CS 4204 Computer Graphics

2D and 3D Transformations

Doug Bowman
Adapted from notes by Yong Cao
Virginia Tech
Transformations

What are they?
- changing something to something else via rules
- mathematics: mapping between values in a range set and domain set (function/relation)
- geometric: translate, rotate, scale, shear,…

Why are they important to graphics?
- moving objects on screen / in space
- specifying the camera’s view of a 3D scene
- mapping from model space to world space to camera space to screen space
- specifying parent/child relationships
- …
Moving an object is called a translation. We translate a point by adding to the x and y coordinates, respectively, the amount the point should be shifted in the x and y directions. We translate an object by translating each vertex in the object.

\[x_{\text{new}} = x_{\text{old}} + t_x; \quad y_{\text{new}} = y_{\text{old}} + t_y \]
Scaling

Changing the size of an object is called a scale. We scale an object by scaling the x and y coordinates of each vertex in the object.

\[
\begin{align*}
 s_x &= \frac{w_{\text{new}}}{w_{\text{old}}} \\
 x_{\text{new}} &= s_x x_{\text{old}} \\
 s_y &= \frac{h_{\text{new}}}{h_{\text{old}}} \\
 y_{\text{new}} &= s_y y_{\text{old}}
\end{align*}
\]
Consider rotation about the origin by Θ degrees

- Radius stays the same, angle increases by Θ

\[x' = r \cos (\phi + \theta)\]
\[y' = r \sin (\phi + \theta)\]
Rotation about the origin (cont.)

From the double angle formulas:

\[\sin(A + B) = \sin A \cos B + \cos A \sin B \]
\[\cos(A + B) = \cos A \cos B - \sin A \sin B \]

Thus,

\[x' = x \cos \theta - y \sin \theta \]
\[y' = x \sin \theta + y \cos \theta \]
Transformations as matrices

Scale:
\[
\begin{align*}
 x_{\text{new}} &= s_x x_{\text{old}} \\
 y_{\text{new}} &= s_y y_{\text{old}}
\end{align*}
\]

\[
\begin{bmatrix}
 s_x & 0 \\
 0 & s_y
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
=
\begin{bmatrix}
 s_x \cdot x \\
 s_y \cdot y
\end{bmatrix}
\]

Rotation:
\[
\begin{align*}
 x_{\text{new}} &= x \cos \theta - y \sin \theta \\
 y_{\text{new}} &= x \sin \theta + y \cos \theta
\end{align*}
\]

\[
\begin{bmatrix}
 \cos \theta & -\sin \theta \\
 \sin \theta & \cos \theta
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
=
\begin{bmatrix}
 x \cos \theta - y \sin \theta \\
 x \sin \theta + y \cos \theta
\end{bmatrix}
\]

Translation:
\[
\begin{align*}
 x_{\text{new}} &= x_{\text{old}} + t_x \\
 y_{\text{new}} &= y_{\text{old}} + t_y
\end{align*}
\]

\[
\begin{bmatrix}
 t_x \\
 t_y
\end{bmatrix}
+
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
=
\begin{bmatrix}
 x + t_x \\
 y + t_y
\end{bmatrix}
\]
Homogeneous Coordinates

In order to represent a translation as a matrix multiplication operation we use 3×3 matrices and pad our points to become 3×1 matrices. This coordinate system (using three values to represent a 2D point) is called homogeneous coordinates.

\[
\begin{align*}
P_{(x,y)} &= \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \\
R_\theta &= \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \\
S_{s_x, s_y} &= \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \\
T_{t_x, t_y} &= \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}
\end{align*}
\]
Composite Transformations

Suppose we wished to perform multiple transformations on a point:

\[
\begin{align*}
P_2 &= T_{3,1}P_1 \\
P_3 &= S_{2,2}P_2 \\
P_4 &= R_{30}P_3 \\
M &= R_{30}S_{2,2}T_{3,1} \\
P_4 &= MP_1
\end{align*}
\]

Remember:
- Matrix multiplication is associative, not commutative!
- Transform matrices must be pre-multiplied
- The first transformation you want to perform will be at the far right, just before the point
Composite Transformations - Scaling

Given our three basic transformations we can create other transformations.

A problem with the scale transformation is that it also moves the object being scaled.

Scale a line between (2, 1) (4,1) to twice its length.
If we scale a line between (0,0) & (2,0) to twice its length, the left-hand endpoint does not move.

