
COURSENOTES

CS4104:
Data and Algorithm Analysis

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Copyright c©1996–2007

CS4014 Prereqs and Major Topics

What you need to already know:

• Discrete Math

– Proof by contradiction and induction

– Summations

– Set theory, relations

• The basics of Asymptotic Analysis

– Big-oh, Big-Ω, Θ

• Most of what was covered in CS2606

– Basic data structures

– Algorithms for searching and sorting

What we will do:

• Finally understand upper/lower bounds

• Lower bounds proofs

• Analysis techniques (no hand waving!)

– Recurrance Relations

• Reductions, NP-completeness theory, and a
little computability theory

Process:

• Weekly homework sets (they are hard!)

• Work in pairs

1

Introduction to Problem Solving

• Principle of Intimate Engagement

– This is the most important consideration

– Actively engaging the problem, getting
involved

– Need to build up “mental muscles” for
problem solving

• Effective vs. Ineffective problem solvers
(Engagers vs. Dismissers)

– Engagers have a history of success

– Dismissers have a history of failure

– You probably engage some problems and
dismiss others

– You could solve more problems if you
overcame the mental hurdles that lead
to dismissing

– Transfer successful problem solving in
some parts of your life to other areas.

• Getting your hands dirty

– Example: Repairing a wobbly table

– Get underneath and look

– Example: Repairing a dryer

– Open up back panel and look

2

Investigation and Argument

Problem solving has two parts: the
investigation and the argument.

• Students are used to seeing only the
argument in their textbooks and lectures.

• To be successful in school and in life, one
needs to be good at both

• To solve the problem, you must investigate
successfully.

• Then, to give the answer to your client, you
need to be able to make the argument in a
way that gets the solution across clearly
and succinctly.

• Writing skills. Proof Skills

• Methods of argument: Deduction (direct
proof), contradiction, induction

3

Heuristics for Problem Solving

These are most appropriate for problem solving
“in the small.”

• Puzzles

• Math and CS test or homework problems

A list of standard Heuristics:

• Write it down

– After motivation and mental attitude,
the most important limitation on your
ability to solve problems is biological

– For active manipulation, you can only
store 7± 2 pieces of information

– Take advantage of your environment to
get around this

– Write things down

– Manipulate problem (good
representation)

• Get your hands dirty

– “Play around” with the problem to get
some initial insight.

4

Heuristics (2)

• Look for special features

– Example: Cryptogram addition problems.
A D

+ D I
D I D

• Go to the extremes

– Study problem boundary conditions

• Simplify

– This might give a partial solution that
can be extended to the original problem.

• Penultimate step

– What precondition must take place
before the final solution step is possible?

– Solving the penultimate step might be
easier than the original problem.

• Lateral thinking

– Don’t be lead into a blind alley.

– Using an inappropriate problem solving
strategy might blind you to the solution.

5

Heuristics (3)

• Wishful thinking

– A version of simplifying the problem

– Transform problem into something easy;
take start position to something that you
“wish” was the solution

– That might be a smaller step to the
actual solution

• Symmetry

– Symmetries in the problem might give
clues to the solution

6

Problem Solving “In the Large”

• Problem Definition

– Reformulate problem statement to get
at the ”real problem”.

• Generate Solutions

– Getting around mental blocks.

– Blockbusting.

– Brainstorming.

• Decide the course of action.

– Situation analysis.

– Pareto analysis.

– K.T. Problem analysis.

– Decision analysis.

• Implement the solution.

– Getting approval

– Planning

– Gannt charts

– Critical path analysis

– Experimental design

– Report results.

• Evaluation

– Make it an ongoing process at all stages

7

Pairs Problem Solving

An effective way to work in pairs to solve
problems:

• Partner roles: problem solver and listener

Responsibilities of the problem solver

• Constant vocalization

• Spell out all the assumptions

• Carefully detail all steps taken

Responsibilities of the listener

• Continually check for accuracy

• Demand constant vocalization

8

Errors in Reasoning

Getting the wrong answer on a test or
homework usually results from a “breakdown”
in problem solving. Typical breakdowns:

• Failing to observe and use all relevant facts
of a problem.

• Failing to approach the problem in a
systematic manner. Instead, making leaps
in logic without checking steps.

• Failing to spell out relationships fully.

• Being sloppy and inaccurate in collecting
information and carrying out mental
activities.

Myths about reading: These are some
popularized misconceptions

• Don’t subvocalize when you read

• Read only key words

• Don’t be a word-by-word reader

• Read in thought groups

• You can be a speed reader without loss of
comprehension

• Don’t re-read

9

Program Efficiency

Our primary concern is EFFICIENCY.

We want efficient programs. How do we
measure the efficiency of a program? (Assume
we are concerned primarily with time.)

• On what input?

• How do we speed it up?

• When do we stop speeding it up?

• Should we bother with writing the program
in the first place?

10

Algorithm Efficiency

Since we don’t want to write worthless
programs, we will focus on algorithm efficiency.

We need a yardstick.

• It should measure something we care about.

• It should by quantitative, allowing
comparisons.

• It should be easy to compute (the measure,
not the program).

• It should be a good predictor.

We need:

• A measure for problem size.

• A measure for solution effort.

• Use key operations as a measure of solution
effort.

• Total cost is a function of problem size and
key operations.

11

Cost Model

To get a measurement, we need a model.

Example:

• Assigning to a variable takes fixed time.

• All other operations take no time.

sum = n*n;

One assignment was made, so the cost is 1.

sum = 0;
for (i=1; i<=n; i++)

sum = sum + n;

Assignments made are 1 +
∑n

i=1 1 = n + 1.
(Depending on how you want to deal with loop
variables, you might want to say it is 2n + 1.)

sum = 0;
for (i=1; i<=n; i++)

for (j=1; j<=n; j++)
sum = sum + 1;

Assignments made are
1 +

∑n
i=1

∑n
j=1 1 = n2 + 1.

What makes a model “good”?

• Consider assigning strings by copying. Is
this a good model?

12

Big Issues

How do we create an efficient algorithm?

How do we recognize a “good” algorithm?

How “hard” is a problem?

General Plan:

• Define a PROBLEM.

• Build a MODEL to measure the cost of a
solution to the problem.

• Design an ALGORITHM to solve the
problem.

• ANALYZE both the problem and the
algorithm under the model.

– Analyze an algorithm to get an UPPER BOUND.

– Analyze a problem to get a LOWER BOUND.

• COMPARE the bounds to see if our
solution is “good enough”.

– Redesign the algorithm.

– Tighten the lower bound.

– Change the model.

– Change the problem.

13

Problems

Our problems must be well-defined enough to
be solved on computers.

A problem is a function (i.e., a mapping of
inputs to outputs).

We have different instances (inputs) for the
problem, where each instance has a size.

To solve a problem, we must provide an
algorithm, a coding of problem instances into
inputs for the algorithm, and a coding for
outputs into solutions.

An algorithm executes the mapping.

• A proposed algorithm must work for ALL
instances (give the correct mapping to the
output for that input instance).

GOAL: Solve problems with as little
computational effort per instance as possible.

14

Categories of Hard Problems

• A conceptually hard problem.

– If we understood the problem, the
algorithm might be easy. [Natural
Language Processing]

– Artificial Intelligence.

• An analytically hard problem.

– We have an algorithm, but can’t analyze
its cost. [Collatz sequence]

– Complexity Theory.

• A computationally hard problem.

– The algorithm is expensive.

– Class 1: No inexpensive algorithm is
possible. [TOH]

– Class 2: We don’t know if an inexpensive
algorithm is possible. [Traveling
Salesman]

– Complexity Theory

• A computationally unsolvable problem.
[Halting problem]

– Computability Theory.

15

Towers of Hanoi

Given: 3 pegs and n disks of different sizes
placed in order of size on Peg 1.

Problem: Move the disks to Peg 3, given the
following constraints:

• A “move” takes the topmost disk from one
peg and places it on another peg (the only
action allowed).

