on the database.

Failures like division by O or a constraint violation can also
cause rollback, even if the programmer does not request it.

Example: Interacting Processes

e Assume a Sells(bar,beer,price) relation, and suppose that Joe’s
Bar sells only Export for $2.50 and Sleeman for $3.00.

e Sallyis querying Sells for the highest and lowest price Joe
charges.

e Joe decides to stop selling Export and Sleeman, and to sell only
Heineken at $3.50.

Sally’s Program

e Sally executes the following two SQL statements called (min)
and (max) to help us remember what they do.

(max) SELECT MAX(price) FROM Sells
WHERE bar ='Joe’’s Bar’;

(min) SELECT MIN(price) FROM Sells
WHERE bar ='Joe’’s Bar’;

Joe’s Program

e At about the same time, Joe executes the following steps: (del)
and (ins).

(del) DELETE FROM Sells
WHERE bar =’Joe’s Bar’;

(ins) INSERT INTO Sells
VALUES('Joe’s Bar’, "Heineken’, 3.50);

Interleaving of Statements

e Although (max) must come before (min), and (del) must come
before (ins), there are no other constraints on the order of
these statements, unless we group Sally’s and/or Joe’s
statements into transactions.

Example: Strange Interleaving

e Suppose the steps execute in the order (max)(del)(ins)(min).

Joe’s Prices: {2.50,3.00} {2.50,3.00} {3.50} {3.50}

Statement: (max) (del) (ins) (min)

Result: 3.00 3.50

e Sally sees MAX < MIN!

Fixing the Problem by Using
Transactions

e |f we group Sally’s statements (max)(min) into one
transaction, then she cannot see this inconsistency.

e She sees Joe’s prices at some fixed time.

— Either before or after he changes prices, or in the middle,
but the MAX and MIN are computed from the same prices.

Another Problem: Rollback

e Suppose Joe executes (del)(ins), not as a transaction, but after
executing these statements, thinks better of it and issues a
ROLLBACK statement.

e |f Sally executes her statements after (ins) but before the

rollback, she sees a value, 3.50, that never existed in the
database.

Solution

e |f Joe executes (del)(ins) as a transaction, its effect cannot be
seen by others until the transaction executes COMMIT.

— If the transaction executes ROLLBACK instead, then its effects
can never be seen.

Isolation Levels

e SQL defines four isolation levels

= choices about what interactions are allowed by
transactions that execute at about the same time.

e Each DBMS implements transactions in its own way.

> w N e

Choosing the Isolation Level

Within a transaction, we can say:
SET TRANSACTION ISOLATION LEVEL X
where X =
SERIALIZABLE
REPEATABLE READ
READ COMMITTED
READ UNCOMMITTED

Serializable Transactions

If Sally = (max)(min) and Joe = (del)(ins) are each
transactions, and Sally runs with isolation level
SERIALIZABLE, then she will see the database either
before or after Joe runs, but not in the middle.

Isolation Level Is Personal Choice

 Your choice, e.g., run serializable, affects only how you
see the database, not how others see it.

e Example: If Joe runs serializable, but Sally doesn’t, then
Sally might see no prices for Joe’s Bar.

— i.e., it looks to Sally as if she ran in the middle of Joe’s
transaction.

Read-Commited Transactions

e |f Sally runs with isolation level READ COMMITTED, then she
can see only committed data, but not necessarily the same
data each time.

e Example: Under READ COMMITTED, the interleaving
(max)(del)(ins)(min) is allowed, as long as Joe commits.

— Sally sees MAX < MIN.

Repeatable-Read Transactions

e Requirement is like read-committed, plus: if data is read
again, then everything seen the first time will be seen the
second time.

— But the second and subsequent reads may see more
tuples as well.

Example: Repeatable Read

e Suppose Sally runs under REPEATABLE READ, and the order of
execution is (max)(del)(ins)(min).

— (max) sees prices 2.50 and 3.00.

— (min) can see 3.50, but must also see 2.50 and 3.00,
because they were seen on the earlier read by (max).

Read Uncommitted

e A transaction running under READ UNCOMMITTED can see
data in the database, even if it was written by a transaction
that has not committed (and may never).

e Example: If Sally runs under READ UNCOMMITTED, she could
see a price 3.50 even if Joe later aborts.

Views

A view is a relation defined in terms of stored tables
(called base tables) and other views.

Two kinds:

1. Virtual = not stored in the database; just a query for
constructing the relation.

2. Materialized = actually constructed and stored.
Just like a table, a view can be queried.

Unlike a table, a view cannot be updated unless it satisfies
certain conditions.

Declaring Views

e Declare by:
CREATE [MATERIALIZED] VIEW <name> AS <query>;

e Defaultis virtual.

Example: View Definition

e Suppose we want to perform a set of queries on those students
who have taken courses both in the computer science and the
mathematics departments.

e Let us create a view to store the PIDs of these students and the
CS-Math course pairs they took.
CREATE VIEW CSMath AS
SELECT T1.StudentPID, T1.Number, T2.Number AS StudentPID
FROM Take AS T1, Take AS T2
WHERE (T1.StudentPID = T2.StudentPID)
AND (T1.DeptName =’CS’)
AND (T2.DeptName ="Math’);

Example: View Definition

e CanDrink(drinker, beer) is a view “containing” the drinker-
beer pairs such that the drinker frequents at least one bar
that serves the beer:

CREATE VIEW CanDrink AS
SELECT drinker, beer
FROM Frequents, Sells
WHERE Frequents.bar = Sells.bar;

Example: Accessing a View

e Query aview as if it were a base table.

— Also: a limited ability to modify views if it makes sense
as a modification of one underlying base table.

e Example query:
SELECT beer FROM CanDrink
WHERE drinker ="Sally’;

Indexes

Index = data structure used to speed access to tuples of a
relation, given values of one or more attributes.

Could be a hash table, but in a DBMS it is always a balanced
search tree with giant nodes (a full disk page) called a B-tree.

Declaring Indexes

e No standard!

e Typical syntax:
CREATE INDEX Beerind ON Beers(manf);
CREATE INDEX Sellind ON Sells(bar, beer);

Using Indexes

Given a value v, the index takes us to only those tuples that
have v in the attribute(s) of the index.

Example: use Beerlnd and Sellind to find the prices of beers
manufactured by Pete’s and sold by Joe. (next slide)

Using Indexes --- (2)

SELECT price FROM Beers, Sells

WHERE manf = "Pete’s” AND
Beers.name = Sells.beer AND
bar ="Joe’s Bar’;

Use BeerInd to get all the beers made by Pete’s.

2. Then use Sellind to get prices of those beers, with bar =
‘Joe”’s Bar’

Database Tuning

e A major problem in making a database run fast is deciding
which indexes to create.

e Pro: Anindex speeds up queries that can use it.

e Con: An index slows down all modifications on its relation
because the index must be modified too.

