
CS 4264 September 19, 2023
Principles of Computer Security Project 2: Application Security

Project 2: Application Security

This project is due on October 5, 2023 at 11:59 p.m. and counts for 8% of your course grade. Late
submissions will be penalized by 10% plus an additional 10% every 5 hours until received. Late
work will not be accepted after 24 hours past the deadline. If you have a conflict due to travel,
interviews, etc., please plan accordingly and turn in your project early.

This is a group project; you will work in teams of two and submit one project per team. Please find a
partner as soon as possible. If you have trouble forming a team, post to Piazza’s partner search forum.

The code and other answers your group submits must be entirely your own work, and you are bound
by the Honor Code. You may consult with other students about the conceptualization of the project
and the meaning of the questions, but you may not look at any part of someone else’s solution or
collaborate with anyone outside your group. You may consult published references, provided that
you appropriately cite them (e.g., with program comments), as you would in an academic paper.

Solutions must be submitted electronically via Canvas, following the submission checklist below.
Please coordinate carefully with your partner to make sure at least one of you submits on time.

Introduction
This project will introduce you to control-flow hijacking vulnerabilities in application software,
including buffer overflows. We will provide a series of vulnerable programs and a virtual machine
environment in which you will develop exploits.

Objectives
• Be able to identify and avoid buffer overflow vulnerabilities in native code

• Understand the severity of buffer overflows and the necessity of standard defenses

• Gain familiarity with machine architecture and assembly language

Read this First
This project asks you to develop attacks and test them in a virtual machine you control. Attempting
the same kinds of attacks against others’ systems without authorization is prohibited by law and
university policies and may result in fines, expulsion, and jail time. You must not attack anyone
else’s system without authorization! Per the course ethics policy, you are required to respect the
privacy and property rights of others at all times, or else you will fail the course. See the “Ethics,
Law, and University Policies” section on the course website.

Setup
Buffer-overflow exploitation depends on specific details of the target system, so we are providing
an Ubuntu VM in which you should develop and test your attacks. We’ve also slightly tweaked the
configuration to disable security features that are commonly used in the wild but would complicate
your work. We’ll use this precise configuration to grade your submissions, so do not use your
own VM instead. This means that you should NOT update the VM’s operating system or web
browser—doing so will cost you many hours of wasted time debugging errors.

1. Download VirtualBox from https://www.virtualbox.org/ and install it on your computer.
VirtualBox runs on Windows, Linux, and Mac OS.

2. Get the VM file at http://courses.cs.vt.edu/cs4264/static/project2/appsec-vm.ova. This file is
2 GB, so we recommend downloading it from campus.

3. Launch VirtualBox and select File B Import Appliance to add the VM. Note that you may
have to go into Settings for the VM and disable USB support for it to start.

4. Start the VM. A username and password are not required to login, but if needed they are
ubuntu and ubuntu.

5. Download http://courses.cs.vt.edu/cs4264/static/project2/targets.tar.gz from inside the VM.
This file contains the target programs you will exploit.

6. tar -xf targets.tar.gz

7. cd targets/

8. Each group’s targets will be slightly different. Personalize the targets by running:
./setcookie pid1 pid2
Make sure both PIDs (remember that PIDs include letters, not just numbers) are correct! If
you are a team of one, just use your PID twice.

9. sudo make (The password you’re prompted for is ubuntu.)

Resources and Guidelines
No Attack Tools! You may not use special-purpose tools meant for testing security or exploiting
vulnerabilities. You must complete the project using only general purpose tools, such as gdb.

Control Hijacking Before you begin this project, review the lecture slides from the control-
hijacking lecture and attend discussion for additional details. Read “Smashing the Stack for Fun
and Profit,” available at http://courses.cs.vt.edu/cs4264/static/project2/stack_smashing.pdf.

GDB You will make extensive use of the GDB debugger, which you should recall from CS 2505.
Useful commands that you may not know are “disassemble”, “info reg”, “x”, and “stepi”.
See the GDB help for details, and don’t be afraid to experiment! This quick reference may also be
useful: http://courses.cs.vt.edu/cs4264/static/project2/gdb-refcard.pdf.

2

https://www.virtualbox.org/
http://courses.cs.vt.edu/cs4264/static/project2/appsec-vm.ova
http://courses.cs.vt.edu/cs4264/static/project2/targets.tar.gz
http://courses.cs.vt.edu/cs4264/static/project2/stack_smashing.pdf
http://courses.cs.vt.edu/cs4264/static/project2/gdb-refcard.pdf

x86 Assembly These are many good references for Intel assembly language, but note that this
project targets the 32-bit x86 ISA. The stack is organized differently in x86 and x86_64. If you are
reading any online documentation, ensure that it is based on the x86 architecture, not x86_64.