• A disk may never be on top of a smaller
disk.

Model: We will measure the cost of this
problem by the number of moves required.

16

TOH Algorithm

(This is an exercise in the process of problem
solving.

Pretend that you have never seen this problem
before, and that you are approaching it for the
first time.)

Start by trying to solve the problem for small
instances.

• 0 disks, 1 disk, 2 disks...

• When we get to 3 disks, it starts to get
harder.

• Can we generalize the insight from solving
for 3 disks? 4 disks?

Observation: The largest disk has no effect on
the movements of the other disks. Why?

17

Recursive Solutions

When we generalize the TOH problem to more
disks, we end up with something like:

• Move all but the bottom disk to Peg 2.

• Move the bottom disk from Peg 1 to Peg 3.

• Move the remaining disks from Peg 2 to
Peg 3.

Problem-solving heuristics used:

• Get our hands dirty: Try playing with some
simple examples

• Go to the extremes: Check the small cases
first

• Penultimate step: Key insight is that we
can’t solve the problem until we move the
bottom disk.

How do we deal with the n− 1 disks (twice)?

Forward-backward strategy: Solve simple
special cases and generalize their solution, then
test the generalization on other special cases.

18

TOH Solution

void TOH(int n, POLE start, POLE goal, POLE temp) {
if (n == 0) return; // Base case
TOH(n-1, start, temp, goal); // Recurse: n-1 rings
move(start, goal); // Move one disk
TOH(n-1, temp, goal, start); // Recurse: n-1 rings

}

19

Algorithm Upper Bounds

Worst case cost (for size n): Maximum cost
for the algorithm over all problem instances of
size n.

Best case cost (for size n): Minimum cost for
the algorithm over all problem instances of size
n.

A: The algorithm.

In: The set of all possible inputs to A of size n.

fA: Function expressing the resource cost of A.

I is an input in In.

worst cost(A) = max
I∈In

fA(I).

best cost(A) = min
I∈In

fA(I).

Examples:

• Factorial: One input of size n, one cost

• Find: Various models for number of inputs,
n different costs

• Findmax: Various models for number of
inputs, all cases have same cost

20

Average Case

We may want the average case cost. For each
input of size n, we need:

• Its frequency.
• Its cost.

Given this information, we can calculate the
weighted average.

Q: Can the average cost be worse than the
worst cost? Or better than the best cost?

21

Analysis of TOH

There is only one input instance of size n.

How does this affect the decision to measure
worst, best, or average case cost?

We want to count the number of moves
required as a function of n.

Some facts:

• f(1) = 1.

• f(2) = 3.

• f(3) = 7.

• f(n) = f(n− 1) + 1 + f(n− 1) =
2f(n− 1) + 1, ∀n ≥ 4.

(Actually, we can simplify our list of facts.)

22

Recurrence Relation

The following is a recurrence relation:

f(n) =

{
1 n = 1
2f(n− 1) + 1 n > 1

How can we find a closed form solution for the
recurrence?

It looks like each time we add a disk, we
roughly double the cost – something like 2n.

If we examine some simple cases, we see that
they appear to fit the equation f(n) = 2n − 1.

How do we prove that this ALWAYS works?

23

Proof for Recurrence

Let’s ASSUME that f(n− 1) = 2n−1 − 1, and
see what happens.

From the recurrence,

f(n) = 2f(n−1)+1 = 2(2n−1−1)+1 = 2n−1.

Implication: if there is EVER an n for which
f(n) = 2n− 1, then for all greater values of n, f
conforms to this rule.

This is the essence of proof by induction.

24

Proof by Induction

To prove by induction, we need to show two
things:

• We can get started (base case).

• Being true for k implies that it is true also
for k + 1.

Here again is the proof for TOH:

• For n = 1, f(1) = 1, so f(1) = 21 − 1.

• Assume f(k) = 2k − 1, for k < n.

– Then, from the recurrence we have

f(n) = 2f(n− 1) + 1

= 2(2n−1 − 1) + 1 = 2n − 1

– Thus, being true for k − 1 implies that it
is also true for k.

• Thus, we can conclude that the formula is
correct for all n ≥ 1.

Is this a good algorithm?

25

Lower Bound of a Problem

To decide if the algorithm is good, we need a
lower bound on the cost of the PROBLEM.

We can measure the lower bound (over all
possible algorithms) for the worst case, best
case, or average case.

Consider a graph of cost for each possible
algorithm.

• For a given problem size n, the graph shows
the costs for all problem instances of size n.

The worst case lower bound is the LEAST of
all the HIGHEST points on all the graphs.

AM is the set of algorithms within model M
that solve the problem.

Lower Bound on Problem P

= min
A∈AM

{max
I∈In

fA(I)}

26

Growth Rate vs. In

Note the important difference between a
growth rate graph for a given problem, and a
graph showing all the In’s (for a given n) of
that problem.

Examples: Consider the graphs for each of
these

• Find: Best, average, and worst cases as n
grows

• Find: Cost for all inputs of a given size n

• Findmax: Cost as n grows (same for best,
average, worst cases)

• Findmax: Cost for all inputs of a given size
n

The fact that (for some problems) different Is
in In can have different costs is the reason why
we must use the qualifier of “best” “worst” or
“average” cases.

27

Lower Bound (cont.)

Lower bounds are harder than upper bounds
because we must consider ALL of the possible
algorithms – including the ones we don’t know!

• Upper bound: How bad is the algorithm?

• Lower bound: How hard is the problem?

Lower bounds don’t give you a good algorithm.
They only help you know when to stop looking.

If the lower bound for the problem matches the
upper bound for the algorithm (within a
constant factor), then we know that we can
find an algorithm that is better only by a
constant factor.

Can a lower bound tell us if an algorithm is
NOT optimal?

28

Lower Bounds for TOH

Try #1: We must move each disk at least
twice, except for the largest we move once.

• f(n) = 2n− 1.

Is this a good match to the cost of our
algorithm?

Where is the problem: the lower bound or the
algorithm?

Insight #1: f(n) > f(n− 1).

• Seems obvious, but why?

• Is this true for all problems?

Try #2: To move the bottom disk to Peg 3,
we MUST move n− 1 disks to Peg 2. Then, we
MUST move n− 1 disks back to Peg 3.

f(n) ≥ 2f(n− 1) + 1.

Thus, TOH is optimal (for our model).

29

New Models

New model #1: We can move a stack of disks
in one move.

New model #2: Not all disks start on Peg 1.

30

Problem Solving Algorithm

If the upper and lower bounds match,
then stop,
else if close or problem isn’t important,

then stop,
else if model focuses on wrong thing,

then restate it,
else if the algorithm is too fat,

then generate slimmer algorithm,
else if lower bound is too weak,

then generate stronger bound.

Repeat until done.

31

Factorial Growth

Which function grows faster? f(n) = 2n or
g(n) = n!

How about h(n) = 22n?

n 1 2 3 4 5 6 7 8
g(n) n! 1 2 6 24 120 720 5040 40320
f(n) 2n 2 4 8 16 32 64 128 256
h(n) 22n 4 16 64 256 1024 4096 16384 65536

Consider the recurrences:

h(n) =

{
4 n = 1
4h(n− 1) n > 1

g(n) =

{
1 n = 1
ng(n− 1) n > 1

I hope your intuition tells you the right thing.

But, how do you PROVE it?

Induction? What is the base case?
32

Using Logarithms

n! ≥ 22n iff logn! ≥ log 22n = 2n. Why?

n! = n× (n− 1)× · · · ×
n

2
× (

n

2
− 1)× · · · × 2× 1

≥
n

2
×

n

2
× · · · ×

n

2
× 1× · · · × 1× 1

= (
n

2
)n/2

Therefore

logn! ≥ log(
n

2
)n/2 = (

n

2
) log(

n

2
).

Need only show that this grows to be bigger
than 2n.

