CS 4114
Solutions to Midterm Exam
March 1, 2001

[40] 1. Consider the following language:

\[L_1 = \{ w \in \{a, b, c\}^* \mid \text{any substring } bb \text{ in } w \text{ is immediately followed by a } c \} \].

1. Give examples of 5 strings that are in \(L_1 \) and of 5 strings that are not in \(L_1 \).
2. Give a regular expression that represents \(L_1 \).
3. Give a regular grammar that generates \(L_1 \).

1. Here are 5 strings that are in \(L_1 \): \(baac, \lambda, abbcacbce, cababcba, \) and \(bbeccabbe \). Here are 5 strings that are not in \(L_1 \): \(bb, bbbe, ababc, bbbcba, \) and \(babababbceabbb \).

2. Here is a regular expression representing \(L_1 \):

\[r_1 = ((a \cup c \cup ba \cup bc)^* bbe)^* (b \cup (a \cup c \cup ba \cup bc)^*) \]

3. Here is a regular grammar that generates \(L_1 \):

\[
\begin{align*}
S & \rightarrow aS \mid cS \mid bA \mid b \mid \lambda \\
A & \rightarrow aS \mid cS \mid bB \\
B & \rightarrow cS \mid cC \\
C & \rightarrow aC \mid cC \mid aD \mid cD \\
D & \rightarrow bC \mid b \mid \lambda
\end{align*}
\]

[30] 2. Consider the following language:

\[L_2 = \{ uab^ib^iR \mid u \in \{a, b, c\}^*, 1 \leq i \} \].

1. Give examples of 5 strings that are in \(L_2 \) and of 5 strings that are not in \(L_2 \).
2. Give a context-free grammar that generates \(L_2 \).
1. Here are 5 strings that are in L_2: ab, $cababbc$, $aaabbabbbabaaa$, $aaabbb$, and $cabbabbacc$. Here are 5 strings that are not in L_2: λ, cc, $aabc$, $abecca$, and b.

2. Here is a context-free grammar that generates L_2:

$$
S \rightarrow aSa \mid bSb \mid cSc \mid A \\
A \rightarrow aAb \mid ab.
$$

[40] 3. The regular grammar G_3 is given by

$$
S \rightarrow aS \mid aA \\
A \rightarrow aA \mid bB \\
B \rightarrow aS \mid b.
$$

1. Identify a string $w \in L(G_3)$ that has at least two different derivations. Also, give two different derivations for w.

2. Find a regular expression that represents $L(G_3)$.

1. The string $w = aabb$ has exactly two different derivations, namely:

$$
S \Rightarrow aS \\
\Rightarrow aaA \\
\Rightarrow aabB \\
\Rightarrow aabb
$$

and

$$
S \Rightarrow aA \\
\Rightarrow aaA \\
\Rightarrow aabB \\
\Rightarrow aabb.
$$

2. As was done in class and in homework 4, we set up a system of three equations with variables r_S, r_A, and r_B as regular expressions representing the yield of S, A, and B, respectively.

$$
\begin{align*}
 r_S &= ar_S \cup ar_A \\
 r_A &= ar_A \cup br_B \\
 r_B &= ar_S \cup b.
\end{align*}
$$
After substituting the value of \(r_B \), we obtain a system of two equations.

\[
\begin{align*}
 r_S &= ar_S \cup ar_A \\
 r_A &= ar_A \cup b(ar_S \cup b) \\
 &= a^* b(ar_S \cup b).
\end{align*}
\]

The justification for this last step was given in class. After substituting the value of \(r_A \), we obtain the regular expression we want.

\[
\begin{align*}
 r_S &= ar_S \cup aa^* b(ar_S \cup b) \\
 &= (a \cup aa^* ba) r_S \cup aa^* bb \\
 &= (a \cup aa^* ba)^* aa^* bb.
\end{align*}
\]

[40] 4. Context-free grammar \(G_4 \) is the following:

\[
\begin{align*}
 S &\rightarrow abbA \mid \lambda \\
 A &\rightarrow abaA \mid bbaA \mid \lambda.
\end{align*}
\]

1. Give a definition of \(L(G_4) \) in set theoretic form.

2. Give a recursive definition of \(L(G_4) \) that does not mention \(G_4 \).

3. Give a regular grammar \(G'_4 \) that is equivalent to \(G_4 \). (That is, you should be able to argue that \(L(G'_4) = L(G_4) \).)

1. The following is a set theoretic definition of \(L(G_4) \):

\[
\{ \lambda \} \cup \{ aab \}^+ \{ aba, bba \}^*.
\]

2. The following is a recursive definition of \(L(G_4) \):

 • **Basis:** \(\lambda \in L(G_4) \) and \(aab \in L(G_4) \).

 • **Recursive step:** If \(x \in L(G_4) \) and \(|x| > 0 \), then \(aabx \in L(G_4) \), \(xaba \in L(G_4) \), and \(xbba \in L(G_4) \).

 • **Closure:** Any element of \(L(G_4) \) can be obtained by a finite number of applications of the recursive step to the basis.

The closure is optional.
3. Here is a regular grammar G'_4 that is equivalent to G_4:

$$
S \rightarrow aA \mid \lambda \\
A \rightarrow aB \\
B \rightarrow bS \mid bC \\
C \rightarrow aD \mid bD \\
D \rightarrow bE \\
E \rightarrow aC \mid \lambda
$$

To see that G'_4 represents the language we are talking about, we make these observations:

- G'_4 generates λ, and every other string generated by G'_4 has the prefix aab.
- For any nonempty string x generated by G'_4, a prefix of one or more aab's is generated before either the $S \rightarrow \lambda$ or the $B \rightarrow bC$ rule is used.
- Once the C, D, E group of nonterminals is reached (via the use of the $B \rightarrow bC$ rule), then the S, A, B group is never returned to.
- The C, D, E group generates $(aba \cup bba)^+$.

Putting all these observations together, G'_4 generates exactly the strings in $L(G_4)$, as desired.