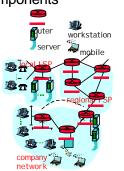
Introduction

Srinidhi Varadarajan

What is a network?

- · Carrier of information between connected entities
- · What does a network consist of?
- End hosts connected to the network
 - Routers/switches that move data through the network
 - Physical links that carry information
 - . E.g. Ethernet, FDDI, ATM, Token Ring
 - Applications that communicate with each other to provide services
 - · E-Mail, File Transfer, Web Browser


What is an internetwork?

- A set of connected networks is called an internetwork.
- The Internet is a specific example of an internetwork.
 - The Internet is characterized by the use of a common network protocol (IP).
- An internetwork need NOT be connected to the Internet

Internet: Components Network edge: - millions of connected computing devices running network apps - pc's workstations, servers - PDA's phones, toasters Network core: - routers: forward packets (chunks) of data thru network Media: - communication links: fiber, copper, radio, satellite

Internet: Components

- protocols: control sending, receiving of msgs
 - e.g., TCP, IP, HTTP, FTP, PPP
- Internet: "network of networks"
 - loosely hierarchical
 - public Internet versus private intranet
- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

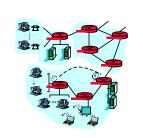
Internet: Services

- communication infrastructure enables distributed applications:
 - WWW, email, games, e-commerce, database., voting,
 - more?
- communication services provided:
 - connectionless
 - connection-oriented
- cyberspace [Gibson]:
 - "a consensual hallucination experienced daily by billions of operators, in every nation,"

What's a protocol?

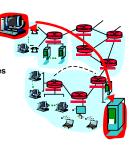
human protocols:

- "what's the time?"
- "I have a question"
- introductions
- ... specific msgs sent
- ... specific actions taken when msgs received, or other events


network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt


A closer look at network structure

- network edge: applications and hosts
- network core:
 - routers
 - network of networks
- access networks, physical media: communication links

The Network Edge

- end systems (hosts):
 - run application programs
 - e.g., WWW, email
 - at "edge of network"
- client/server model
 - client host requests, receives service from server
 - e.g., WWW client (browser)/ server; email client/server
- peer-peer model:
 - host interaction symmetric
 - e.g.: teleconferencing

Network edge: connection-oriented service

Goal: data transfer between end sys.

- handshaking: setup (prepare for) data transfer ahead of time
 - set up "state" in two communicating hosts
- TCP Transmission Control Protocol
 - Internet's connectionoriented service

TCP service [RFC 793]

- reliable, in-order bytestream data transfer
 - loss: acknowledgements and retransmissions
- · flow control:
 - sender won't overwhelm receiver
- congestion control:
 - senders "slow down sending rate" when network congested

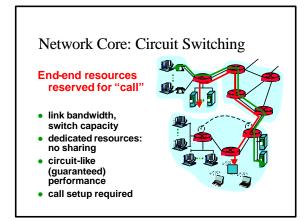
Network edge: connectionless service

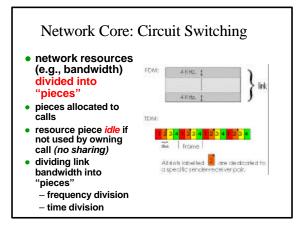
Goal: data transfer between end systems

- same as before!
- UDP User Datagram Protocol [RFC 768]: Internet's connectionless service
 - unreliable data transfer
 - no flow control
 - no congestion control

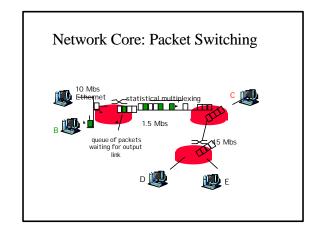
App's using TCP:

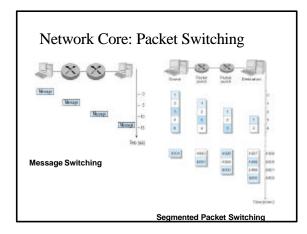
 HTTP (WWW), FTP (file transfer), Telnet (remote login), SMTP (email)

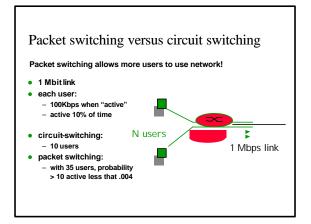

App's using UDP:


 streaming media, teleconferencing, Internet telephony

The Network Core


- mesh of interconnected routers
- the fundamental question: how is data transferred through net?
 - circuit switching: dedicated circuit per call: telephone net
 - packet-switching: data sent thru net in discrete "chunks"





Network Core: Packet Switching each end-end data stream resource contention: divided into packets aggregate resource user A, B packets share demand can exceed network resources amount available each packet uses full link congestion: packets bandwidth queue, wait for link resources used as needed, store and forward: packets move one hop Bandwidth division into at a time - transmit over link Dedicated allocation - wait turn at next link Resource reservation

Packet switching versus circuit switching

Is packet switching the "ultimate solution"

- . Great for bursty data
 - resource sharing
 - no call setup
- Excessive congestion: packet delay and loss
 - protocols needed for reliable data transfer, congestion control
- Q: How to provide circuit-like behavior?
 - bandwidth guarantees needed for audio/video apps

still an unsolved problem

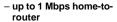
Packet-switched networks: routing

- Goal: move packets among routers from source to destination
- datagram network:
 - destination address determines next hop
 - routes may change during session
 - analogy: driving, asking directions
- virtual circuit network:
 - each packet carries tag (virtual circuit ID), tag determines next hop
 - fixed path determined at call setup time, remains fixed thru call
 - routers maintain per-call state

Access networks and physical media

Q: How to end systems connect to an edge router?

