
1

Threads © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 1

CS4254

Computer Network Architecture and
Programming

Dr. Ayman A. Abdel-Hamid
Computer Science Department

Virginia Tech

Threads

Threads © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 2

Outline

•Threads (Chapter 26)
Introduction
Basic Thread Functions
TCP echo client using threads
TCP Echo Server using threads
Thread Synchronization

Threads © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 3

Introduction 1/4

• Problems with fork approach for concurrency
Expensive

Memory copied from parent to child

All descriptors are duplicated in the child

Can be implemented using copy-on-write (don’t copy until
child needs own copy)

IPC (Inter-process communication) required to pass
information between parent and child after fork

• Threads can help!!

Threads © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 4

Introduction 2/4

• Threads
Advantages

Lightweight process
Thread creation can be 10-100 times faster than process
creation
Lower context-switching overhead
All threads within a process share same global memory
POSIX threads standard

Pthreads library
supported by Linux and is portable to most UNIX
platforms
Has been ported to Windows

2

Threads © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 5

Introduction 3/4

• Threads
Disadvantages

Global variables are shared between threads
Inadvertent modification of shared variables can be
disastrous (need for concurrency control)
Many library functions are not thread-safe.

Library functions that return pointers to internal static
arrays are not thread safe
To make it thread-safe caller allocates space for the
result and passes that pointer as argument to the function

Lack of robustness: If one thread crashes, the whole
application crashes

Threads © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 6

Introduction 4/4

• Threads
State

Threads within a process share global data: process
instructions, most data, descriptors, etc, …

File descriptors are shared. If one thread closes a file, all
other threads can’t use the file

Each thread has its own stack and local variables
I/O operations block the calling thread.

Some other functions act on the whole process. For
example, the exit() function terminates the entire process
and all associated threads.

Threads © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 7

Basic Thread Functions 1/6

• pthread_create function
#include <pthread.h>
int pthread_create (pthread_t * tid, const pthread_attr_t *attr, void

*(*func) (void*), void *arg);
//Returns 0 if OK, positive Exxx value on error

When a program is started, single thread is created (main thread).
Create more threads by calling pthread_create()
pthread_t is often an unsigned int. returns the new thread ID
attr: is the new thread attributes: priority, initial stack size, daemon
thread or not. To get default attributes, pass as NULL
func: address of a function to execute when the thread starts
arg: pointer to argument to function (for multiple arguments,
package into a structure and pass address of structure to function)

Threads © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 8

Basic Thread Functions 2/6

• pthread_create function
Example

void * func (void *); //function prototype
pthread_t tid; //to hold thread ID

Pthread_create (&tid, NULL, func, NULL);

void * func (void * arg)
{
}

3

Threads © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 9

Basic Thread Functions 3/6

• pthread_join function
#include <pthread.h>
int pthread_join (pthread_t tid, void ** status);

//Returns 0 if OK, positive Exxx value on error
Wait for a given thread to terminate (similar to waitpid() for
Unix processes)

Must specify thread ID (tid) of thread to wait for

If status argument non-null

Return value from thread (pointer to some object) is
pointed to by status

Threads © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 10

Basic Thread Functions 4/6

• pthread_self function
#include <pthread.h>
pthread_t pthread_self (void);

//Returns thread ID of calling thread

similar to getpid() for Unix processes

Threads © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 11

Basic Thread Functions 5/6

• pthread_detach function
#include <pthread.h>
int pthread_detach (pthread_t tid);

//Returns 0 if OK, positive Exxx value on error
A thread is either joinable (default) or detached

When a joinable thread terminates thread ID and exit
status are retained until another thread calls pthread_join
When a detached thread terminates all resources are
released and can not be waited for to terminate

Example : pthread_detach (pthread_self());

Threads © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 12

Basic Thread Functions 6/6

• pthread_exit function
#include <pthread.h>
void pthread_exit (void * status);