(0,0) is known as a fixed point for the basic scaling transformation. We can use composite transformations to create a scale transformation with different fixed points.
Fixed Point Scaling

Scale by 2 with fixed point = (2, 1)

Translate the point (2, 1) to the origin

Scale by 2

Translate origin to point (2, 1)

\[
\begin{array}{cccc}
1 & 0 & 2 & 2 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
\end{array}
\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
\end{array}
\begin{array}{c}
10 -2 \\
01 -1 \\
00 1 \\
\end{array}
\begin{array}{c}
20 -2 \\
01 0 \\
00 1 \\
\end{array}
\begin{array}{c}
T_{2,3} \\
S_{2,1} \\
T_{2,-1} \\
C \\
\end{array}
\]

Before

After
Example of 2D transformation

Rotate around an arbitrary point A:
Rotate around an arbitrary point
Rotate around an arbitrary point

We know how to rotate around the origin

\[
\begin{pmatrix}
Q_x \\
Q_y \\
1
\end{pmatrix} =
\begin{pmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
P_x \\
P_y \\
1
\end{pmatrix}
\]
Rotate around an arbitrary point

\[\text{but that is not what we want to do!} \]
So what do we do?
Transform it to a known case

\[\text{Translate}(-A_x, -A_y) \]
Second step: Rotation

\[\text{Translate}(-A_x, -A_y) \]
\[\text{Rotate}(-90) \]

Diagram showing the transformation of point \(A \) to \(P' \) and then to \(P'' \) with the given transformations.
Final: Put everything back

\[\text{Translate}(-A_x, -A_y) \]
\[\text{Rotate}(-90) \]
\[\text{Translate}(A_x, A_y) \]
Rotation about arbitrary point

IMPORTANT!: Order

\[M = T(A_x, A_y) \ R(-90) \ T(-A_x, -A_y) \]
Rotation about arbitrary point

Rotation of \(\theta \) degrees about point (x,y)

Translate (x,y) to origin

Rotate

Translate origin to (x,y)

\[
C = \begin{bmatrix}
1 & 0 & x \\
0 & 1 & y \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & -x \\
0 & 1 & -y \\
0 & 0 & 1
\end{bmatrix}
\]

\(T_{x,y} \) \(R_\theta \) \(T_{-x,-y} \)
Shears

Original Data → y Shear → x Shear

\[
\begin{bmatrix}
1 & 0 & 0 \\
\alpha & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\quad \quad
\begin{bmatrix}
1 & b & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
Reflections

Reflection about the y-axis

\[
\begin{pmatrix}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}
\]

Reflection about the x-axis

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}
\]
More Reflections

Reflection about the origin

\[
\begin{pmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

Reflection about the line \(y = x\)

?
Affine Transformations in 3D

General form

\[
\begin{pmatrix}
Q_x \\
Q_y \\
Q_z \\
1
\end{pmatrix} =
\begin{pmatrix}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34} \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
P_x \\
P_y \\
P_z \\
1
\end{pmatrix}
\]
Elementary 3D Affine Transformations

Translation

\[
\begin{pmatrix}
Q_x \\
Q_y \\
Q_z \\
1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & T_x \\
0 & 1 & 0 & T_y \\
0 & 0 & 1 & T_z \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
P_x \\
P_y \\
P_z \\
1
\end{pmatrix}
\]
Scaling Around the Origin

\[
\begin{pmatrix}
Q_x \\
Q_y \\
Q_z \\
1
\end{pmatrix} =
\begin{pmatrix}
s_x & 0 & 0 & 0 \\
0 & s_y & 0 & 0 \\
0 & 0 & s_z & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
P_x \\
P_y \\
P_z \\
1
\end{pmatrix}
\]
Shear around the origin

Along x-axis

\[
\begin{pmatrix}
Q_x \\
Q_y \\
Q_z \\
1
\end{pmatrix}
= \begin{pmatrix}
1 & a & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
P_x \\
P_y \\
P_z \\
1
\end{pmatrix}
\]
3D Rotation

Various representations

Decomposition into axis rotations (x-roll, y-roll, z-roll)

CCW positive assumption
Reminder: 2D rotation (z-roll)

\[Q_x = \cos \theta P_x - \sin \theta P_y \]
\[Q_y = \sin \theta P_x + \cos \theta P_y \]

\[
\begin{pmatrix}
Q_x \\
Q_y \\
1
\end{pmatrix} =
\begin{pmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
P_x \\
P_y \\
1
\end{pmatrix}
\]
Three axes to rotate around
Z-roll

\[Q_x = \cos \theta P_x - \sin \theta P_y \]
\[Q_y = \sin \theta P_x + \cos \theta P_y \]
\[Q_z = P_z \]

\[R_z(\theta) = \begin{pmatrix}
\cos(\theta) & -\sin(\theta) & 0 & 0 \\
\sin(\theta) & \cos(\theta) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{pmatrix} \]
X-roll