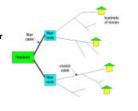
- residential access nets
- institutional access networks (school, company)
- mobile access networks


Keep in mind:

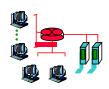
- bandwidth (bits per second) of access network?
- shared or dedicated?

Residential access: point to point access

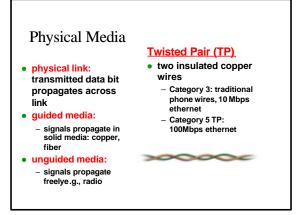
- . Dialup via modem
 - up to 56Kbps direct access to router (conceptually)
- ISDN: integrated services digital network: 128Kbps alldigital connect to router

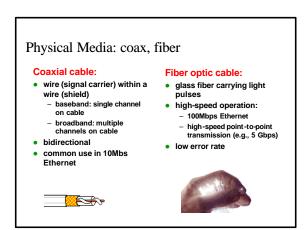


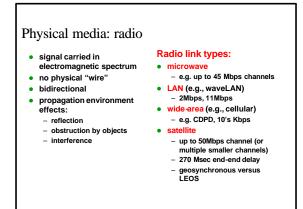
 up to 8 Mbps router-tohome

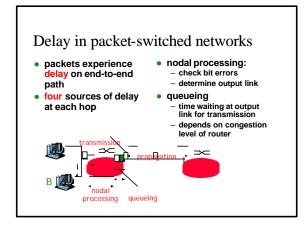

Residential access: cable modems

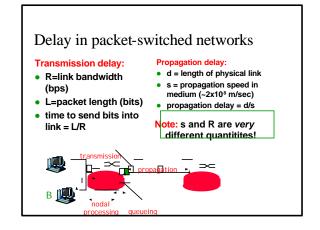
- . HFC: hybrid fiber coax
 - asymmetric: up to 10Mbps upstream, 1 Mbps downstream
- network of cable and fiber attaches homes to ISP router
 - shared access to router among home
 - issues: congestion, dimensioning
- deployment: available via cable companies, e.g., MediaOne

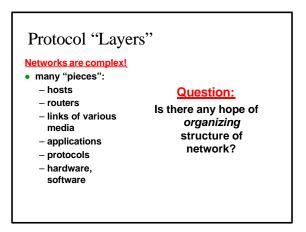


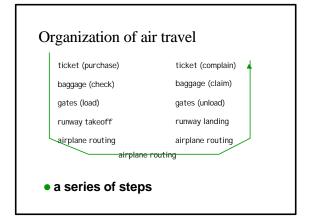

Institutional access: local area networks

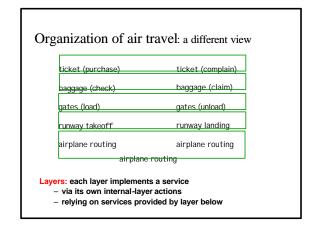

- company/univ local area network (LAN) connects end system to edge router
- Ethernet:
 - shared or dedicated cable connects end system and router
 - 10 Mbs, 100Mbps, Gigabit Ethernet
- deployment: institutions, home LANs soon

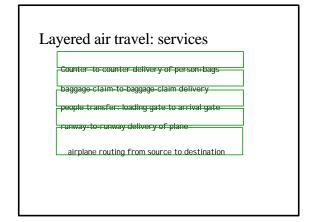


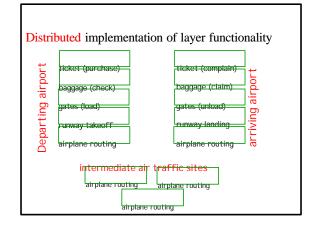

Wireless access networks shared wireless access network connects end system to router router wireless LANs: base - radio spectrum replaces station wire - e.g., Lucent Wavelan 10 Mbps wider-area wireless access mobile - CDPD: wireless access hosts to ISP router via cellular network

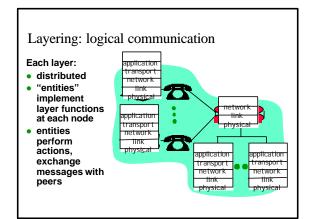


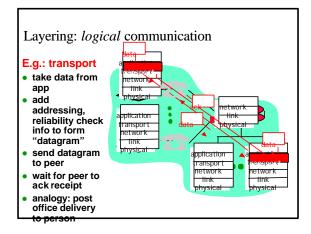


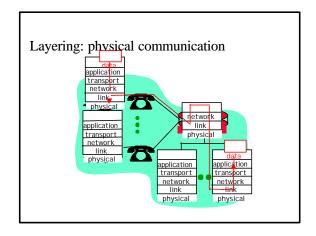


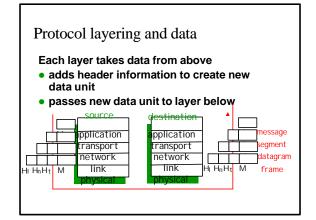



Queuing delay (revisited) R=link bandwidth (bps) L=packet length (bits) a=average packet arrival rate traffic intensity = La/R La/R ~ 0: average queuing delay small La/R <= 1: delays become large La/R > 1: more "work" arriving than can be serviced, average delay infinite!


Why layering?


Dealing with complex systems:


- explicit structure allows identification, relationship of complex system's pieces
 - layered reference model for discussion
- modularization eases maintenance, updating of system
 - change of implementation of layer's service transparent to rest of system
 - e.g., change in gate procedure doesn't affect rest of system
- layering considered harmful?


Internet protocol stack application: supporting network applications application - ftp, smtp, http transport: process-process data transport transfer tcp, udp network network: routing of datagrams from source to destination link - ip, routing protocols link: data transfer between neighboring network elements physical - ppp, ethernet

physical: bits "on the wire"

