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Approximation in Normed Linear Spaces

Definition. A vector space V with an inner product 〈u, v〉 is called an inner product space. A
vector space V with a norm ‖x‖ is called a normed linear space. A normed linear space is strictly

convex if ‖x‖ = ‖y‖ = ‖1

2
(x+ y)‖ = 1 ⇒ x = y.

Theorem. Every finite dimensional subspace S of a normed linear space V contains a point closest
to an arbitrary point x ∈ V . If V is strictly convex, then there is a unique closest point in S to x.

Applications of above theorem:

1. V = C[a, b], S = Pn = {polynomials of degree ≤ n}. For f ∈ C[a, b], there exists a polynomial
P (x) of degree ≤ n which minimizes

‖f − P‖∞ = max
a≤x≤b

|f(x)− P (x)|

or

‖f − P‖2 =

(

∫ b

a

|f(x)− P (x)|2dx

)1/2

or

‖f − P‖1 =

∫ b

a

|f(x)− P (x)| dx.

The “best” approximation P is unique only for the strictly convex norm ‖ · ‖2.

2. V = C[a, b], S = {trigonometric polynomials of degree ≤ n}. For f ∈ C[a, b], there exists a

trigonometric polynomial

Tn(x) = a0 +
n
∑

k=1

ak cos kx+ bk sin kx

of degree ≤ n which minimizes ‖f − Tn‖∞, or ‖f − Tn‖2, or ‖f − Tn‖1.

3. V = C[a, b], S = {continuous functions which are linear in each subinterval [a+ih, a+(i+1)h],

i = 0, . . ., n−1, h = (b−a)/n}. For f ∈ C[a, b], there exists p ∈ S which minimizes ‖f −p‖∞,
or ‖f − p‖2, or ‖f − p‖1. Note that this p normally does not interpolate f at the nodes a+ ih.

Theorem. Let V be an inner product space, and S ⊂ V a finite dimensional subspace with
orthonormal basis ϕ1, . . ., ϕn. Then for any point f ∈ V , the unique closest point in S to f is

given by

PS(f) =

n
∑

i=1

〈f, ϕi〉ϕi.

PS(f) is called the projection of f onto S, and 〈f, ϕi〉 are called Fourier coefficients.

Proof. Let v =
∑n

i=1
αiϕi be an arbitrary point in S. Then

〈f − v, f − v〉 = 〈f − PS(f) + PS(f)− v, f − PS(f) + PS(f)− v〉

= 〈f − PS(f), f − PS(f)〉+ 2 〈f − PS(f), PS(f)− v〉+ 〈PS(f)− v, PS(f)− v〉
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and

〈f − PS(f), PS(f)− v〉 =

〈

f −
n
∑

i=1

〈f, ϕi〉ϕi,
n
∑

j=1

βjϕj

〉

=
n
∑

j=1

βj

〈

f −
n
∑

i=1

〈f, ϕi〉ϕi, ϕj

〉

=

n
∑

j=1

βj 〈f − 〈f, ϕj〉ϕj , ϕj〉 =

n
∑

j=1

βj (〈f, ϕj〉 − 〈f, ϕj〉 〈ϕj , ϕj〉)

= 0.

Therefore
‖f − PS(f)‖

2 = 〈f − PS(f), f − PS(f)〉 ≤ 〈f − v, f − v〉 = ‖f − v‖2

with equality ⇔ 〈PS(f)− v, PS(f)− v〉 = ‖PS(f) − v‖2 = 0 ⇔ v = PS(f). That is, PS(f) is the
unique closest point in S to f . QED

Corollary. f − PS(f) is orthogonal to S.

Corollary (Parseval’s Inequality).

n
∑

i=1

〈f, ϕi〉
2
≤ 〈f, f〉.

Note: if the basis ϕ1, . . ., ϕn is merely orthogonal, then

PS(f) =

n
∑

i=1

〈f, ϕi〉

〈ϕi, ϕi〉
ϕi

and the Fourier coefficients are 〈f, ϕi〉 / 〈ϕi, ϕi〉. The projection operator PS(f) is an idempotent
homomorphism PS : V → V (PS ◦ PS = PS), and ‖PS‖ = 1.
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