FLOATING POINT ARITHMETIC

A (nonzero, normalized) base $\beta,$ t-digit floating point number has the mathematical representation

$$\pm d_1 d_2 \cdots d_t \times \beta^e$$
,

where

$$m \le e \le M$$
, $1 \le d_1 \le \beta - 1$, $0 \le d_i \le \beta - 1$ for $i = 2, \dots, t$.

A real number x is said to be within floating range if $|x| \leq \beta^M$. Let fl(x) denote the floating point representation of the real number x within floating point range. Then

$$fl(x) = x(1+\delta),$$
 $|\delta| \le u = \begin{cases} \beta^{1-t} & \text{chopped,} \\ \frac{1}{2}\beta^{1-t} & \text{rounded,} \end{cases}$

depending on whether fl(x) is obtained by chopping or rounding the base β expansion of x. u is called the *unit round-off*.

Assumption. Let \bowtie denote any of the floating point arithmetical operations +, -, *, or /. Then for any floating point numbers x and y,

$$fl(x \bowtie y) = (x \bowtie y)(1+\delta), \qquad |\delta| \le u.$$

Example.

$$fl\left(\sum_{i=1}^{3} x_i y_i\right) = \left\{ \left[x_1 y_1 (1+\delta_1) + x_2 y_2 (1+\delta_2)\right] (1+\delta_3) + x_3 y_3 (1+\delta_4) \right\} (1+\delta_5)$$

where all $|\delta_i| \leq u$.

Note. An equivalent definition of the unit round-off u is that u is the smallest floating point number such that fl(1+u) > 1.

Internal machine representation of floating point numbers—IEEE 754 Standard.

32-bit fo	ormat			Exponent bias $= 7F_{16}$.
31			0	$\beta = 2, t = 24, -126 \le e \le 127.$
sign bit	biased exponent	signi	ficand	
1	8	†1.	23	
64-bit fo	ormat			Exponent bias $= 3FF_{16}$.
63			0	$\beta = 2, t = 53, -1022 \le e \le 1023.$
sign bit	biased exponent	signi	ficand	
1	11	†1.	52	

Except for zero and denormals, the significand is assumed to follow 1. (in binary). The stored exponent E = bias + e.

Memory storage for Intel 80*, MIPS \mathbf{R}^*	, DEC Alpha chips:							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Memory storage for Motorola 68^* , IBM	RS6000, SUN Sparc, Power 60^* chips:							
$\begin{array}{cccc} 63 & 48 & 47 & 32 \\ \hline \text{address } A & \hline \text{address } A+1 \end{array}$	$\begin{array}{cccc} 31 & 16 & 15 & 0 \\ \hline \text{address } A+2 & \hline \text{address } A+3 \end{array}$							
Some other floating point representations.								
Honeywell 68/60 sign bit exponent sign bit mantissa 1 7 1 27 63	Exponent: fixed point binary integer. Mantissa: fixed point binary fraction. The sign bits are part of the exponent and man- tissa. $\beta = 2, t = 27 \mid 63, -128 \leq e \leq 127.$							
CDC 6000 series sign bit biased exponent integer coefficient 1 11 48	Exponent bias = 2^{10} . Note that the mantissa is an integer, not a fraction. $\beta = 2, t = 48, -1024 \le e \le 1023.$							
IBM SYSTEM/360 series sign bit biased exponent mantissa 1 7 24 56	Exponent bias = 2^6 . $\beta = 16, t = 6 \mid 14, -64 \le e \le 63$.							
DEC VAX series 15 14 760sign bitbiased exponentmantissa18<	Exponent bias = 2^7 . The most significant mantissa bit is not stored. $\beta = 2, t = 24 \mid 56, -128 \le e \le 127$.							
4732coefficient continued (part 3)6348coefficient continued (part 4)								

Class			Sign	Biased Exponent	Significand [*] $\underset{\Delta}{\text{ff}} \dots \text{ff}$
			0	1111	1111
	NaNs	Quiet	:	:	:
			0	1111	1000
		Signaling	0	1111	0111
			:	:	:
			0	1111	01
Positives	∞		0	1111	0000
		Normals	0	1110	1111
			:		: I
			0	0001	0000
	Reals	Denormals	0	0000	1111
Negatives			•	•	
			0	0000	0001
		Zero	0	0000	0000
		Zero	1	0000	0000
		Denormals	1	0000	0001
			÷		:
			1	0000	1111
		Normals	1	0001	0000
			:	•	:
				1110	1111
	∞		1	1111	0000
		Signaling	1	1111	0001
	NaNs		÷	:	:
				1111	0111
		Quiet	1	1111	1000
			:		
			1	1111	1111
Short:				$\longleftarrow 8 \text{bits} \longrightarrow$	$\longleftarrow 23 \text{bits} \longrightarrow$
]	Long:	\leftarrow 11bits \rightarrow	\leftarrow 52bits \rightarrow

IEEE Standard 754 Real and Long Real Encodings

* Integer bit is implied and not stored.