
Transmission Control Protocol (TCP)

Srinidhi Varadarajan

TCP: Transmission Control Protocol

z TCP must perform typical transport layer
functions:
– Segmentation -- breaks message into packets
– Error recovery -- since IP is an unreliable

service
– End-to-end flow control -- to avoid buffer

overflow
– Multiplexing and demultiplexing sessions

TCP: Transmission Control Protocol

z Service provided by TCP is
– Reliable
– Connection-oriented -- virtual circuit
– Stream-oriented -- users exchange streams of

data
– Full duplex -- concurrent transfers can take

place in both directions
– Buffered -- TCP accepts data and transmits

when appropriate (can be overridden with
“push”)

TCP Addressing and Multiplexing

z TCP identifies connections as socket pairs
– Socket address is Internet address plus port
– Host Internet address provided to IP
– Port uniquely identifies user or process ID on

host

z Example:
– A connection to port 21 on 128.173.40.24

connects to ftpd (file transfer protocol
daemon) on vtopus.cs.vt.edu

– Port 21 is a “well known” port number and can
be determined by looking at /etc/services on a
UNIX machine

TCP Sliding Window Mechanism

z TCP is built on top of IP, an unreliable
datagram service
– Lost datagrams
– Out-of-order datagrams

z TCP uses a sliding window mechanism for
error recovery
– Transmitted bytes are numbered
– Receiver will accept bytes within the current

“window”
– Contiguous blocks are acknowledged by the

receiver

TCP Sliding Window Mechanism

z Sender maintains three pointers for
each connection
– Pointer to bytes sent and acknowledged
– Pointer to bytes sent, but not yet

acknowledged
– Pointer to bytes that cannot yet be sent

TCP Sliding Window Mechanism

z Receiver acknowledges bytes received
– Specifies sequence number of next byte

expected
– This acknowledges all previous bytes as

received error-free
– Acknowledgments can be “piggy-backed” on

reverse direction data packets or sent as
separate packets

TCP Sliding Window Mechanism

z Sender sets a timer for a segment sent
– On time-out, sender will retransmit the

segment
– Implementations send just the first

unacknowledged segment -- will wait for return
acknowledgment before sending more

– Implementations also typically use just one
timer per connection, i.e. at any given point in
time, only one segment is being timed

z Time-out value is important
– Bad values can add extra delays or result in

wasted retransmissions
– Time-out value is difficult to set since delays

can vary greatly in an internetworking
environment

TCP Flow Control

z Flow control is needed to
– Prevent sender from “swamping” receiver with

data, e.g. a fast server sending to a slow client
– Provide congestion control inside the network,

e.g. at gateways or routers
– In either case, a node can be forced to discard

packets due to lack of buffer space

z TCP provides end-to-end flow control
– Can solve overload problems at the end node

z Flow control is provided by varying the
size of the sliding window

TCP Flow Control

z Receiver “advertises” its window size in
acknowledgments
– Window size specifies how many more bytes

the receiver is willing to accept
– Receiver is not allowed to shrink the wi ndow

beyond previously accepted bytes
– Window size of 0 causes sender to stop

transmission, later advertisement of a non-
zero window resumes transmission

z Sender will adjust its “allowed to send”
pointer only as far as the advertised
window

Packet Capture (tcpdump)
2:60:8c:9e:ca:b 8:0:2b:b:6c:1f 0800 62:
128.173.5.244.1524 > 128.173.5.221.21:
P 171:179(8) ack 1156928647 win 2048 ÅÅ Receiver Window

8:0:2b:b:6c:1f 2:60:8c:9e:ca:b 0800 74:
128.173.5.221.21 > 128.173.5.244.1524:
P 1156928647:1156928667(20) ack 179 win 16384

2:60:8c:9e:ca:b 8:0:2b:b:6c:1f 0800 60:
128.173.5.244.1524 > 128.173.5.221.21:
P ack 1156928667 win 2048

2:60:8c:9e:ca:b 8:0:2b:b:6c:1f 0800 80:
128.173.5.244.1524 > 128.173.5.221.21:
P 179:205(26) ack 1156928667 win 2048

TCP Connection Establishment

z TCP uses a “three-way handshake”
(balanced protocol) to establish a
connection

z Ensures that both nodes are ready and
synchronizes sequence numbers

Closing a TCP Connection

z A modified three-way handshake is used
to gracefully close a connection

TCP Packet Format

TCP Header Fields

z Source Port and Destination Port: identify
applications at ends of the connection

z Code Bits:
– URG urgent (skip over data to urgent data)
– ACK acknowledgment
– PSH push request (send data to application)
– RST reset the connection
– SYN synchronize sequence numbers
– FIN sender at end of byte stream

TCP Header Fields

z Sequence Number: position of the data in the
sender’s byte stream in bytes

z Acknowledgment Number: position of the byte
that the source expects to receive next (valid if
ACK bit set)

z Header Length: header size in 32-bit units
z Window: advertised window size in bytes
z Urgent: number of bytes to skip over in window

to reach urgent (or “out-of-band”) data -- valid
only if URG bit is set

z Checksum: 16-bit CRC over header and data

