SQL Queries and Subqueries

Zaki Malik
September 04, 2008

Basic SQL Query

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification;

e Relation-list: A list of relation names (possibly with range-
variable after each name).

e Target-list: A list of attributes of relations in relation-list
e (Qualification: conditions on attributes

e DISTINCT: optional keyword for duplicate removal.
— Default = no duplicate removal!

SQL Comparison Operators

Comparison Operator Meaning

- Equal to

< [ess than
> Greater than
<= [.ess than or equal to
- Crreater than or equal to
< = Mot equal to (used by most implementations of SQL.)

= Not equal to (used by some implementations of SQL)

How to evaluate a query?

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification;

e Conceptual query evaluation using relational operators:
1) Compute the cross-product of relation-list.
2) Discard resulting tuples if they fail qualifications.
3) Delete attributes that are not in target-list. (called column-list)
4) If DISTINCT is specified, eliminate duplicate rows.

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103;

Example of Conceptual Evaluation (1)

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103;

Sailors

sid sname rating age

22 dustin 7 45.0
31 |ubber 8 55.5
58 rusty 10 35.0

(1) Compute the cross-product of relation-
list.

Reserves

sid bid day
22 101 10/10/96
58 103 11/12/96

Example of Conceptual Evaluation (2)

SELECT S.sname (2) Discard tuples if they fail
FROM Sailors S, Reserves R qualifications.

WHERE S.sid=R.sid AND R.bid=103;

Sailors X Reserves

S.sid sname rating age R.sid bid day

22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

Example of Conceptual Evaluation (3)

SELECT S.sname (3) Delete attribute columns that are
FROM Sailors S, Reserves R not in target-list.

WHERE S.sid=R.sid AND R.bid=103;

sname
Sailors X Reserves rusty

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 555 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

Renaming / Aliasing

Consider the following SALESREPS relation

Empl_num |name |age | Rep office | manager
105 Bill |37 |13 104
104 Bob (33 |12 106
106 Sam |52 |11 NULL

How do we determine the name of Bob’s manager?

Aliasing

SELECT s2.name

FROM SALESREPS s1, SALESREPS s?

WHERE sl1.name='Bob’ AND
sl.manager=s2.empl_num;

 Aliases must be used here.

» The row referenced by sl is intended to be Bob...

o ...while s2 will be his manager’s.

 Remember, first FROM, then WHERE, then SELECT

Relational Design Example

Students (PID: string, Name: string, Address: string)

Professors (PID: string, Name: string, Office: string, Age: integer, DepartmentName:
string)

Courses (Number: integer, DeptName: string, CourseName: string, Classroom:
string, Enrollment: integer)

Teach (ProfessorPID: string, Number: integer, DeptName: string)

Take (StudentPID: string, Number: integer, DeptName: string, Grade: string,
ProfessorEvaluation: integer)

Departments (Name: string, ChairmanPID: string)

PreReq (Number: integer, DeptName: string, PreReqNumber: integer,
PreRegDeptName: string)

Motivation for Subqueries

Find the name of the professor who teaches “CS 4604.”

SELECT Name

FROM Professors, Teach
WHERE (PID = ProfessorPID) AND (Number = 4604°)

AND (DeptName = “CS’) ;

Do we need to take the natural join of two big relations
just to get a relation with one tuple?

 Can we rewrite the query without using a join?

Nesting

A query can be put inside another query

Most commonly in the WHERE clause

Sometimes in the FROM clause (depending on the software)
This subquery is executed first (if possible)

Subguery Example

 Find the name of the professor who teaches “CS 4604.”

SELECT Name
FROM Professors
WHERE PID =
(SELECT ProfessorPID
FROM Teach
WHERE (Number = 4604) AND (DeptName ='CS’)

);

e When using =, the subquery must return a single tuple

Conditions Involving Relations

e SQL includes a number of operators that apply to a
relation and produce a boolean result.