(n
2) log(n

2) ≥ 2n
⇐⇒ log(n

2) ≥ 4
⇐⇒ n ≥ 32

So, n! ≥ 22n once n ≥ 32.

Now we could prove this with induction, using
32 for the base case.

• What is the tightest base case?

• How did we get such a big over-estimate?

33

Logs and Factorials

We have proved that n! ∈ Ω(22n).

We have also proved that logn! ∈ Ω(n logn).

From here, its easy to prove that
logn! ∈ O(n logn), so logn! = Θ(n logn).

This does not mean that n! = Θ(nn).

• Note that logn = Θ(logn2) but n 6= Θ(n2).

• The log function is a “flattener” when
dealing with asymptotics.

34

A Simple Sum

sum = 0; inc = 0;
for (i=1; i<=n; i++)

for (j=1; j<=i; j++) {
sum = sum + inc;
inc++;

}

Use summations to analyze this code fragment.
The number of assignments is:

2 +
n∑

i=1

(
i∑

j=1

2) = 2 +
n∑

i=1

2i = 2 + 2
n∑

i=1

i

Give a good estimate.

• Observe that the biggest term is 2+2n and
there are n terms, so its at most:

• Actually, most terms are much less, and its
a linear ramp, so a better estimate is:

Give the exact solution.

• Of course, we all know the closed form
solution for

∑n
i=1 i.

• And we should all know how to prove it
using induction.

• But where did it come from?

35

A Problem-Specific Approach

Observe that we can “pair up” the first and
last terms, the 2nd and (n− 1)th terms, and so
on. Each pair sums to:

The number of pairs is:

Thus, the solution is:

36

A Little More General

Since the largest term is n and there are n
terms, the summation is less than n2.

If we are lucky, the solution is a polynomial.

Guess: f(n) = c1n2 + c2n + c3.

f(0) = 0 so c3 = 0.

For f(1), we get c1 + c2 = 1.

For f(2), we get 4c1 + 2c2 = 3.

Setting this up as a system of 2 equations on 2
variables, we can solve to find that c1 = 1/2
and c2 = 1/2.

So, if it truely is a polynomial, it must be

f(n) = n2/2 + n/2 + 0 =
n(n + 1)

2
.

Use induction to prove. Why is this step
necessary?

Why is this not a universal approach to solving
summations?

37

An Even More General Approach

Subtract-and-Guess or Divide-and-Guess
strategies.

To solve sum f , pick a known function g and
find a pattern in terms of f(n)− g(n) or
f(n)/g(n).

Find the closed form solution for

f(n) =
n∑

i=1

i.

Examples: Try g1(n) = n; g2(n) = f(n− 1).

n 1 2 3 4 5 6 7 8
f(n) 1 3 6 10 15 21 28 36

g1(n) 1 2 3 4 5 6 7 8
f(n)/g1(n) 2/2 3/2 4/2 5/2 6/2 7/2 8/2 9/2

g2(n) 0 1 3 6 10 15 21 28
f(n)/g2(n) 3/1 4/2 5/3 6/4 7/5 8/6 9/7

What are the patterns?
f(n)
g1(n) =

f(n)
g2(n) =

38

Solving Summations (cont.)

Use algebra to rearrange and solve for f(n)

f(n)

n
=

n + 1

2

f(n)

f(n− 1)
=

n + 1

n− 1

39

Solving Summations (cont.)

f(n)

f(n− 1)
=

n + 1

n− 1

f(n)(n− 1) = (n + 1)f(n− 1)

f(n)(n− 1) = (n + 1)(f(n)− n)

nf(n)− f(n) = nf(n) + f(n)− n2 − n

2f(n) = n2 + n = n(n + 1)

f(n) =
n(n + 1)

2

Important Note: This is not a proof that
f(n) = n(n + 1)/2. Why?

40

Growth Rates

Two functions of n have different
growth rates if as n goes to infinity their ratio
either goes to infinity or goes to zero.

�

�����

�����

�����

�����

�	��

����

��
��

�
�������

���

�
 �	� ��

� ��� ��� ��� ���
��

��������� �"!$#&%'

�	��

����

�
 �$���(
��
���)�

�

�����

�����

*����

+����

�������

�������

�&�����

41

Estimating Growth Rates

Exact equations relating program operations to
running time require machine-dependent
constants.

Sometimes, the equation for exact running time
is complicated to compute.

Usually, we are satisfied with knowing an
approximate growth rate.

Example: Given two algorithms with growth
rate c1n and c22

n!, do we need to know the
values of c1 and c2?

Consider n2 and 3n. PROVE that n2 must
eventually become (and remain) bigger.

42

Proof by Contradiction

Assume there are some values for constants r
and s such that, for all values of n,

n2 < rn + s.

Then, n < r + s/n.

But, as n grows, what happens to s/n?

Since n grows toward infinity, the assumption
must be false.

43

Some Growth Rates

Since n2 grows faster than n,

• 2n2
grows faster than 2n.

• n4 grows faster than n2.

• n grows faster than
√

n.

• 2 logn grows no slower than logn.

Since n! grows faster than 2n,

• n!! grows faster than 2n!.

• 2n! grows faster than 22n
.

• n!2 grows faster than 22n.

•
√

n! grows faster than
√

2n.

• logn! grows no slower than n.

If f grows faster than g, then

• Must
√

f grow faster than
√

g?

• Must log f grow faster than log g?

logn is related to n in exactly the same way
that n is related to 2n.

• 2logn = n

44

Fibonacci Numbers

f(n) = f(n− 1) + f(n− 2) for n ≥ 2;
f(0) = f(1) = 1.

int Fibr(int n) {
if ((n <= 1) return 1; // Base case
return Fibr(n-1) + Fibr(n-2); // Recursive call

}

long Fibi(int n) {
long past, prev, curr;
past = prev = curr = 1; // curr holds Fib(i)
for (int i=2; i<=n; i++) { // Compute next value

past = prev; prev = curr; // past holds Fib(i-2)
curr = past + prev; // prev holds Fib(i-1)

}
return curr;

}

The cost of Fibi is easy to compute:

What about Fibr?

45

Analysis of Fibr

Use divide-and-guess with f(n− 1).

n 1 2 3 4 5 6 7
f(n) 1 2 3 5 8 13 21

f(n)/f(n− 1) 1 2 1.5 1.666 1.625 1.615 1.619

Following this out, it appears to settle to a
ratio of 1.618.

Assuming f(n)/f(n− 1) really tends to a fixed
value x, let’s verify what x must be.

f(n)

f(n− 2)
=

f(n− 1)

f(n− 2)
+

f(n− 2)

f(n− 2)
→ x + 1

For large n,

f(n)

f(n− 2)
=

f(n)

f(n− 1)

f(n− 1)

f(n− 2)
→ x2

46

Analysis of Fibr (cont.)

If x exists, then x2 − x− 1 → 0.

Using the quadratic equation, the only solution
greater than one is

x =
1 +

√
5

2
≈ 1.618.

What does this say about the growth rate of f?

47

Order Notation

little oh f(n) ∈ o(g(n)) < lim f(n)/g(n) = 0
big oh f(n) ∈ O(g(n)) ≤
Theta f(n) = Θ(g(n)) = f = O(g) and

g = O(f)
Big Omega f(n) ∈ Ω(g(n)) ≥
Little Omega f(n) ∈ ω(g(n)) > lim g(n)/f(n) = 0

I prefer “f ∈ O(n2)” to “f = O(n2)”

• While n ∈ O(n2) and n2 ∈ O(n2),
O(n) 6= O(n2).

Note: Big oh does not say how good an
algorithm is – only how bad it CAN be.

If A ∈ O(n) and B ∈ O(n2), is A better than B?

Perhaps... but perhaps better analysis will show
that A = Θ(n) while B = Θ(logn).

48

Limitations on Order Notation

Statement: Algorithm A’s resource
requirements grow slower than Algorithm B’s
resource requirements.