Cyclic indexing

\[x \rightarrow y \rightarrow z \rightarrow x \rightarrow y \]

\[Q_y = \cos \theta P_y - \sin \theta P_z \]
\[Q_z = \sin \theta P_y + \cos \theta P_z \]
\[Q_x = P_x \]

\[
R_x(\theta) = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \cos(\theta) & -\sin(\theta) & 0 \\
0 & \sin(\theta) & \cos(\theta) & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
Y-roll

\[Q_z = \cos \theta P_z - \sin \theta P_x \]
\[Q_x = \sin \theta P_z + \cos \theta P_x \]
\[Q_y = P_y \]

\[R_y(\theta) = \begin{pmatrix}
\cos(\theta) & 0 & \sin(\theta) & 0 \\
0 & 1 & 0 & 0 \\
-\sin(\theta) & 0 & \cos(\theta) & 0 \\
0 & 0 & 1 & 0
\end{pmatrix} \]
Rigid body transformations

Translations and rotations
Preserve lines, angles and distances
Inversion of transformations

Translation: \(T^{-1}(a,b,c) = T(-a,-b,-c) \)

Rotation: \(R^{-1}_{\text{axis}}(b) = R_{\text{axis}}(-b) \)

Scaling: \(S^{-1}(sx, sy, sz) = S(1/sx, 1/sy, 1/sz) \)

Shearing: \(Sh^{-1}(a) = Sh(-a) \)
Rotation around an arbitrary axis

Euler’s theorem: Any rotation or sequence of rotations around a point is equivalent to a single rotation around an axis that passes through the point.

What does the matrix look like?
Rotation around an arbitrary axis

Axis: \(\mathbf{u} \)
Point: \(P \)
Angle: \(\beta \)
Method:

1. Two rotations to align \(\mathbf{u} \) with \(x \)-axis
2. Do \(x \)-roll by \(\beta \)
3. Undo the alignment
Derivation

1. $R_z(-\phi)R_y(\theta)$
2. $R_x(\beta)$
3. $R_y(-\theta)R_z(\phi)$

Altogether:

$R_y(-\theta)R_z(\phi)R_x(\beta)R_z(-\phi)R_y(\theta)$

We can add translation too if the axis is not through the origin.
Properties of affine transformations

- *Preservation of affine combinations of points.*
- *Preservation of lines and planes.*
- *Preservation of parallelism of lines and planes.*
- *Relative ratios are preserved*
- *Affine transformations are composed of elementary ones.*
General form

Rotation, Scaling, Shear

Translation

\[
\begin{pmatrix}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34} \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
Transformations as a change in coordinate system

All transformations we have looked at involve transforming points in a fixed coordinate system (CS).

Can also think of them as a transformation of the CS itself
Transforming the CS - examples

Translate(4,4)

Rotate(180°)
Why transform the CS?

Objects often defined in a “natural” or “convenient” CS

To draw objects transformed by T, we could:

- Transform each vertex by T, then draw
- Or, draw vertices in a transformed CS
Drawing in transformed CS

Tell system once how to draw the object, then draw in a transformed CS to transform the object.

House drawn in a CS that’s been translated, rotated, and scaled.
Mapping between systems

Given:

- The vertices of an object in CS₂
- A transformation matrix M that transforms CS₁ to CS₂

What are the coordinates of the object’s vertices in CS₁?
Mapping example

Point P is at (0,0) in the transformed CS (CS₂). Where is it in CS₁?

Answer: (4,4)

*Note: (4,4) = T_{4,4} P
Mapping rule

In general, if CS\(_1\) is transformed by a matrix \(M\) to form CS\(_2\), a point P in CS\(_2\) is represented by MP in CS\(_1\)
Another example

Translate(4,4), then Scale(0.5, 0.5)

Where is P in CS\(_3\)? (2,2)
Where is P in CS\(_2\)? \(S_{0.5,0.5}(2,2) = (1,1)\)
Where is P in CS\(_1\)? \(T_{4,4}(1,1) = (5,5)\)

Note: to go directly from CS\(_3\) to CS\(_1\) we can calculate \(T_{4,4} S_{0.5,0.5}(2,2) = (5,5)\)
<table>
<thead>
<tr>
<th>General mapping rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>If CS1 is transformed consecutively by M_1, M_2, ..., M_n to form CS${n+1}$, then a point P in CS$_{n+1}$ is represented by</td>
</tr>
<tr>
<td>$M_1 M_2 ... M_n P$ in CS$_1$.</td>
</tr>
</tbody>
</table>

To form the composite transformation between CSs, you postmultiply each successive transformation matrix.
OpenGL Transformations

Learn how to carry out transformations in OpenGL

• Rotation
• Translation
• Scaling

Introduce OpenGL matrix modes

• Model-view
• Projection
OpenGL Matrices

In OpenGL matrices are part of the state

Multiple types

- Model-View (GL_MODELVIEW)
- Projection (GL_PROJECTION)
- Texture (GL_TEXTURE) (ignore for now)
- Color(GL_COLOR) (ignore for now)

Single set of functions for manipulation

Select which to manipulated by

- glMatrixMode(GL_MODELVIEW);
- glMatrixMode(GL_PROJECTION);
Current Transformation Matrix (CTM)

Conceptually there is a 4 x 4 homogeneous coordinate matrix, the current transformation matrix (CTM) that is part of the state and is applied to all vertices that pass down the pipeline.

