
Application Layer 1

Data Representation and Data Representation and
Remote Procedure CallsRemote Procedure Calls

Srinidhi Varadarajan

4/4/2001 2

TopicsTopics
� External data representation
–Motivation
– Approaches
– NDR, ASN.1, and XDR

� Remote procedure calls
– Concepts
– ONC RPC
• General operation
• Code example

4/4/2001 3

Need for Data Representation (1)Need for Data Representation (1)
� Network applications pass many types of

data
– Characters and character strings
– Integers (of different lengths)
– Floats (of different lengths)
– Arrays and structures (flat types)
– Complex types (using pointers)

� Different host architectures may use
different internal representations
– Networked environments are often

heterogeneous

4/4/2001 4

Need for Data Representation (2)Need for Data Representation (2)

� Example: (300)10 = (13C)16
– Stored as a long integer: 00 00 01 3C
– “Big endian” versus “little endian”

00 3Cbyte i:
00 01byte i+1:
01 00byte i+2:
3C 00byte i+3:

big
endian

little
endian

4/4/2001 5

Potential Solutions (1)Potential Solutions (1)
� Asymmetric conversion

– Convert at one end (client or server)
– Must know the host type of destination or source
– With N types of hosts, need N(N-1) converters total.
– Sometimes known as “receiver-makes-right”
– Basis for NDR

big endian little endian
client
data

convert

server
data

4/4/2001 6

Potential Solutions (2)Potential Solutions (2)
� Symmetric conversion

– Convert to and from a canonical intermediate
form -- an external data representation

– Flexible and portable, but at a cost in
computation
• Conversion required even if client and server use the

same internal representation
– With N types of hosts, requires 2N converters

• Fewer converters than for asymmetric conversion
• But, N is usually small

– Basis for XDR and ASN.1

Application Layer 2

4/4/2001 7

Potential Solutions (3)Potential Solutions (3)

big endian little endian
client
data

convert

server
data

convert

htonl() ntohl()
canonical

intermediate
form

� Symmetric conversion (continued)

4/4/2001 8

Network Data Representation (1)Network Data Representation (1)
� NDR is used in the Distributed Computing

Environment (DCE)
� Uses asymmetric “receiver-makes-right”

approach
� Format

– Architecture tag at the front of each message
• “Big endian” or “little endian”
• ASCII or EBCDIC
• IEEE 754 or other floating point representation

4/4/2001 9

Network Data Representation (2)Network Data Representation (2)

� Architecture tag

Integr
Rep

Char
Rep

Float
Rep

Extension
1

Extension
2

4 4 8 8 8

4/4/2001 10

Abstract Syntax Notation One (1)Abstract Syntax Notation One (1)
� ASN.1 is an ISO standard

– Scope is broader than network data
representation

– Basic Encoding Rules (BER) defines
representation

� Uses a canonical intermediate form
(symmetrical)

� Uses a triple to represent each data item
– < tag, length, value >
– Tag defines type (usually 8 bits)
– Length is number of bytes in value field
– Value is in canonical intermediate form

4/4/2001 11

Abstract Syntax Notation One (2)Abstract Syntax Notation One (2)
� Example

� Compound data types can be represented by
nesting primitive types

typ len typ len value typ len value

value

type length 4-byte integer

INT 4 00 00 01 3C

4/4/2001 12

0

length

n1

length

n bytes containing length

Abstract Syntax Notation One (3)Abstract Syntax Notation One (3)
� Length field can be made arbitrarily large

– 1- to 127-byte value

Greater than a 127-byte value

Application Layer 3

4/4/2001 13

External Data Representation (1)External Data Representation (1)
� XDR is used with SunRPC (Open Network

Computing RPC)
– Defined in RFC 1014

� Uses a canonical intermediate form
(symmetrical)

� Types are implicit
– XDR codes data, but not the type of data
– Type of data must be determined by

application protocol
� Tags are not used except to indicate array

lengths

4/4/2001 14

External Data Representation (2)External Data Representation (2)

struct example {
int count;
int values[2];
char buffer[4];

}

6

count

2

values[2]