Is A better than B?

Potential problems:

• How big must the input be?

• Some growth rate differences are trivial

– Example: Θ(log2 n) vs. Θ(n1/10).

• It is not always practical to reduce an
algorithm’s growth rate

– Shaving a factor of n reduces cost by a
factor of a million for input size of a
million.

– Shaving a factor of log logn saves only a
factor of 4-5.

49

Practicality Window

In general:

• We have limited time to solve a problem.

• We have a limited input size.

Fortunately, algorithm growth rates are
USUALLY well behaved, so that Order
Notation gives practical indications.

50

Searching

Assumptions for search problems:

• Target is well defined.

• Target is fixed.

• Probes are accurate (hit or miss).

• Search domain is finite.

• We (can) remember all information
gathered during search.

We search for a record with a key.

51

A Search Model

Problem:

Given:

• A list L, of n elements

• A search key X

Solve: Identify one element in L which has key
value X, if any exist.

Model:

• The key values for elements in L are unique.

• Comparison determine <, =, >.

• Comparison is our only way to find ordering
information.

• Every comparison costs the same.

Goal: Solve the problem using the minimum
number of comparisons.

• Cost model: Number of comparisons.

• (Implication) Access to every item in L
costs the same (array).

Is this a reasonable model and goal?

52

Linear Search

General algorithm strategy: Reduce the
problem.

• Compare X to the first element.

• If not done, then solve the problem for
n− 1 elements.

Position linear_search(L, lower, upper, X) {
if L[lower] = X then

return lower;
else if lower = upper then

return -1;
else return linear_search(L, lower+1, upper, X);

}

What equation represents the worst case cost?

53

Worst Cost Upper Bound

f(n) =

{
1 n = 1
f(n− 1) + 1 n > 1

Reasonable to guess that f(n) = n.

Prove by induction:

Basis step: f(1) = 1, so f(n) = n when n = 1.

Induction hypothesis: For k < n, f(k) = k.

Induction step: From recurrence,

f(n) = f(n− 1) + 1

= (n− 1) + 1

= n

Thus, the worst case cost for n elements is
linear.

Induction is great for verifying a hypothesis.

54

Approach #2

What if we couldn’t guess a solution?

Try: Substitute and Guess.

• Iterate a few steps of the recurrence, and
look for a summation.

f(n) = f(n− 1) + 1

= {f(n− 2) + 1}+ 1

= {{f(n− 3) + 1}+ 1}+ 1}

Now what? Guess f(n) = f(n− i) + i.

When do we stop? When we reach a value for
f that we know.

f(n) = f(n− (n− 1))+ n− 1 = f(1)+ n− 1 = n

Now, go back and test the guess using
induction.

55

Approach #3

Guess and Test: Guess the form of the
solution, then solve the resulting equations.

Guess: f(n) is linear.

f(n) = rn + s for some r, s.

What do we know?

• f(1) = r(1) + s = r + s = 1.

• f(n) = r(n) + s = r(n− 1) + s + 1.

Solving these two simultaneous equations,
r = 1, s = 0.

Final form of guess: f(n) = n.

Now, prove using induction.

56

Lower Bound on Problem

Theorem: Lower bound (in the worst case) for
the problem is n comparisons.

Proof: By contradiction.

• Assume an algorithm A exists that requires
only n− 1 (or less) comparisons of X with
elements of L.

• Since there are n elements of L, A must
have avoided comparing X with L[i] for
some value i.

• We can feed the algorithm an input with X
in position i.

• Such an input is legal in our model, so the
algorithm is incorrect.

Is this proof correct?

57

Fixing the Proof

Error #1: An algorithm need not consistently
skip position i.

Fix:

• On any given run of the algorithm, some
element i gets skipped.

• It is possible that X is in position i at that
time.

Error #2: Must allow comparisons between
elements of L.

Fix:

• Include the ability to “preprocess” L.

• View L as initially consisting of n “pieces.”

• A comparison can join two pieces (without
involving X).

• The total of these comparisons is k.

• We must have at least n− k pieces.

• A comparison of X against a piece can
reject the whole piece.

• This requires n− k comparisons.

• The total is still at least n comparisons.

58

Average Cost

How many comparisons does linear search do
on average?

We must know the probability of occurrence for
each possible input.

(Must X be in L?)

Ignore everything except the position of X in L.
Why?

What are the n + 1 events?

P(X /∈ L) = 1−
n∑

i=1

P(X = L[i]).

59

Average Cost Equation

Let ki = i be the number of comparisons when
X = L[i].

Let k0 = n be the number of comparisons when
X /∈ L.

Let pi be the probability that X = L[i].

Let p0 be the probability that X /∈ L[i] for any i.

f(n) = k0p0 +
n∑

i=1

kipi

= np0 +
n∑

i=1

ipi

What happens to the equation if we assume all
pi’s are equal (except p0)?

60

Computation

f(n) = p0n +
n∑

i=1

ip

= p0n + p
n∑

i=1

i

= p0n + p
n(n + 1)

2

= p0n +
1− p0

n

n(n + 1)

2

=
n + 1 + p0(n− 1)

2

Depending on the value of p0,
n+1
2 ≤ f(n) ≤ n.

61

Problems with Average Cost

• Average cost is usually harder to determine
than worst cost.

• We really need also to know the variance
around the average.

• Our computation is only as good as our
knowledge (guess) on distribution.

62

Sorted List

Change the model: Assume that the elements
are in ascending order.

Is linear search still optimal? Why not?

Optimization: Use linear search, but test if the
element is greater than X. Why?

Observation: If we look at L[5] and find that X
is bigger, then we rule out L[1] to L[4] as well.

More is Better: If we look at L[n] and find that
X is bigger, then we know in one test that X is
not in L. Great!

• What is wrong here?

63

Jump Search

What is the right amount to jump?

Algorithm:

• From the beginning of the array, start
making jumps of size k, checking L[k] then
L[2k], and so on.

• So long as X is greater, keep jumping by k.

• If X is less, then use linear search on the
last sublist of k elements.

This is called Jump Search.

64

Analysis of Jump Search

If mk ≤ n < (m + 1)k, then the total cost is at
most m + k − 1 3-way comparisons.

f(n, k) = m + k − 1 =
⌊
n

k

⌋
+ k − 1.

What should k be?

min
1≤k≤n

{⌊
n

k

⌋
+ k − 1

}

Take the derivative and solve for f ′(x) = 0 to
find the minimum.

This is a minimum when k =
√

n.

What is the worst case cost?

Roughly 2
√

n.

65

Lessons

We want to balance the work done while
selecting a sublist with the work done while
searching a sublist.

In general, make subproblems of equal effort.

This is an example of divide and conquer

What if we extend this to three levels?

• We’d jump to get a sublist, then jump to
get a sub-sublist, then do sequential search

• While it might make sense to do a two-level
algorithm (like jump search), it almost never
makes sense to do a three-level algorithm

• Instead, we resort to recursion

66

Binary Search

int binary(int K, int* array, int left, int right) {
// Return position of element (if any) with value K
int l = left-1;
int r = right+1; // l and r beyond array bounds
while (l+1 != r) { // Stop when l and r meet

int i = (l+r)/2; // Middle of remaining subarray
if (K < array[i]) r = i; // In left half
if (K == array[i]) return i; // Found it
if (K > array[i]) l = i; // In right half

}
return UNSUCCESSFUL; // Search value not in array

}

67

Worst Case for Binary Search

f(n) =

{
1 n = 1
f(bn/2c) + 1 n > 1

Since n/2 ≥ bn/2c, and since f(n) is assumed to
be non-decreasing (why?), we can use

f(n) = f(n/2) + 1.

Alternatively, assume n is a power of 2.

