Multicast

Srinidhi Varadarajan

Topics

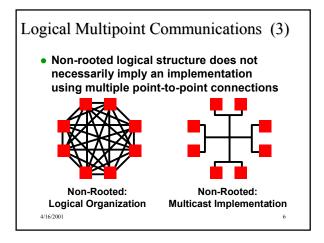
- Multipoint communications
- IP Multicast
 - Addressing
 - IGMP
- API support for multicast
 - IP multicast API
- Multicast application examples
 - IP multicast API: sender, recvr

4/16/2001

2

Multipoint Communications

- Multipoint communications support communications between than two hosts
 - One-to-many
 - Many-to-many
- Unlike broadcast, allows a proper subset of hosts to participate
- Example standards
 - IP Multicast (RFC 1112, standard)
 - ST-II (RFC 1819, experimental)
 - T.120 (Data conferencing)
 - ATM point-to-multipoint


4/16/2001

Logical Multipoint Communications (1)

- Two basic logical organizations
 - Rooted: hierarchy (perhaps just two levels) that structures communications
 - Non-rooted: peer-to-peer (no distinguished nodes)
- Different structure could apply to control and data "planes"
 - Control plane determines how multipoint session is created
 - Data plane determines how data is transferred between hosts in the multipoint session

4/16/2001

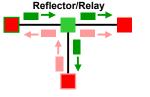
Logical Multipoint Communications (2) Rooted Non-Rooted

Control Plane

- . The control plane manages creation of a multipoint session
- Rooted control plane
 - One member of the session is the root, c_root
 - Other members are the leafs, c_leafs
 - Normally c_root establishes a session
 - Root connects to one or more c_leafs
 - c_leafs join c_root after session established
- Non-rooted control plane
 - All members are the same (c_leafs)
 - Each leaf adds itself to the session

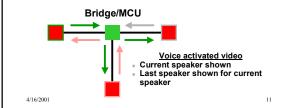
Data Plane

- The data plane is concerned with data transfer
- Rooted data plane
 - Special root member, d root
 - Other members are leafs, d_leafs
 - Data transferred between d_leafs and d_roots
 - d_leaf to d_root
 - · d_root to d_leaf
 - There is no direct communication between d_leafs
- Non-rooted data plane
 - No special members, all are d_leafs
 - Every d_leafs communicate with all d_leafs

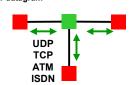

Forms of Multipoint Communications

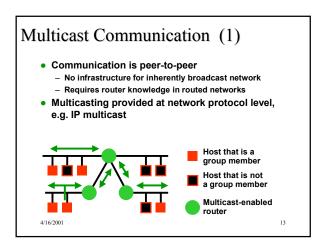
- Server-based -- rooted multipoint communications with server as d root
 - Passive or inactive
 - Relav
 - Reflector
 - Active
 - · Bridge or multipoint control unit (MCU)
- Strictly peer-to-peer multipoint -- nonrooted
 - Multicast

4/16/2001


Passive Multipoint Server

- Server provides a relay or reflector service
 - Provides no processing of the data
- Minimum requirement is for transport-level semantics, so can operate at the transport or application level


Active Multipoint Server


- · Server receives inputs from hosts and does application-level processing
 - Select receivers for "chat room" applications
 - Select video source for videoconferencing MCUs
- · Server uses application-level semantics

Multipoint Servers

- . Transport mechanism can be general since only point-to-point communications must be supported between end hosts (clients) and the reflector (server)
 - Reliable or unreliable
 - Connection-oriented or connectionless
 - Stream or datagram

Multicast Communication (2)

- Transport mechanism and network layer must support multicast
- Internet multicast limited to UDP
 - Unreliable: No acknowledgements or other error recovery schemes (perhaps at application level)
 - Connectionless: No connection setup (although there is routing information provided to multicast enabled routers)
 - Datagram: Message-based multicast

4/16/2001 14

IP Multicast

- . IP supports multicasting
 - Uses only UDP, not TCP (other experimental transport protocols support multicast)
 - Special IP addresses (Class D) identify multicast groups
 - Internet Group Management Protocol (IGMP) to provide group routing information
 - Multicast-enabled routers selectively forward multicast datagrams
 - IP TTL field limits extent of multicast
- Requires underlying network and adapter to support broadcast or, preferably, multicast
 - Ethernet supports multicast

