CS4124 Homework #3 Solution

2.3.1

If M is not deterministic, then interchanging its start and final states is not
guaranteed to make it reject every string it formerly accepted. If there is
any string w such that (s, w) 3, (q1,e) and (s,w) 3, (g2,€), where g1 is
final and ¢y is not, then w € L(M), but the automaton that results from
carrying out this construction also accepts w, even though w ¢ L(M).

2.3.3

Given two regular languages L1 and Lo, we want to show L1 N Ly is a regular
language. Let My = (K1,%, 01,81, F1) and My = (K3, %, 02, s2, F2) be two
deterministic finite automaton such that L(M;) = L; and L(Msy) = Lo.
Define a new automaton M’ = (K’ ¥/ 0’ ¢, F’), where

K' = K x K,
Y =3

s = (s1,82)
F' = FIxF

§ (g1, q2),0) (01(q1,0),02(q2,0)).

From the construction of M’, it can be show that L(M') = Ly N Ly. Thus,
L1 N Ly is a regular language.

2.3.7

(a) a*b(ba*bUa)*

(b) ((aUb)(aU b))

(¢) (aUb)*abaa(aUb)*

(d) (aUba*a)(ba*a)*b(a U b)*

2.3.11

(a) Given a homomorphism h : 31 — X3, one can also take a determintistic
finite automaton M = (K, X1, 0, s, F') accepting L and define a new automa-
ton M' = (K', %9, A"} ', F') to accept h[L]. Let k be the maximum of |h(c)|
for o € ¥1. Then



K = K x{w:we}|w <k}

s = (sye)
F' = Fx{e}
A" = {((p.e). e, (g, h(0))) : 6(p,00 = q,0 € Tn}

U{({p, ow), o, (p,w)) : 6 € Ba}

In effect, on input z, M’ nondeterministically guesses the string w for
which h(z) = w. It computes h(x) on symbol at a time, storing the results
in a finite buffer, the second component of K’ — this computation is the
first set in the definition of A’. It then compares this buffer to its input,
advancing only when the symbols match — the second set of transitions
allowed in A

It can be proven that L(M') = h[L(M)] by induction on the number

of steps in a computation. One needs, however, to be careful about the
nature of computations of M’, which consist of a transition of the first type
alternating with some number of transitions of the second type.
(b) Given a homomorphism A : ¥; — 35 and a deterministic finite automa-
ton M = (K,%9,0,s,F), define a new nondeterministic finite automaton
M' = (K',31,A',s', F") to accept h™1[L] as follows (where k is the maxi-
mum of |h(o)|,0 € ¥1):

K' = Kx{w:w€Xj |uw| <k}

s' = (se)

F' = Fx/{e}

A = {((g,€),0,(g,h(0))) : 0 € T}
U{({g,ow), e, (p,w)) : 6(q,0) = p, 0 € Xa}

From each symbol o of its input, M’ calculates h(c) and “passes” the value
to M by means of an internal “buffer”. M then computes as normal, except
that instead of reading from the input, it removes symbols from this buffer.

It can be proven that L(M') = h~![L(M)] by induction on the number
of steps in a computation, with a little attention to the two different sorts
of transitions avaliable to M’, especially as some of them are transitions on
e.



2.4.2
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In the figure,
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Whenever the machine is in an n state, the portion of the addition to the
left of the tape head requires no carrying out of the portion to the right.
When the machine is in the y state, on the other hand, it expects a carry
out of the portion to the right.

You maybe get a little different result if assuming the string is read by
the automaton from right hand side.

2.4.5

(a) Assume L is regular, and let k& be the constant whose existance the
pumping theorem guarantees. Choose string a*bba*. Clearly this string
is of length at least k, so the Pumping Theorem must hold. If |zy| < k,
then y = a’ where i > 0. But then zy"z = a*T("~Dipba*, which is clearly
asymmetric for any n # 1. The theorem fails, and thus our assumption that
L was regular must have been wrong.

(b) Assume L is regular, and let k£ be ths constant from the pumping the-
orem. Choose the string a*ba®b. This string has length 2k + 2, which
is definitely at least k. If |zy| < k, the y = a’ for some i > 0. thus
zy?z = a*ba®b, which is clearly asymmetric. Thus the assumption that L
is regular must be wrong.

(c) Assume L is regular, and let k be the constant given us by the pump-
ing theorem. Choose the string a*b*. This string has length 2k, which
is definitely at least k. If |zy| < k, then y = a* for some i > 0. Thus
zy?z = a*tb*, which violates the basic condition of strings in L that there
be equal numbers of a’s and b’s. Thus the assumption that L was regular
was in error.



2.4.8

(a) false. Every language, including those we know not be regular, is a
subset, of the regular language ¥*.

(b) false. The empty set, which is a regular language, has no proper subsets
at all, so it certainly cannot have a proper subset which is also a regular
language.

(c) true. This language is equivalent to LL. Since L is regular, so is
its complement, and thus their concatenation is the concatenation of two
regular languages and is itself regular.

(d) false. This can be shown by trying to pump the string a*ba®. y will
have to consist only of a’s, and the resulting zy?z will be unbalanced. Note,
however, that this language is regular over an alphabet of one symbol.

(e) true. This language is L N L. If L is regular, then so is L. Since
both L and L are regular, so is their intersection.

(f) false. Any language can be written as the (possibly infinite) union of the
singleton sets containing its individual elements. Since not every language
is regular, the claim is false.(It is true when C' is required to be finite).

(g) true. This language is X*. By letting © = e, y can vary over all the
strings of ¥*.

2.4.12
Suppose L C T*, the language of correct multiplications, were regular. De-
fine a homomorphism h : 7% — {a,b}* in which

0 0
hl O | =h| 0 | =a
0 1
and
1 0 1 1 0 1
hl O |=h]| 1 |=h] 1 |=hR] 0 |=hR]l1]|=h]1]=0b
0 0 0 1 1 1

Suppose L is regular, then so is the language represent the correct mutipli-
cation of (2" + 1) x (2" + 1), which we will call L'. By using the result of
Problem 2.3.11, we know h[L'] is also regular. But h[L'] = {a"w : n < |w|},
because no mutiplication of two n digit numbers can give a number more
than 2n digits in length. And this language can easily be shown not to be
regular by a straightforward application of the pumping theorem.