Expand the recurrence:

f(n) = f(n/2) + 1

= {f(n/4) + 1}+ 1

= {{f(n/8) + 1}+ 1}+ 1

Collapse to

f(n) = f(n/2i) + i = logn + 1

Now, prove it with induction.

f(n/2) + 1 = (log(n/2) + 1) + 1

= (logn− 1 + 1) + 1

= logn + 1 = f(n).

68

Lower Bound

How does n compare to
√

n compare to logn?

Can we do better?

Model an algorithm for the problem using a
decision tree.

• Consider only comparisons with X.

• Branch depending on the result of
comparing X with L[i].

• There must be at least n nodes in the tree.
(Why?)

• Some path must be at least logn deep.
(Why?)

Thus, binary search has optimal worst cost
under this model.

69

Average Cost of Binary Search

An estimate given these assumptions:

• X is in L.

• X is equally likely to be in any position.

• n = 2k for some non-negative integer k.

Cost?

• One chance to hit in one probe.

• Two chances to hit in two probes.

• 2i−1 to hit in i probes.

• i ≤ k.

What is the equation?

70

Average Cost (cont.)

1× 1 + 2× 2 + 3× 4 + ... + logn2logn−1

n

=
1

n

logn∑
i=1

i2i−1

k∑
i=1

i2i−1 =
k−1∑
i=0

(i + 1)2i

=
k−1∑
i=0

i2i +
k−1∑
i=0

2i

= 2
k−1∑
i=0

i2i−1 + 2k − 1

= 2
k∑

i=1

i2i−1 − k2k + 2k − 1

Now what? Subtract from the original!

k∑
i=1

i2i−1 = k2k − 2k + 1 = (k − 1)2k + 1.

71

Result

1

n

logn∑
i=1

i2i−1 =
(logn− 1)2logn + 1

n

=
n(logn− 1) + 1

n
≈ logn− 1

So the average cost is only about one or two
comparisons less than the worst cost.

If we want to relax the assumption that n = 2k,
we get:

f(n) =



0 n = 0
1 n = 1
dn
2e−1
n f(dn

2e − 1) + 1
n0 +

bn
2c
n f(bn

2c) + 1 n > 1

72

Average Cost Lower Bound

Use decision trees again.

Total Path Length: Sum of the level for each
node.

The cost of an outcome is the level of the
corresponding node plus 1.

The average cost of the algorithm is the
average cost of the outcomes (total path
length/n).

What is the tree with the least average depth?

This is equivalent to the tree that corresponds
to binary search.

Thus, binary search is optimal.

73

Changing the Model

What are factors that might make binary
search either unusable or not optimal?

• We know something about the distribution.

• Data are not sorted. (Preprocessing?)

• Data sorted, but probes not all the same
cost (not an array).

• Data are static, know all search requests in
advance.

74

Interpolation Search

(Also known as Dictionary Search)

Search L at a position that is appropriate to
the value of X.

p =
X − L[1]

L[n]− L[1]

Repeat as necessary to recalculate p for future
searches.

75

Quadratic Binary Search

This is easier to analyze:

Compute p and examine L[dpne].

If X < L[dpne] then sequentially probe

L[dpn− i
√

ne], i = 1,2,3, ...

until we reach a value less than or equal to X.

Similar for X > L[dpne].

We are now within
√

n positions of X.

ASSUME (for now) that this takes a constant
number of comparisons.

Now we have a sublist of size
√

n.

Repeat the process recursively.

What is the cost?

76

QBS Probe Count

Cost is Θ(log logn) IF the number of probes on
jump search is constant.

Number of comparisons needed is:
√

n∑
i=1

iP(need exactly i probes)

= 1P1 + 2P2 + 3P3 + · · ·+
√

nP√n

This is equal to:
√

n∑
i=1

P(need at least i probes)

= 1 + (1−P1) + (1−P1 −P2) + · · ·+ P√n

= (P1 + ... + P√n) + (P2 + ... + P√n) +

(P3 + ... + P√n) + · · ·
= 1P1 + 2P2 + 3P3 + · · ·+

√
nP√n

77

QBS Probe Count (cont.)

We require at least two probes to set the
bounds, so cost is:

2 +

√
n∑

i=3

P(need at least i probes)

Useful fact (Čebyšev’s Inequality):

The probability that we need probe i times
(Pi) is:

Pi ≤
p(1− p)n

(i− 2)2n
≤

1

4(i− 2)2

since p(1− p) ≤ 1/4.

This assumes uniformly distributed data.

Final result:

2 +

√
n∑

i=3

1

4(i− 2)2
≈ 2.4112

Is this better than binary search?

What happened to our proof that binary search
is optimal?

78

Comparison

Let’s compare log logn to logn.

n logn log logn Diff
16 4 2 2
256 8 3 2.7
64K 16 4 4
232 32 5 6.4

Now look at the actual comparisons used.

• Binary search ≈ logn− 1

• Interpolation search ≈ 2.4 log logn

n logn− 1 2.4 log logn Diff
16 3 4.8 worse
256 7 7.2 ≈ same
64K 15 9.6 1.6
232 31 12 2.6

Not done yet! This is only a count of
comparisons!

• Which is more expensive: calculating the
midpoint or calculating the interpolation
point?

Which algorithm is dependent on good
behavior by the input?

79

Hashing

Assume we can preprocess the data.

• How should we do it to minimize search?

Put record with key value X in L[X].

If the range is too big, then use hashing.

How much can we get from this?

Simplifying assumptions:

• We hash to each slot with equal probability

• We probe to each (new) slot with equal
probability

• This is called uniform hashing

80

Hashing Insertion Analysis

Define α = N/M (Records stored/Table size)

Insertion cost: sum of costs times probabilities
for looking at 1, 2, ..., N + 1 slots

• Probability of collision on insertion?
α = N/M

• Probability of initial collision and another
collision when probing? α2

i=N∑
i=0

i(
N

M
)iM −N

M

Simpler formulation: Always look at least once,
look at least twice with probability α, look at
least three times with probability α2, etc.

∞∑
i=0

αi = 1 + α + α2 · · · =
1

1− α

How does this grow?

81

Searching Linked Lists

Assume the list is sorted, but is stored in a
linked list.

Can we use binary search?

• Comparisons?

• “Work?”

What if we add additional pointers?

82

“Perfect” Skip List

62

head

0

5 25 30 58 6931

(a)

42 62

5 25 30 58

0

1

6931

head

(b)

42 62

5 25 30 58

0

1

2

6931

head

(c)

42

83

Building a Skip List

Pick the node size at random (from a suitable
probability distribution).

head

(a) (b)

(c) (d)

(e)

head head

5 10 20

head

2

2 5 10 20 30

10 2010

5 10 20

head

84

Skip List Analysis

What distribution do we want for the node
depths?

int randomLevel(void) { // Exponential distribution
for (int level=0; Random(2) == 0; level++); // No-op
return level;

}

What is the worst cost to search in the
“perfect” Skip List?

What is the average cost to search in the
“perfect” Skip List?

What is the cost to insert?

What is the average cost in the “typical” Skip
List?

How does this differ from a BST?

• Simpler or more complex?

• More or less efficient?

• Which relies on data distribution, which on
basic laws of probability?

85

Other Types of Search

• Nearest neighbor (if X not in L).

• Exact Match Query.

• Range query.

• Multi-dimensional search.

• Is L static?

Is linear search on a sorted list ever better than
binary search?

86

Selection

How can we find the ith largest value

• in a sorted list?

• in an unsorted list?

Can we do better with an unsorted list than to
sort it?

Assumption: Elements can be ranked.

87

Properties of Relationships

Partial Order: Given a set S and a binary
operator R, R defines a partial order on S if R
is:

• Antisymmetric: Whenever aRb and bRa,
then a = b, for all a, b ∈ S.

• Transitive: Whenever aRb and bRc, then
aRc, for all a, b, c ∈ S.

Think of a relationship as a set of tuples.

• A tuple is in the set (in the relation) iff the
relation holds on that tuple.

Example: S is Integers, R is <.

