Modeling 3D objects with polygons
Why polygons?

- Simple mathematical description
- Standard 3D graphics primitive
- All graphics packages optimized for polygon throughput
- Most 3D graphics algorithms assume a polygon-based scene
- Common polygon algorithms implemented in hardware
- In the end, everything (well, almost everything) is a polygon
Terminology

- **Polygon soup**: a general set of unstructured polygons used to define a scene
- **Polygonal mesh**: a set of connected polygons that together form a surface
More terminology

- **3D polygonal model**: a 3D object made up entirely of polygons
- **3D polygonal modeling**: the process of building a 3D object by specifying the polygons that make up that object
 - NOTE: you can build a 3D polygonal model without using 3D polygonal modeling!
Methods of creating polygonal meshes

- Build mesh by hand
Methods of creating polygonal meshes

- Tesselate a theoretical smooth surface
 - Tessellation: the process of creating a polygonal approximation from a smooth surface
Methods of creating polygonal meshes

- Extrude a 2D polygon, curve, etc.
 - Extrusion: the process of moving a 2D cross-section through space to create a 3D solid
Methods of creating polygonal meshes

- Revolve/sweep a 2D polygon or curve
 - Revolution: the process of rotating a 2D cross-section about an axis to create a 3D solid
Problems with polygonal models

- They approximate smoothly curving surfaces
- Tradeoff between realism and efficiency
 - Lots of polygons: good approximation, slow to process
 - Few polygons: fast processing, poor approximation
Polygonal simplification

- Decrease the number of polygons without sacrificing visual quality (meet polygon budget)

30944 triangles 2502 triangles 621 triangles 251 triangles
Level of detail (LOD) techniques

- LOD: change the complexity of the model/image dynamically to maintain real-time performance
- Ex: use simplified models when objects are at a great distance
- “Popping” problem
Texture substitution

- Textures ("imposters") can cause objects to appear much more detailed than they actually are
- Problem: when the user is close
Rendering polygonal meshes

- Simply use traditional raster graphics techniques
- Proper lighting depends on proper normals
 - Face normal: the normal to the plane in which a polygon lies
 - Vertex normal: the normal to the underlying surface (being approximated by a polygonal mesh) at a particular vertex
Face normals vs. vertex normals
Practical polygonal modeling

- Modeling tools
 - 3D Studio Max
 - Maya
 - AutoCAD
 - ...

- File formats
 - OBJ, DXF, 3DS, FLT, DWG, ...
Alternatives to polygonal modeling

- As we noted, almost everything is a polygon eventually, but the modeling process does not have to be based on polygons
- Instead, we can model objects using smooth higher-order surfaces, and only convert to polygons in order to render
- Also, we can model volumes instead of surfaces
- Next: modeling with curves/surfaces