 These operators are very useful to apply on results of sub-
gueries.

e LetR be arelation and t be a tuple with the same set of
attributes.
— EXISTS Riis true if and only if R contains at least one tuple.
— tIN Ris true if and only if t equals a tuple in R.

— t>ALLR s true if and only if R is unary (has one attribute) and
t is greater than every value in R.
e Can use any of the other five comparison operators.
e |f we use <>, R need not be unary.
— t > ANY R (which is unary) is true if and only if t is greater than at
least one value in R.

e We can use NOT to negate EXISTS, ALL, and ANY.

Subqueries Using Conditions

 Find the departments of the courses taken by the student
with name ‘Suri’.

SELECT DeptName
FROM Take
WHERE StudentPID IN
(SELECT PID
FROM Students
WHERE (Name = ‘Suri’)

);

Correlated vs Uncorrelated

e The previous subqueries did not depend on anything outside
the subquery
— ...and thus need to be executed just once.
— These are called uncorrelated.

A correlated subquery depends on data from the outer query
— ... and thus has to be executed for each row of the outer table(s)

Correlated Subqueries

* Find course names that have been used for two or more courses.

SELECT CourseName
FROM Courses AS First

WHERE CourseName IN
(SELECT CourseName

FROM Courses
WHERE (Number <> First.Number)
AND (DeptName <> First.DeptName)

);

Evaluating Correlated Subqueries

SELECT CourseName
FROM Courses AS First
WHERE CourseName IN
(SELECT CourseName
FROM Courses
WHERE (Number <> First.Number)
AND (DeptName <> First.DeptName)
);
e Evaluate query by looping over tuples of First, and for each tuple

evaluate the subquery.

e Scoping rules: an attribute in a subquery belongs to one of the
tuple variables in that subquery’s FROM clause, or to the
immediately surrounding subquery, and so on.

Subqgueries in FROM clauses

e Canuse a subquery as a relation in a FROM clause.

 We must give such a relation an alias using the AS keyword.

e Let us find different ways of writing the query “Find the names of
Professors who have taught the student whose first name is

2 n

"Suri’.

e The old way:
SELECT Professors.Name
FROM Professors, Take, Teach, Students
WHERE (Professors.PID = Teach.ProfessorPID)
AND (Teach.CourseNumber = Take.CourseNumber)
AND (Teach.DeptName = Take.DeptName)
AND (Take.StudentPID = Student.PID)
AND (Student.Name ="Suri %’);

 “Find the names of (Professors who have taught (courses taken
by (student with first name "Suri’))).”

SELECT Name
FROM Professors
WHERE PID IN
(SELECT ProfessorPID
FROM Teach
WHERE (Number, DeptName) IN
(SELECT Number, DeptName
FROM TakeWHERE StudentPID IN
(SELECT PID
FROM Students
WHERE Name ="Suri %’)

Aggregate Operators

COUNT (%)
COUNT ([DISTINCT] A)

— Ais acolumn

SUM ([DISTINCT] A)

AVG ([DISTINCT] A)

MAX (A)

MIN (A)

Count the number of sailors

SELECT COUNT (%)
FROM Sailors S

21

Find the average age of sailors
with rating = 10

Sailors(sid: integer, sname: string, rating:
integer, age: real)

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

Count the number of different

sailor names

Sailors(sid: integer, sname: string, rating:
integer, age: real)

SELECT COUNT (DISTINCT S.sname)
FROM Sailors S

Find the age of the oldest sailor

Sailors(sid: integer, sname: string, rating:
integer, age: real)

SELECT MAX(S.AGE)
FROM Sailors S

Find name and age of the oldest
sailor(s)

SELECT S.sname, MAX (S.age)
FROM Sailors S

e Thisis illegal, but why?

— Cannot combine a column with a value

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age = (SELECT MAX (S2.age) FROM Sailors 52)

GROUP BY and HAVING

So far, aggregate operators are applied to all (qualifying)
tuples.

— Can we apply them to each of several groups of tuples?

Example: find the age of the youngest sailor for each rating
level.