Example: S is the power set of {1,2,3}, R is
subset.

A partial order is also called a poset.

If every pair of elements in S is relatable by R,
then we have a linear order.

88

General Model

For all of our problems on Selection and
Sorting:

• The poset has a linear ordering. (Usually
natural numbers and a relationship of ≤.)

• Cost measure is the number of 3-way
element-element comparisons.

Selection problems:

• Find the max or min.

• Find the second largest.

• Find the median.

• Find the ith largest.

• Find several ranks simultaneously.

89

Finding the Maximum

int Find_max(int *L, int low, int high) {

max = low;

for(i=low+1; i<= high; i++)

if(L[i] > L[max])

max = i;

return max;

}

What is the cost?

Is this optimal?

90

Proof of Lower Bound

Try #1:

• The winner must compare against all other
elements, so there must be n− 1
comparisons.

Try #2:

• Only the winner does not lose.

• There are n− 1 losers.

• A single comparison generates (at most)
one (new) loser.

• Therefore, there must be n−1 comparisons.

Alternative proof:

• To find the max, we must build a poset
having one max and n− 1 losers, starting
from a poset of n singletons.

• We wish to connect the elements of the
poset with the minimum number of links.

• This requires at least n− 1 links.

• A comparison provides at most one new
link.

91

Average Cost

What is the average cost for Find_max?

• Since it always does the same number of
comparisons, clearly n− 1 comparisons.

How many assignments to max does it do?

Ignoring the actual values in L, there are n!
permutations for the input.

Find_max does an assignment on the ith
iteration iff L[i] is the biggest of the first i
elements.

Since this event does happen, or does not
happen:

• Given no information about distribution, the
probability of an assignment after each
comparison is 50%.

92

Average Number of Assignments

Find_max does an assignment on the ith
iteration iff L[i] is the biggest the first i
elements.

Assuming all permutations are equally likely,
the probability of this being true is 1/i.

1 +
n∑

i=2

1

i
× 1 =

n∑
i=1

1

i
.

This sum generates the nth
harmonic number: Hn.

93

Technique

Since i ≤ 2dlog ie, 1/i ≥ 1/2dlog ie.

Thus, if n = 2k

H2k = 1 +
1

2
+

1

3
+ ... +

1

2k

≥ 1 +
1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8

+... +
1

2k

= 1 +
1

2
+

2

4
+

4

8
+ ...

2k−1

2k

= 1 +
k

2
.

Using similar logic, H2k ≤ k + 1
2k.

Thus, Hn = Θ(logn).

More exactly, Hn is close to lnn.

94

Variance

How “reliable” is the average?

• How much will a given run of the program
deviate from the average?

Variance: For runs of the program, average
square of differences.

Standard deviation: Square root of variance.

From Čebyšev’s Inequality, 75% of the
observations fall within 2 standard deviations of
the average.

For Find_max, the variance is

Hn −
π2

6
= lnn−

π2

6

The standard deviation is thus about
√

lnn.

• So, 75% of the observations are between
lnn− 2

√
lnn and lnn + 2

√
lnn.

• Is this a narrow spread or a wide spread?

95

Finding the Second Best

In a single-elimination tournament, is the
second best the one who loses in the finals?

Simple algorithm:

• Find the best.

• Discard it.

• Now, find the second best of the n− 1
remaining elements.

Cost?

Is this optimal?

Lower bound:

• Anyone who lost to anyone who is not the
max cannot be second.

• So, the only candidates are those who lost
to max.

• Find_max might compare max to n− 1
others.

• Thus, we might need n− 2 additional
comparisons to find second.

• Wrong!

96

Lower Bound for Second

The previous argument exhibits the
necessity fallacy:

• Our algorithm does something, therefore all
algorithms solving the problem must do the
same.

Alternative: Divide and conquer

• Break the list into two halves.

• Run Find_max on each half.

• Compare the winners.

• Run Find_max on the winner’s half for
second.

• Compare that second to second winner.

Cost: d3n/2e − 2.

Is this optimal?

What if we break the list into four pieces?
Eight?

97

Binomial Trees

Pushing this idea to its extreme, we want each
comparison to be between winners of equal
numbers of comparisons.

The only candidates for second are losers to
the eventual winner.

A binomial tree of height m has 2m nodes
organized as:

• a single node, if m = 0, or

• two height m− 1 binomial trees with one
tree’s root becoming a child of the other.

Algorithm:

• Build the tree.

• Compare the dlogne children of the root for
second.

Cost?

98

Binomial Tree Representation

We could store the binomial tree as an explicit
tree structure.

We can also store the binomial tree implicitly:
In an array.

Assume two trees, each with 2k nodes, are in
the array as:

• First tree in positions 1 to 2k.

• Second tree in positions 2k + 1 to 2k+1.

• The root of a subtree is in the final array
position for that subtree.

To join:

• Compare the roots of the subtrees.

• If necessary, swap subtrees so larger root
element is second subtree.

Trades space for time.

99

Adversarial Lower Bounds Proof

Many lower bounds proofs use the concept of
an adversary.

The adversary’s job is to make an algorithm’s
cost as high as possible.

The algorithm asks the adversary for
information about the input.

The adversary may never lie.

Imagine that the adversary keeps a list of all
possible inputs.

• When the algorithm asks a question, the
adversary answers, and crosses out all
remaining inputs inconsistent with that
answer.

• The adversary is permitted to give any
answer that is consistent with at least one
remaining input.

Examples:

• Hangman.
• Search an unordered list.

100

Lower Bound for Second Best

At least n− 1 values must lose at least once.

• At least n− 1 compares.

In addition, at least k − 1 values must lose to
the second best.

• I.e., k direct losers to the winner must be
compared.

There must be at least n + k − 2 comparisons.

How low can we make k?

101

Adversarial Lower Bound

Call the strength of element L[i] the number
of elements L[i] is (known to be) bigger than.

If L[i] has strength a, and L[j] has strength b,
then the winner has strength a + b + 1.

What should the adversary do?

• Minimize the rate at which any element
improves.

• Do this by making the stronger element
always win.

• Is this legal?

102

Lower Bound (Cont.)

What should the algorithm do?

If a ≥ b, then 2a ≥ a + b.

• From the algorithm’s point of view, the
best outcome is that an element doubles in
strength.

• This happens when a = b.

• All strengths begin at zero, so the winner
must make at least k comparisons for
2k−1 < n ≤ 2k.

Thus, there must be at least n + dlogne − 2
comparisons.

103

Find Min and Max

Find them independantly: 2n− 2.

• Can easily modify to get 2n− 3.

Should be able to do better(?)

Try divide and conquer.

Find_Max_Min(ELEM *L, int lower, int upper) {
if (upper == lower) return lower, lower; // n=1
if (upper == lower+1) // n=2

return max(L[upper], L[lower]),
min(L[upper], L[lower]); // Only 1 compare

mid = (lower + upper)/2; // n>2
max1, min1 = Find_Max_Min(L, lower, mid);
max2, min2 = Find_Max_Min(L, mid+1, upper);
return max(L[max1], L[max2]), min(L[min1], L[min2]);

}

Recurrence:

f(n) =

{
2f(n/2) + 2 n > 2
1 n = 2

104

Solving the Recurrence

Assume n = 2k.

Let’s expand the recurrence a bit.

f(n) = 2f(n/2) + 2

= 2[2f(n/4) + 2] + 2

= 4f(n/4) + 4 + 2

= 4[2f(n/8) + 2] + 4 + 2

= 8f(n/8) + 8 + 4 + 2

= 2if(n/2i) +
i∑

j=1

2j

= 2k−1f(n/2k−1) +
k−1∑
j=1

2j

= 2k−1f(2) +
k−1∑
j=1

2j

= 2k−1 +
k−1∑
j=1

2j

= n/2 + 2k − 2

= 3n/2− 2

105

Looking Closer

But its not always true that n = 2k.