450 898 4 A B C D

buffer[4]

� Example XDR encoding of a structure

4/4/2001 15

Creating an XDR Data Stream (1)Creating an XDR Data Stream (1)
1) Create buffer

– xdrmem_create(xdrs, buf, BUFSIZE,
XDR_ENCODE);

2) Make calls to build buffer
– int i = 300;

xdr_int(xdrs, &i);

header

header

00 00 01 3C
4/4/2001 16

Creating an XDR Data Stream (2)Creating an XDR Data Stream (2)
� Sample routines (see fig 20.4 in text)

– xdr_bool()
– xcr_bytes()
– xdr_enum()
– xdr_float()
– xdr_vector()
– xdr_string()
– xdr_opaque()

� Same calls are used to encode and decode
� Stream header specifies direction

– For decode: xdrmem_create(xdrs, buf, BUFSIZE,
XDR_DECODE);

4/4/2001 17

Comparing XDR, ASN.1, and NDRComparing XDR, ASN.1, and NDR
� Symmetric versus asymmetric trade-off

for comparing ASN.1 and XDR to NDR
– Potentially more converters needed for NDR,

but number of different host types is small
– Overhead of type fields
– Conversion can often be avoided

� Comparing ASN.1 and XDR
– XDR has less overhead than ASN.1 since it

does not use tags
– XDR adheres to natural byte boundaries
– Expressiveness of ASN.1 is very rich, more

flexible than XDR

4/4/2001 18

Remote Procedure CallsRemote Procedure Calls
� Remote Procedure Call (RPC) is an

alternate model for networked
applications

� Used for many standard applications
– NFS
– NIS, NIS+
– Microsoft Exchange Server
– and others …

� Closely associated with data
representation
– Function parameters must pass over the

network

Application Layer 4

4/4/2001 19

Models for Distributed ApplicationsModels for Distributed Applications

� Communication-oriented design
– Focus on protocol and communications
– Our approach to date

� Application-oriented design
– Focus on application program structure

and make communications
“transparent”

– RPC approach

4/4/2001 20

A Traditional Program (1)A Traditional Program (1)

main

proc 1 proc 2 proc 3

proc 4 proc 5

4/4/2001 21

A Traditional Program (2)A Traditional Program (2)

main proc 1 proc 4

exit

call proc1 call proc4

return return

4/4/2001 22

Make the Program Distributed (1)Make the Program Distributed (1)
main

proc 1 proc 2 proc 3

proc 4 proc 5

client (local)

server (remote)

network
communication

� proc1, proc4, and proc5 are remote
procedures

4/4/2001 23

Make the Program Distributed (2)Make the Program Distributed (2)
� Call -- send message to invoke remote

procedure
� Return -- send reply back to client

main proc 1 proc 4

exit

call proc1 call proc4

return return

req
ues

t

reply

4/4/2001 24

message

marshaled
arguments

call P

client
stub

RPC

proc P

server
stub

RPC

code code
stub

compiler

interface
description

for P
arguments

RPC ComponentsRPC Components

Application Layer 5

4/4/2001 25

Marshaling ArgumentsMarshaling Arguments

application
data structure

marshaling

4/4/2001 26

RPC Design IssuesRPC Design Issues
� Control is multithreaded

– Procedures executed on different hosts
– Different threads for each call

� No shared memory
� No shared resources, e.g. files
� More arguments

– Since no shared memory or other resources
� Server must be active or can be invoked
� Message interface

4/4/2001 27

ONC RPCONC RPC
� Open Network Computing (ONC) RPC
– Developed by Sun Microsystems

� “Remote programs”
– Remote procedures plus shared global data
– Not just remote procedure

� Functionality
– Message formats -- carried by TCP or UDP

• Pass arguments, results, other information
– Naming scheme for remote programs and

procedures
• Program, version, procedure

– Authentication scheme
4/4/2001 28

ONC RPC CommunicationsONC RPC Communications
� Can use TCP or UDP

– RPC does nothing itself to provide reliability
� With UDP …

– If client receives a reply, then “at least once”
semantics apply

– If client does not receive a reply, then “zero or
more” semantics apply

– Must be considered in design
• “read 20 bytes starting at 100”, not
• “read the next 20 bytes”