4/16/2001

15

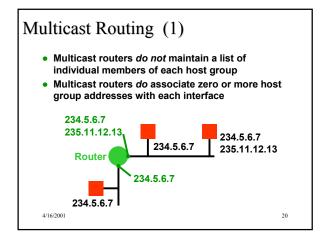
Multicast Addresses • Multicast addresses - Class D: 224.0.0.0 — 239.255.255.255 - "Well-known" and dynamic assignment within this group 01234 8 16 24 31 Class A 0 netid hostid Class B 10 netid hostid Class C 110 netid hostid Class D 1110 reserved for future use

Multicast Address Assignment

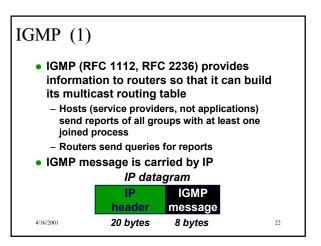
- 224.0.0.0 224.0.0.255 reserved for routing, topology discovery, maintenance protocols
 - Not forwarded by routers
- 224.0.0.0 232.255.255.255 assigned (RFC 1700, ftp://ftp.isi.edu/in-notes/iana/ assignments/multicast-addresses)
- 239.000.000.000 239.255.255.255 are "administratively scoped (RFC 2365)
 - 239.192.000.000 239.251.255.255
 organization-local scope
 - 239.255.000.000 239.255.255.255 site-local scope

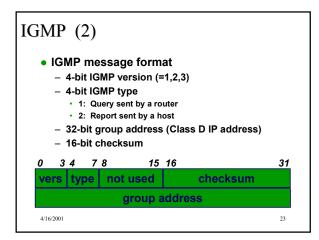
4/16/2001

1

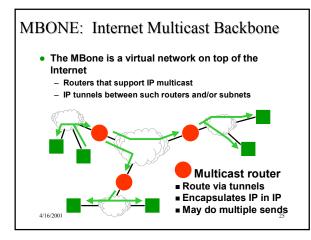

Multicast Versus Unicast Addressing

- IP unicast address
 - Statically bound to a single local network interface on a single IP network
- IP host group (multicast) address
 - Dynamically bound to a set of local network interfaces on a set of IP networks
 - Host group address not bound to a set of IP unicast addresses


16/2001 18


Multicast Interference and Security

- ... Host cannot assume that ...
 - Datagrams sent to any host group address will reach only the intended hosts, or
 - Datagrams received as a member of a transient host group are intended for the recipient
- . Misdeliveries must be detected by the application
- If content is sensitive, then datagrams should ...
 - Have their data encrypted, or
- Be routed according to administrative controls that limit extent of transmission



Multicast Routing (2) . Multicast router maintains table of multicast groups that are active on its networks . Datagrams forwarded only to those networks with group members Group A 1,2,4 4/16/2001

IGMP (3) Joining a group - Host sends group report when the first process joins a given group - Application requests join, service provider (end-host) sends report . Maintaining table at the router - Multicast router periodically queries for group Host (service provider) replies with an IGMP report for each group - Host does not notify router when the last process leaves a group -- this is discovered through the lack of a report for a query

API Requirements

- The application program interface must explicitly support multicast
 - IP service interface extended to provide two new operations (RFC 1112)
 - JoinHostGroup (group-address, interface)
 LeaveHostGroup (group-address, interface)
- JoinHostGroup binds a host group address to an interface
- LeaveHostGroup removes the binding
- These are conceptual, not the actual API calls (as we'll see)

6/2001 26

IP Multicast API

- Data is sent and received using a standard datagram socket
 - sendto() to send or send() with prior connect()
 - recvfrom() to receive
- Host group address treated like standard IP address for sendto(), recvfrom(), and connect() calls
- Port numbers play standard role
- New socket options set using setsockopt() — enable multicast
- Protocol level is IP (IPPROTO_IP)

4/16/2001

Add Membership Socket Option (1)

- Option: IP_ADD_MEMBERSHIP
- Parameter: Multicast address structure
- Operation
 - Supports "JoinHostGroup" of RFC 1112 allows a host's interface to join a multicast group
 - Required to receive multicast datagrams
 - Not required to send multicast datagrams
 - Each interface can be in multiple groups
 - Multiple interfaces can be in the same group
 - Causes host to send IGMP report if this is a new group address for this host
- Tells network adapter multicast group address
 4/16/2001