The true cost recurrence is:

f(n) =


0 n = 1
1 n = 2
f(bn/2c) + f(dn/2e) + 2 n > 2

Here is what really happens:

n 2 3 4 5 6 7 8 9 10 11
f(n) 1 2 4 6 8 9 10 12 14 16
3n/2− 2 1 2.5 4 5.5 7 8.5 10 11.5 13 14.5

The true cost for f(n) ranges between 3n/2− 2
and 5n/3− 2.

• For what sort of input does the algorithm
work best?

106

Finding a Better Algorithm

What is the cost with six values?

What if we divide into a group of 4 and a
group of 2?

With divide and conquer, we seek to minimize
the work, not necessarily balance the input
sizes.

When does the algorithm do its best?

What about 12? 24?

Lesson: For divide and conquer, pay attention
to what happens for small n.

107

Algorithms from Recurrences

What does this model?

f(n) =

 0 n = 1
1 n = 2
min1≤k≤n−1{f(k) + f(n− k)}+ 2 n > 2

n 1 2 3 4 5 6 7 8
3 3 3
4 5 4 5
5 7 6 6 7
6 9 7 8 7 9
7 11 9 9 9 9 11
8 13 10 11 10 11 10 13
9 15 12 12 12 12 12 12 15

k = 2 looks promising.

f(n) =


0 n = 1
1 n = 2
f(2) + f(n− 2) + 2 n > 2

Cost:

What is the corresponding algorithm?

108

The Lower Bound

Is d3n/2e − 2 optimal?

Consider all states that a successful algorithm
must go through: The state space lower
bound.

At any given instant, track the following four
categories:

• Novices: not tested.

• Winners: Won at least once, never lost.

• Losers: Lost at least once, never won.

• Moderates: Both won and lost at least
once.

Who can get ignored?

What is the initial state?

What is the final state?

How is this relevant?

109

Lower Bound (cont.)

Every algorithm must go from (n,0,0,0) to
(0,1,1, n− 2).

There are 10 types of comparison.

Comparing with a moderate cannot be more
efficient than other comparisons, so ignore
them.

If we are in state (i, j, k, l) and we have a
comparison, then:
N : N (i− 2, j + 1, k + 1, l)
W : W (i, j − 1, k, l + 1)
L : L (i, j, k − 1, l + 1)
L : N (i− 1, j + 1, k, l)

or (i− 1, j, k, l + 1)
W : N (i− 1, j, k + 1, l)

or (i− 1, j, k, l + 1)
W : L (i, j, k, l)

or (i, j − 1, k − 1, l + 2)

110

Adversarial Argument

What should an adversary do?

• Comparing a winner to a loser is of no
value.

Only the following five transitions are of
interest:
N : N (i− 2, j + 1, k + 1, l)
L : N (i− 1, j + 1, k, l)
W : N (i− 1, j, k + 1, l)
W : W (i, j − 1, k, l + 1)
L : L (i, j, k − 1, l + 1)

Only the last two types increase the number of
moderates, so there must be n− 2 of these.

The number of novices must go to 0, and the
first is the most efficient way to do this: dn/2e
are required.

111

Finding the ith Best

We need to find the following poset:

...

... i-1

n-i

We don’t care about the relative order within
the upper and lower groups.

Can we do better than sorting? (Θ(n logn))

Can we tighten the lower bound beyond n?

What if we want to find the median element?

112

Splitting a List

Given an arbitrary element, partition the list
into those elements less and those elements
greater.

// Initially, l and r are one position to left and
// right of the subarray, respectively
int partition(Elem A[], int l, int r, Elem pivot) {

do { // Move bounds inward to meet
while (A[++l] < pivot); // Move l right and
while ((l < r) && (A[--r] > pivot)); // r left
swap(A, l, r); // Swap values

} while (l < r); // Stop when they cross
return l; // Return first position on right

}

If the pivot is ith best, we are done.

If not, solve the subproblem recursively.

113

Cost

What is the worst case cost of this algorithm?

Under what circumstances?

What is the average case cost if we pick the
pivots at random?

Let f(n, i) be the average time to find the ith
best of n elements.

• Array bounds go from 1 to n

• Call j the position of the pivot

f(n, i) = (n− 1) +
1

n

n∑
j=i+1

f(j − 1, i) +
1

n
0

+
1

n

i−1∑
j=1

f(n− j, i− j).

Let f(n) be the cost averaged over all i.

f(n) =
1

n

n∑
i=1

f(n, i).

Note: Even if we just want to analyze for
median-finding, still need to be able to solve for
arbitrary i on recursive calls.

114

Technique

nf(n) =
n∑

i=1

f(n, i)

= n2 − n +
1

n

n∑
i=1


n∑

j=i+1

f(j − 1, i)+

i−1∑
j=1

f(n− j, i− j)

 .

It turns out that the two double sums are the
same (just going from different directions).

nf(n) = n2 − n +
2

n

n−1∑
j=1

j∑
i=1

f(j, i)

= n2 − n +
2

n

n−1∑
j=1

jf(j)

115

Technique (cont.)

Therefore,

n2f(n) = n3 − n2 + 2
n−1∑
j=1

jf(j).

This is an example of a full history recurrence.

116

Solving the Recurrence

If we subtract the appropriate form of f(n− 1),
most of the terms will cancel out.

n2f(n)− (n− 1)2f(n− 1)

= n3 − n2 + 2
n−1∑
j=1

jf(j)

−(n− 1)3 + (n− 1)2 − 2
n−2∑
j=1

jf(j)

= 3n2 − 5n + 2 + 2(n− 1)f(n− 1)

⇒ n2f(n) = (n2 − 1)f(n− 1) + 3n2 − 5n + 2.

Estimate:

n2f(n) = (n2 − 1)f(n− 1) + 3n2 − 5n + 2

< n2f(n− 1) + 3n2

⇒ f(n) < f(n− 1) + 3

⇒ f(n) < 3n

Therefore, f(n) is in O(n).

Does this mean that the worst case is linear?
117

Improving the Worst Case

Want worst case linear algorithm.

Goal: Pick a pivot that guarentees discarding a
fixed proportion of the elements.

Can’t just choose a pivot at random.

Median would be ideal – too expensive.

Choose a constant c, pick the median of a
sample of size n/c elements.

Will discard at least n/2c elements.

118

Selecting an Approximate Median

Algorithm:

• Choose the n/5 medians for groups of 5
elements of L.

• Recursively, select the median of the n/5
elements.

• Use SPLIT to partition the list into large
and small elements around the “median.”

• For 5, discard at least 2

• For 15, discard at least 5

• For 25, discard at least 8

• In general, discard at least (3n + 5)/10

119

Constructive Induction

Is the following recurrence linear?

f(n) ≤ f(dn/5e) + f(d(7n− 5)/10e) + 6dn/5e+ n− 1.

To answer this, assume it is true for some
constant r such that f(n) ≤ rn for all n greater
than some bound.

f(n) ≤ f(d
n

5
e) + f(d

7n− 5

10
e) + 6d

n

5
e+ n− 1

≤ r(
n

5
+ 1) + r(

7n− 5

10
+ 1) + 6(

n

5
+ 1) + n− 1

≤ (
r

5
+

7r

10
+

11

5
)n +

3r

2
+ 5

≤
9r + 22

10
n +

3r + 10

2
≤ rn.

Try r = 1: 3.1n + 7.5 ≤ n which doesn’t work.

Try r = 23: Get 22.9n + 39.5 ≤ 23n.

This is true for n ≥ 395.

Thus, we can use induction to prove that,

∀n ≥ 395, f(n) ≤ 23n.

This algorithm is not practical. Better to rely
on “luck.”

120

Changing the Model

What if we settle for the “approximate best?”

Types of guarentees, given that the algorithm
produces X and the best is Y :

1. X = Y .

2. X’s rank is “close to” Y ’s rank:

rank(X) ≤ rank(Y) + “small”.