//Does not return to caller
If thread not detached, thread ID and exit status are retained
for a later pthread_join by another thread in the calling
process
Other ways for a thread to terminate

Function that started the thread terminates, with its return value
being the exit status of the thread
main function of process returns or any thread calls exit,. In
such case, process terminates including any threads

4

Threads © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 13

TCP Echo Client using Threads
• Recode str_cli function using threads
• Source code in threads/strclithread.c

Can test using threads/tcpcli01.c
tcpcli01.c uses tcp_connect function introduced in section 11.12

Need to pass host name and service
Can also test by threads/tcpcli01_plain.c Pass server’s IP
address

• If server terminates prematurely
Readline function returns 0 and str_cli function terminates
main function terminates calling exit terminate all threads

• Alternative to using global data for threads to share?
See threads/strclithread_args.c, test with
threads/tcpcli01_plain_args.c

Threads © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 14

TCP Echo Server using Threads 1/2

• One thread per client instead of one child process per client
• Source code in threads/tcpserv01.c
• Uses tcp_listen function introduced in section 11.13
• Main processing loop

for (; ;) {
len = addrlen;
connfd = Accept(listenfd, cliaddr, &len);
Pthread_create(&tid, NULL, &doit, (void *) connfd);

}
The casting (void*) connfd is OK on most Unix
implementations (size of an integer is <= size of a pointer)
Is there an alternative approach?

Threads © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 15

TCP Echo Server using Threads 2/2

• If we pass the address of connfd, what can go wrong?
for (; ;) {

len = addrlen;
connfd = Accept(listenfd, cliaddr, &len);
Pthread_create(&tid, NULL, &doit, &connfd);

}
• A more correct approach would be to allocate space for the

connected descriptor every time before the call to accept
for (; ;) {

len = addrlen;
iptr = Malloc(sizeof(int));
*iptr = Accept(listenfd, cliaddr, &len);
Pthread_create(&tid, NULL, &doit, iptr);

} // source code in threads/tcpserv02.c
Threads © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 16

Thread Synchronization: Mutex
• How can a thread ensure that access/updates to shared variables

are atomic?
• How can a thread ensure that it is the only thread executing

some critical piece of code?
Need a mechanism for thread coordination and
synchronization
semaphores and mutex calls

• Mutex: Mutual Exclusion
Threads can create a mutex and initialize it. Before entering a
critical region, lock the mutex.
Unlock the mutex after exiting the critical region

See examples in threads/example01.c and threads/example02.c

5

Threads © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 17

Thread Synchronization: Semaphores
• A mutex allows one thread to enter a critical region

• A semaphore can allow some N threads to enter a critical region

Used when there is a limited (but more than 1) number of
copies of a shared resource

• Can be dynamically initialized

Thread calls a semaphore wait function before it enters a
critical region

• Semaphore is a generalization of a mutex

Threads © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 18

Thread Synchronization: Condition Variables 1/2

• A condition variable is only needed where

A set of threads are using a mutex to provide mutually
exclusive access to some resource

Once a thread acquires the resource, it needs to wait for a
particular condition to occur

• If no condition variables are available

– Some form of busy waiting in which thread repeatedly
acquires the mutex, tests the condition, and then releases the
mutex (wasteful solution)

• A condition variable allows a thread to release a mutex and
block on a condition atomically

Threads © Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 19

Thread Synchronization: Condition Variables 2/2

• Acquire a mutex
• Call pthread_cond_wait specifying both a condition variable and

the mutex being held
• Thread blocks until some other thread signals the variable
• Two forms of signaling

Allow one thread to proceed, even if multiple threads are
waiting on the signaled variable

OS simultaneously unblocks the thread and allows the thread to
reacquire the mutex

Allow all threads that are blocked on the variable to proceed
Blocking on a condition variable does not prevent others from
proceeding through the critical section, another thread can
acquire the mutex