The CTM is defined in the user program and loaded into a transformation unit.

\[
\begin{align*}
\text{vertices} & \rightarrow \text{CTM} \rightarrow \text{vertices} \\
\text{p} & \downarrow \quad \text{C} \\
\text{p'} = \text{Cp} &
\end{align*}
\]
CTM operations

The CTM can be altered either by loading a new CTM or by postmultiplication

- Load an identity matrix: \(C \leftarrow I \)
- Load an arbitrary matrix: \(C \leftarrow M \)
- Load a translation matrix: \(C \leftarrow T \)
- Load a rotation matrix: \(C \leftarrow R \)
- Load a scaling matrix: \(C \leftarrow S \)

- Postmultiply by an arbitrary matrix: \(C \leftarrow CM \)
- Postmultiply by a translation matrix: \(C \leftarrow CT \)
- Postmultiply by a rotation matrix: \(C \leftarrow CR \)
- Postmultiply by a scaling matrix: \(C \leftarrow CS \)
Rotation about a Fixed Point

Start with identity matrix: $C \leftarrow I$

Move fixed point to origin: $C \leftarrow CT$

Rotate: $C \leftarrow CR$

Move fixed point back: $C \leftarrow CT^{-1}$

Result: $C = TRT^{-1}$ which is backwards.

This result is a consequence of doing postmultiplications.
Let's try again.
Reversing the Order

We want $C = T^{-1} R T$
so we must do the operations in the following order

$C \leftarrow I$
$C \leftarrow CT^{-1}$
$C \leftarrow CR$
$C \leftarrow CT$

Each operation corresponds to one function call in the program.

Note that the last operation specified is the first executed in the program.
CTM in OpenGL

OpenGL has a model-view and a projection matrix in the pipeline which are concatenated together to form the CTM.

Can manipulate each by first setting the correct matrix mode.
Rotation, Translation, Scaling

Load an identity matrix:

```gl
glLoadIdentity()
```

Multiply on right:

```gl
    glRotatef(\text{theta}, \text{vx}, \text{vy}, \text{vz})
    \text{theta} \text{ in degrees, (vx, vy, vz) define axis of rotation}
    glTranslatef(\text{dx}, \text{dy}, \text{dz})
    glScalef(\text{sx}, \text{sy}, \text{sz})
```

Each has a float (f) and double (d) format (glScaled)
Example

Rotation about z axis by 30 degrees with a fixed point of (1.0, 2.0, 3.0)

```c
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(1.0, 2.0, 3.0);
glRotatef(30.0, 0.0, 0.0, 1.0);
glTranslatef(-1.0, -2.0, -3.0);
```

Remember that last matrix specified in the program is the first applied
Arbitrary Matrices

Can load and multiply by matrices defined in the application program

```c
glLoadMatrixf(m)
glMultMatrixf(m)
```

The matrix \(m \) is a one dimension array of 16 elements which are the components of the desired 4 x 4 matrix stored by columns.

In `glMultMatrixf`, \(m \) multiplies the existing matrix on the right.
Transformations in OpenGL

OpenGL makes it easy to do transformations to the CS, not the object

Sequence of operations:

- Set up a routine to draw the object in its “base” CS
- Call transformation routines to transform the CS
- Object drawn in transformed CS
OpenGL transformation example

```c
void drawHouse()
{
    glBegin(GL_LINE_LOOP);
    glVertex2i(0,0);
    glVertex2i(0,2);
    ...  
    glEnd();
}
```

```c
void drawTransformedHouse()
{
    glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();
    glTranslatef(4.0, 4.0, 0.0);
    glScalef(0.5, 0.5, 1.0);
    drawHouse();
}
```

Draws basic house

Draws transformed house
Matrix Stacks

In many situations we want to save transformation matrices for use later

- Traversing hierarchical data structures
- Avoiding state changes when executing display lists

OpenGL maintains stacks for each type of matrix

- Access present type (as set by `glMatrixMode`) by

  ```
  glPushMatrix()
  glPopMatrix()
  ```
OpenGL matrix stack example

glLoadIdentity();
glPushMatrix();
glMultMatrixf(m1);
glPushMatrix();
glMultMatrixf(m2);
render chair2;
glPopMatrix();
glPushMatrix();
glMultMatrixf(m3);
render chair1;
glPopMatrix();
glPushMatrix();
render table;
glPopMatrix();
glPushMatrix();
render rug;
glPopMatrix();
render room;

M0

M1

M2

M3

M4

chair1

chair2

room

table

rug