— In general, we don’t know how many rating levels exist, and what the
rating values for these levels are!

— Suppose we know that rating values go from 1 to 10; we can write 10
gueries that look like this:

| SELECT MIN (S.age)
Fori=1,2,..,10: FROM Sailors S
WHERE S.rating = i

26

Find the age of the youngest sailor

for each rating level

_ Sid Sname Rating Age
SELECT S.rating, MIN (S.age) as age

FROM Sailors S 22 Dustin 7 45.0
GROUP BY S.rating 31 Lubber 55.5

8

(1) The sailors tuples are put into “same 85 Art 3 25.5
rating” groups. 32 Andy 8 25 5

(2) Compute the Minimum age for each g5 pgpp 3 63.5
rating group.

Rating | Age
. 3 25.5)
Rating | Age

+— |3 63.5
3 25.5 (2) 7 45.0
/ 45.0 8 55 &
8 25.5 8 25.5 27

Find the age of the youngest sailor for
each rating level that has at least 2

members sig

SELECT S.rating, MIN (S.age) as
minage

FROM Sailors S

GROUP BY S.rating

HAVING COUNT(*) > 1

The sailors tuples are put into
“same rating” groups.

Eliminate groups that have < 2
members.

Compute the Minimum age for

each rating group. Rating

3

8

Sname Rating Age
22 Dustin 7 45.0
31 Lubber 8 55.5
85 Art 3 25.5
32 Andy 8 25.5
95 Bob 3 63.5
Rating | Age
3 25.5
63.5
Minage | |7 45.0
25.5 8 55.5
25.5 8 25.5

Queries With GROUP BY and HAVING

SELECT [DISTINCT] target-list
FROM relation-list

WHERE qualification

GROUP BY grouping-list

HAVING group-qualification

SELECT S.rating, MIN (S.age) as age
FROM Sailors S

GROUP BY S.rating

HAVING S.rating > 5

e The target-list contains (i) attribute names (ii) terms with
aggregate operations (e.g., AVG (S.age)).

« The attribute list (e.g., S.rating) in target-list must be in
grouping-list.

« The attributes in group-qualification must be in grouping-list.

29

Starwars Exercises

char(name, race, homeworld, affiliation)
planets(name, type, affiliation)
timetable(cname, pname, movie, arrival, departure)

 Which planet does Princess Leia go to in movie3?

SELECT distinct pname
FROM timetable
WHERE chname ='Princess Leia' and movie=3;

Starwars Exercises

char(name, race, homeworld, affiliation)
planets(name, type, affiliation)
timetable(cname, pname, movie, arrival, departure)

e How many humans stay on Dagobah in movie 37

SELECT count(*)

FROM timetable, characters

WHERE movie=3 and pname =‘Dagobah’ and
timetable.cname=characters.name and
characters.race=‘Human’;

Starwars Exercises

char(name, race, homeworld, affiliation)
planets(name, type, affiliation)
timetable(cname, pname, movie, arrival, departure)

 Who has been to his/her homeworld in movie 27

SELECT distinct c.name

FROM characters c, timetable t

WHERE c.name=t.cname and t.pname=c.homeworld and
movie=2;

Starwars Exercises

char(name, race, homeworld, affiliation)
planets(name, type, affiliation)
timetable(cname, pname, movie, arrival, departure)

e Find distinct names of the planets visited by those of race
“droid”.

SELECT distinct t.pname
FROM char c, timetable t
WHERE c.name=t.cname and c.race=‘droid’;

Starwars Exercises

char(name, race, homeworld, affiliation)
planets(name, type, affiliation)
timetable(cname, pname, movie, arrival, departure)

e For each character and for each neutral planet, how much
time total did the character spend on the planet?

SELECT c.name, p.name, SUM(t.departure-t.arrival) as amount

FROM characters c, timetable t, planets p

WHERE t.cname=c.name and t.pname=p.name and
p.affiliation="neutral’

GROUP BY c.name, p.name;