� With TCP …
– Reliable due to use of TCP

4/4/2001 29

Port Port Mapper Mapper (1)(1)
� “Port mapper” allows dynamic

maping between protocol port
numbers and remote programs

� Remote programs (servers) register
with the port mapper on their local
host

� Clients query port mapper at well-
known port number (111) to get port
for remote program

4/4/2001 30

3. reply(port)

4. call/return

1. register(prog,vers,port)

PortPort Mapper Mapper (2)(2)

2. request(prog,vers)
RPC

Program
Port

Mapper
RPC

Client

well
known
port

remote
program
port

client
port

Application Layer 6

4/4/2001 31

Stub Routines (1)Stub Routines (1)

proc A

proc B proc C

Local

Remote

� Traditional program to be partitioned

4/4/2001 32

Stub Routines (2)Stub Routines (2)

Local (Client)

Remote (Server)

proc B proc C

proc B
client stub

proc C
client stub

proc B
server stub

proc C
server stub

� After partitioning with stub routines
proc A

4/4/2001 33

Client StubClient Stub
� Is called by client program
� “Marshals” arguments
– XDR used to encode (with ONC RPC)

� Sends CALL to server
� Waits for reply
� “De-marshals” arguments
– XDR used to decode

� Returns to client program
– Client just makes a call that then returns

4/4/2001 34

Server StubServer Stub
� Is dispatched
� Accepts arguments, de-marshals and

decodes with XDR
� Calls server program procedure
� Procedure returns to stub

– Server procedure is just called and later
returns

� Marshals results and encodes with XDR
� Sends results back to client
� Exits

4/4/2001 35

DispatcherDispatcher
proc A

proc B
client stub

proc B proc C

proc C
client stub

proc B
server stub

proc C
server stub

call
return

dispatcher

4/4/2001 36

RPCGENRPCGEN
� RPCGEN is the RPC program “generator”
� Simplifies the creation of a distributed

application using RPC
� Input descriptions of …

– Remote procedures and interfaces
– User-defined data types, e.g. structures

� Output files …
– Client and server stub files
– Conversion routines for user-defined data

types
– Common header file

Application Layer 7

4/4/2001 37

Code Generation using RPCGENCode Generation using RPCGEN

oncrpc.lib

compile

rdict_srp.c rdict_sif.c

client

compile

rdict_srp.c rdict_sif.c

server

rdict_xdr.c

rdict.h

rdict_clnt.c

rdict_svc.c

rdict.x

rpcgen

4/4/2001 38

ONC RPC Code Example FilesONC RPC Code Example Files
� rdict.x: interfaces, common values, data

structures
� rdict.h: common header file
� rdict_xdr.c: XDR translations
� rdict_clnt.c: sends calls from client to server
� rdict_svc.c: dispatcher, sends calls from server

to client
� rdict.c: main client
� rdict_cli.c: client stub procedures
� rdict_srp: main server routines
� rdict_sif.c: server stub procedures

4/4/2001 39

ONC RPC Code Example Call SequenceONC RPC Code Example Call Sequence

insert main()
insertw()
insertw_1()
clnt_call()

rdict.c
rdict_cif.c
rdict_clnt.c
oncrpc.lib

svc_run() oncrpc.libsvc_sendreply()

rdictprog_1()
insertw_1()

rdict_svc.c
rdict_sif.c

insertw() rdict_srp.c

4/4/2001 40

You should now be able to … (1)You should now be able to … (1)
� Describe different schemes for data

representation and identify strengths and
weaknesses
– Generic models
– Specific schemes (NDR, ASN.1, XDR)

� Show how simple data types would be
represented using NDR, ASN.1, and XDR

� Describe the structure of an RPC
application including role of stub
procedures

� Describe the need for marshaling and
wher marshaling is implemented

4/4/2001 41

You should now be able to … (2)You should now be able to … (2)

� Describe the structure and operation
of …
– ONC RPC

� Define the role of …
– RPCGEN

� Design and analyze simple
applications using ONC RPC