Targets
The target programs for this project are simple, short C programs with (mostly) clear security
vulnerabilities. We have provided source code and a Makefile that compiles all the targets. Your
exploits must work against the targets as compiled and executed within the provided VM.

target0: Overwriting a variable on the stack (Difficulty: Easy)

This program takes input from stdin and prints a message. Your job is to provide input that causes
the program to output: “Hi pid ! Your grade is A+.” (You can use either group member’s
pid.) To accomplish this, your input will need to overwrite another variable stored on the stack.
Here’s one approach you might take:

1. Examine target0.c. Where is the buffer overflow?

2. Start the debugger (gdb target0) and disassemble _main: (gdb) disas _main. Identify
the function calls and the arguments passed to them.

3. Draw a picture of the stack. How are name[] and grade[] stored relative to each other?

4. How could a value read into name[] affect the value contained in grade[]? Test your
hypothesis by running ./target0 on the command line with different inputs.

What to submit Create a Python3 program named sol0.py that prints a line to be passed as
input to the target. Test your program with the command line:

python3 sol0.py | ./target0

Hint: In Python 3, you can write strings containing non-printable bytes by using the escape sequence
\xnn , where nn is a 2-digit hex value. To ensure that these bytes are output exactly as is, output
them as raw bytes using sys.stdout.buffer.write(b"\xnn"). To cause Python to repeat a
character n times, you can do: sys.stdout.buffer.write(b"X"*n).

target1: Overwriting the return address (Difficulty: Easy)

This program takes input from stdin and prints a message. Your job is to provide input that makes
it output: “Your grade is perfect.” Your input will need to overwrite the return address so
that the function vulnerable() transfers control to print_good_grade() when it returns.

1. Examine target1.c. Where is the buffer overflow?

2. Disassemble print_good_grade. What is its starting address?

3

3. Set a breakpoint at the beginning of vulnerable and run the program.
(gdb) break vulnerable
(gdb) run

4. Disassemble vulnerable and draw the stack. Where is input[] stored relative to %ebp?
How long would an input have to be to overwrite this value and the return address?

5. Examine the %esp and %ebp registers: (gdb) info reg

6. What are the current values of the saved frame pointer and return address from the stack
frame? You can examine two words of memory at %ebp using: (gdb) x/2wx $ebp

7. What should these values be in order to redirect control to the desired function?

What to submit Create a Python3 program named sol1.py that prints a line to be passed as
input to the target. Test your program with the command line:

python3 sol1.py | ./target1

When debugging your program, it may be helpful to view a hex dump of the output. Try this:
python3 sol1.py | hd

Remember that x86 is little endian. Use Python’s struct module to output little-endian values:
from struct import pack
sys.stdout.buffer.write(pack("<I", 0xDEADBEEF))

target2: Redirecting control to shellcode (Difficulty: Easy)

The remaining targets are owned by the root user and have the suid bit set. Your goal is to cause
them to launch a shell, which will therefore have root privileges. This and targets all take input
as command-line arguments rather than from stdin. Unless otherwise noted, you should use the
shellcode we have provided in shellcode.py. Successfully placing this shellcode in memory and
setting the instruction pointer to the beginning of the shellcode (e.g., by returning or jumping to it)
will open a shell.

1. Examine target2.c. Where is the buffer overflow?

2. Create a Python3 program named sol2.py that outputs the provided shellcode:

from shellcode import shellcode
print shellcode

3. Set up the target in GDB using the output of your program as its argument:

gdb --args ./target2 $(python3 sol2.py)

4. Set a breakpoint in vulnerable and start the target.

5. Disassemble vulnerable. Where does buf begin relative to %ebp? What’s the current value
of %ebp? What will be the starting address of the shellcode?

4

6. Identify the address after the call to strcpy and set a breakpoint there:

(gdb) break *0x08048efb

Continue the program until it reaches that breakpoint.

(gdb) cont

7. Examine the bytes of memory where you think the shellcode is to confirm your calculation:

(gdb) x/32bx 0xaddress

8. Disassemble the shellcode: (gdb) disas/r 0xaddress,+32

How does it work?

9. Modify your solution to overwrite the return address and cause it to jump to the beginning of
the shellcode.

What to submit Create a Python3 program named sol2.py that prints a line to be used as the
command-line argument to the target. Test your program with the command line:

./target2 $(python3 sol2.py)

If you are successful, you will see a root shell prompt (#). Running whoami will output “root”.

If your program segfaults, you can examine the state at the time of the crash using GDB with the
core dump: gdb ./target2 core. The file core won’t be created if a file with the same name
already exists. Also, since the target runs as root, you will need to run it using sudo ./target2 in
order for the core dump to be created.

target3: Overwriting the return address indirectly (Difficulty: Medium)

In this target, the buffer overflow is restricted and cannot directly overwrite the return address.
You’ll need to find another way. Your input should cause the provided shellcode to execute and
open a root shell.