Add Membership Socket Option (2)

Example call to setsockopt():

```
setsockopt(
sock, socket
IPPROTO_IP, level
IP_ADD_MEMBERSHIP, option
(char *) &mreq, argument
sizeof(mreq) argument size
```

4/16/2001

29

Multicast Address Structure

- Multicast address structure specifies the multicast group address and the interface
 - Interface specified as an IP address
 - INADDR_ANY specifies use of the default multicast interface

```
struct ip_mreq {
   struct in_addr imr_multiaddr; // group
   struct in_addr imr_interface; // interface
}
char group[]="234.5.6.7";
mreq.imr_multiaddr.s_addr = inet_addr(group);
mreq.imr_interface.s_addr = INADDR_ANY;

4/162001
```

Reusing Port Numbers

- What if you want to have multiple sockets on the same host listen to the same multicast group?
 - Need to bind the same port number to all sockets
 - This will cause an error when bind is called for the second and later sockets ... unless socket has been set to reuse address
- Set SO_REUSEADDR socket option

4/16/2001

31

33

Drop Membership Socket Option (1)

- Option: IP_DROP_MEMBERSHIP
- Parameter: Multicast address structure
- Operation
 - Supports "LeaveHostGroup" of RFC 1112 allows host to leave a multicast group
 - Host's TCP/IP implementation maintains a counter for each group address
 - Incremented for IP_ADD_MEMBERSHIP
 - Decremented for IP_DROP_MEMBERSHIP
 - If count reaches zero
 - · Tells adapter to drop multicast address
 - · Won't report group address for IGMP query

001 32

Drop Membership Socket Option (2)

- Need to set group address and interface in ip_mreq structure (same values as used with IP_ADD_MEMBERSHIP)
- Example call to setsockopt():

4/16/2001

Receiving Multicast Data

- Create a standard SOCK_DGRAM socket
- Set SOL_REUSEADDR option for socket
- Bind address to socket
 - Specify port
- Set IP_ADD_MEMBERSHIP option for socket
 - Specify host group address
- After these steps complete successfully, receive multicast data for specified group address and port using recvfrom()
- Drop group membership when finished using IP_DROP_MEMBERSHIP option

4/16/2001 34

Sending Multicast Data

- Use standard SOCK_DGRAM socket
- Sending alone does not require group membership
- To send multicast datagrams:
 - Use sendto() to send to appropriate group address and port number, or
 - Use connect() to set group address and port and then use send()
- Concerns (controlled with socket options)
 - Interface used to send: IP_MULTICAST_IF
 - Extent of multicast: IP_MULTICAST_TTL
- Receiving own data: IP_MULTICAST_LOOP

Multicast Interface Socket Option (1)

- Option: IP_MULTICAST_IF
- Parameter: Interface (struct in_addr)
- Operation
 - Overrides the default for the interface is used to send multicast datagrams
 - Relevant only for hosts with multiple interfaces
 - Interface specified in IP_ADD_MEMBERSHIP option will take precedence

/2001

36

Multicast Interface Socket Option (2)

• Example:

37

Time To Live Socket Option (1)

- Option: IP_MULTICAST_TTL
- Parameter: TTL value (int)
- Operation
 - Controls the time-to-live (TTL) value that IP will use for multicast datagrams
 - Default TTL is 1 multicast datagrams will not leave the local network
 - To send multicast datagrams beyond the local network ...
 - TTL must be greater than 1, and
 - · Intermediate routers must support multicast
 - Group address 224.0.0.0 224.0.0.255 not routed, regardless of TTL value

ıı , **G**

Time To Live Socket Option (2)

. Example to set multicast TTL to 0

- TTL = 0 will confine multicast traffic to local host

4/16/2001

Multicast Loop Socket Option (1)

- Option: IP_MULTICAST_LOOP
- Parameter: Boolean (TRUE to enable)
- Operation
 - If enabled (default), socket will receive a copy of multicast datagrams that were sent on that socket
 - Even if disabled, host with two interfaces may receive a copy on the other interface(s)

4/16/2001 40

Multicast Loop Socket Option (2)

• Example:

You should now be able to ...

- Describe and distinguish between different forms of multipoint communications
- Describe the operation of IP multicast
- Describe the addressing scheme for IP multicast
- Describe the basic operation of IGMP
- Associate application actions with IGMP and IP multicast operation
- Analyze and design multicast applications using both the IP multicast API