(15) 1. What important conclusion follows from the following two facts? (1) The unbounded memory RAM can simulate any Turing machine. (2) There is a Turing machine which can simulate the computation of any unbounded memory RAM program.

(25) 2. Consider a language \(L \in \mathbf{P} \), the TM \(M \) recognizing whether or not a string \(w \in L \) in \(p(|w|) \) steps, and some given string \(z \). The computation of \(M \) on input \(z \) takes \(T = p(|z|) \) steps, and can be simulated by a circuit \(C_{M,T} \). A description of this circuit \(C_{M,T} \) can be generated from \(M \) and \(z \) by a program \(\mathcal{P} \). Explain exactly why the program \(\mathcal{P} \) requires \(\mathcal{O}(\log n) \) space to execute, where \(n = |z| \).

(20) 3. A string \(w \) that reads the same left to right as right to left is called a palindrome. The language of palindromes, \(L = \{ w \mid w \in \Gamma^*, \ w = w^R \} \), over the alphabet \(\Gamma \) is not regular, and therefore is not accepted by a FSM. However, \(L \) is accepted by a nondeterministic pushdown automaton (PDA). Explain why \(L \) can not be accepted by a deterministic PDA.
(20) 4. In the proof that the language SATISFIABILITY (strings representing POSEs of Boolean functions that are 1 for some arguments) is \(\textbf{NP} \)-complete, a string describing a circuit (for CIRCUIT SAT) must be reduced to a string of clauses (a POSE for SATISFIABILITY). For instance, the instruction \((i \text{ OR } j \text{ OR } k)\) for the OR gate taking inputs \(g_j\) and \(g_k\) and producing output \(g_i = g_j \lor g_k\) must be reduced to an equivalent POSE in \(g_i, g_j, g_k\). Give this POSE (the first clause is provided as a hint).

\[
(g_i \lor \overline{g}_j) \]

(10) 5. State the generalization of the pumping lemma for regular languages required to prove that \(L = \{a^i b^j \mid i > j\}\) is not regular.

(10) 6. Which of the following languages are regular (answer yes/no)?

\[\begin{align*}
\ _a & \text{ a) } \{w \in \Sigma^* \mid \text{length of } w \text{ is odd}\} \\
\ _b & \text{ b) } \{w \in \{a, b\}^* \mid w \text{ has } ab \text{ and } ba \text{ as substrings}\} \\
\ _c & \text{ c) } \{w \in \{a, b\}^* \mid w \text{ has twice as many } a\text{'s as } b\text{'s}\} \\
\ _d & \text{ d) } \{a^n b a^n \mid n \geq 0\} \\
\ _e & \text{ e) } \{w \mid w \text{ is decimal notation for an integer that is a multiple of } 5\}
\end{align*}\]