What to submit Create a Python3 program named sol3.py that prints a line to be used as the
command-line argument to the target. Test your program with the command line:

./target3 $(python3 sol3.py)

target4: Beyond strings (Difficulty: Medium)

This target takes as its command-line argument the name of a data file it will read. The file format is
a 32-bit count followed by that many 32-bit integers. Create a data file that causes the provided
shellcode to execute and opens a root shell.

What to submit Create a Python program named sol4.py that outputs the contents of a data file
to be read by the target. Test your program with the command line:

python3 sol4.py > tmp; ./target4 tmp

5

target5: Bypassing DEP (Difficulty: Medium)

This program resembles target2, but it has been compiled with data execution prevention (DEP)
enabled. DEP means that the processor will refuse to execute instructions stored on the stack. You
can overflow the stack and modify values like the return address, but you can’t jump to any shellcode
you inject. You need to find another way to run the command /bin/sh and open a root shell.

What to submit Create a Python program named sol5.py that prints a line to be used as the
command-line argument to the target. Test your program with the command line:

./target5 $(python3 sol5.py)

For this target, it’s acceptable if the program segfaults after the root shell is closed.

target6: Variable stack position (Difficulty: Medium)

When we constructed the previous targets, we ensured that the stack would be in the same position
every time the vulnerable function was called, but this is often not the case in real targets. In fact,
a defense called ASLR (address-space layout randomization) makes buffer overflows harder to
exploit by changing the starting location of the stack and other memory areas on each execution.
This target resembles target2, but the stack position is randomly offset by 0–255 bytes each time
it runs. You need to construct an input that always opens a root shell despite this randomization.

What to submit Create a Python program named sol6.py that prints a line to be used as the
command-line argument to the target. Test your program with the command line:

./target6 $(python3 sol6.py)

A word of caution If you see any output from the program before a root shell is opened, you have
not done target6 of the project correctly and your solution will not be accepted by the autograder.

target7: Heap-based exploitation [Extra credit] (Difficulty: Hard)

This program implements a doubly linked list on the heap. It takes three command-line arguments.
Figure out a way to exploit it to open a root shell. You may need to modify the provided shellcode
slightly.

What to submit Create a Python3 program named sol7.py that prints lines to be used for each
of the command-line arguments to the target. Your program should take a single numeric argument
that determines which of the three arguments it outputs. Test your program with the command line:

./target7 $(python3 sol7.py 1) $(python3 sol7.py 2) $(python3 sol7.py 3)

target8: Return-oriented programming [Extra credit] (Difficulty: Hard)

This target is identical to target2, but it is compiled with DEP enabled. Implement a ROP-based
attack to bypass DEP and open a root shell.

6

What to submit Create a Python3 program named sol8.py that prints a line to be used as the
command-line argument to the target. Test your program with the command line:

./target8 $(python3 sol8.py)

You may find the objdump utility helpful.

For this target, it’s acceptable if the program segfaults after the root shell is closed.

target9: Callback shell [Extra credit] (Difficulty: Hard)

This target uses the same code as target3, but you have a different objective. Instead of opening
a root shell, implement your own shellcode to implement a callback shell. Your shellcode should
open a TCP connection to 127.0.0.1 on port 31337. Commands received over this connection
should be executed in a shell, and the output should be sent back to the remote machine.

What to submit Create a Python3 program named sol9.py that prints a line to be used as the
command-line argument to the target. Test your program with the command line:

./target9 $(python3 sol9.py)

For the remote end of the connection, use netcat:
nc -l 31337

To receive credit, you must include (as an extended comment in your Python file) a fully annotated
disassembly on your shellcode that explains in detail how it works.

Submission Checklist
Upload to Canvas a gzipped tar file named project2.pid1.pid2.tar.gz that contains only the
files listed below. These will be autograded, so make sure you have the proper filenames,
formats, and behaviors. Failure to work with the autograder—for any reason—will result in a 5%
deduction from the maximum possible points. You can generate the tarball at the shell using this
command:

tar -zcf project2.pid1.pid2.tar.gz cookie sol[0123456789].py

The tarball should contain only the files below:

cookie [Generated by setcookie based on your PIDs.]
sol0.py
sol1.py
sol2.py
sol3.py
sol4.py
sol5.py
sol6.py
sol7.py [Optional extra credit.]
sol8.py [Optional extra credit.]

7

sol9.py [Optional extra credit.]

Your files can make use of standard Python libraries and the provided shellcode.py, but they must
be otherwise self-contained. Do not include shellcode.py with your submission. Be sure to test
that your solutions work correctly in the provided VM without installing any additional packages.

8