3. X is “usually” Y .

P(X = Y) ≥ “large”.

4. X’s rank is “usually” “close” to Y ’s rank.

We often give such algorithms names:

1. Exact or deterministic algorithm.

2. Approximation algorithm.

3. Probabilistic algorithm.

4. Heuristic.

We can also sacrifice reliability for speed:

1. We find the best, “usually” fast.

2. We find the best fast, or we don’t get an
answer at all (but fast).

121

Examples for Findmax

Choose m elements at random, and pick the
best.

• For large n, if m = logn, the answer is
pretty good.

• Cost is m− 1.

• Rank is mn
m+1.

122

Probabilistic Algorithms

Probabilistic algorithms include steps that are
affected by random events.

Problem: Pick one number in the upper half of
the values in a set.

1. Pick maximum: n− 1 comparisons.

2. Pick maximum from just over 1/2 of the
elements: n/2 comparisons.

Can we do better? Not if we want a
guarantee.

123

Probabilistic Algorithm

Pick 2 numbers and choose the greater.

This will be in the upper half with probability
3/4.

Not good enough? Pick more numbers!

For k numbers, greatest is in upper half with
probability 1− 2−k.

Monte Carlo Algorithm: Good running time,
result not guaranteed.

Las Vegas Algorithm: Result guaranteed, but
not the running time.

124

Sorting

Initial model:

• Sort key has a linear order (comparable).

• We have an array of elements.

• We wish to sort the elements in the array.

• We get information about elements only by
comparison of two elements.

• We can preserve order information only by
swapping a pair of elements.

To simplify analysis:

• Assume all elements are unique.

• For analysis purposes, consider the input to
be a permutation of the values 1 to n.

What if the ALGORITHM could make this
assumption?

125

Swap Sorts

Repeatedly scan input, swapping any
out-of-order elements.

Bubble sort: O(n2) in worst case.

Inversions of an element: the number of
smaller elements to the right of the element.

The sum of inversions for all elements is the
number of swaps required by bubblesort.

ANY algorithm that removes one inversion per
swap requires at least this many swaps.

Worst number of inversions:

Best number of inversions:

Average number of inversions:

• Note that the sum of the total inversions for
any permutation and its reverse is n(n−1)

2 .

• Alternative view: every one of the n(n−1)
2

possible inversions occurs in a given
permutation or its reverse.

126

Heap Sort

Heap: complete binary tree with the value of
any node at least as large as its two children.

Algorithm:

• Build the heap.

• Repeat n times:

– Remove the root.

– Repair the heap.

This gives us list in reverse sorted order.

Since the heap is a complete binary tree, it can
be stored in an array.

To delete max element:

• Swap the last element in the heap with the
first (root).

• Repeatedly swap the placeholder with larger
of its two children until done.

127

Building the heap

To build a heap, first heapify the two subheaps,
then push down the root to its proper position.

Cost:

f(n) ≤ 2f(n/2) + 2 logn.

Alternatively: Start at first internal node and,
moving up the array, siftdown each element.

Cost:

f(n) =
logn∑
i=1

(i− 1)
n

2i

=
n

2

logn−1∑
i=1

i

2i

< 2
n

2
= n.

128

Quicksort

Algorithm:

• Pick a pivot value.

• Split the array into elements less than the
pivot and elements greater than the pivot.

• Recursively sort the sublists.

Worst case:

Pick the pivot at random, so that no particular
input has bad performance.

129

Quicksort Average Cost

f(n) =

{
0 n ≤ 1
n− 1 + 1

n

∑n−1
i=0(f(i) + f(n− i− 1)) n > 1

Since the two halves of the summation are
identical,

f(n) =

{
0 n ≤ 1

n− 1 + 2
n

∑n−1
i=0 f(i) n > 1

Multiplying both sides by n yields

nf(n) = n(n− 1) + 2
n−1∑
i=0

f(i).

130

Average Cost (cont.)

Get rid of the full history by subtracting nf(n)
from (n + 1)f(n + 1)

nf(n) = n(n− 1) + 2
n−1∑
i=1

f(i)

(n + 1)f(n + 1) = (n + 1)n + 2
n∑

i=1

f(i)

(n + 1)f(n + 1)− nf(n) = 2n + 2f(n)

(n + 1)f(n + 1) = 2n + (n + 2)f(n)

f(n + 1) =
2n

n + 1
+

n + 2

n + 1
f(n).

131

Average Cost (cont.)

Note that 2n
n+1 ≤ 2 for n ≥ 1. Expanding the

recurrence, we get

f(n+1) ≤ 2 +
n + 2

n + 1
f(n)

= 2 +
n + 2

n + 1

(
2 +

n + 1

n
f(n− 1)

)
= 2 +

n + 2

n + 1

(
2 +

n + 1

n

(
2 +

n

n− 1
f(n− 2)

))
= 2 +

n + 2

n + 1

(
2 + · · ·+

4

3
(2 +

3

2
f(1))

)
= 2

(
1 +

n + 2

n + 1
+

n + 2

n + 1

n + 1

n
+ · · ·

+
n + 2

n + 1

n + 1

n
· · ·

3

2

)
= 2

(
1 + (n + 2)

(
1

n + 1
+

1

n
+ · · ·+

1

2

))
= 2 + 2(n + 2) (Hn+1 − 1)

= Θ(n logn).

132

Lower Bound for Sorting

What is the smallest number of comparisons
needed to sort n values?

Clearly, sorting is as hard as finding the min
and max element: d3n/2e − 2.

• Why?

Information theory says that, if an algorithm
uses only binary decisions to distinguish
between n possibilities, then it must use at
least logn such decisions on average.

How is this relevant?

There are n! permutations to the input array.

So, by information theory, we need at least
logn! = Θ(n logn) comparisons.

Using the decision tree model, what is the
average depth of a node?

This is also Θ(logn!).

133

Linear Insert Sort

Put the element i into a sorted list of the first
i− 1 elements.

Worst case cost:

Best case cost:

Average case cost:

What if we use binary search? (This is called
binary insert sort.)

134

Optimal Sorting

If we count ONLY comparisons, binary insert
sort is pretty good.

What is the absolute minimum number of
comparisons needed to sort?

For n = 5, how many comparisons do we need
for binary insert sort?

Binary search is best for what values of n?

Binary search is worst for what values of n?

Build the following poset:

A
B

or

A

A

Now, put in the fifth element into the chain of
3.

Now, put in the off-element.

Total cost?

135

Ten Elements

Pair the elements: 5 comparisons.

Sort the winners of the pairings, using the
previous algorithm: 7 comparisons.

Now, all we need to do is to deal with the
original losers.

General algorithm:

• Pair up all the nodes with bn
2c comparisons.

• Recursively sort the winners.

• Fold in the losers.

136

Finishing the Sort

We will use binary insert to place the losers.

However, we are free to choose the best
ordering for inserting.

Recall that binary search is best for 2k − 1
items.

1

2

4

3

Pick the order of inserts to optimize the binary
searches.

• 3 (2 compares: size 3)

• 4 (2 compares: size 3)

• 1 (3 compares: size 7)

• 2 (3 compares: size 7)

We can form an algorithm: Binary Merge.

This sort is called merge insert sort

137

Optimal Sort Algorithm?

Merge insert sort is pretty good, but is it
optimal?

It does not match the information theoretic
lower bound for n = 12.

• Merge insert sort gives 30 instead of 29
comparison.

BUT, exhaustive search shows that the
information theoretic bound is an
underestimate for n = 12. 30 is best.

Call the optimal worst cost for n elements S(n).

• S(n + 1) ≤ S(n) + dlog(n + 1)e.
Otherwise, we would sort n elements and
binary insert the last.

• For all n and m,
S(n + m) ≤ S(n) + S(m) + M(m, n) for
M(m, n) the best time to merge two sorted
lists.

• For n = 47, we can do better by splitting
into pieces of size 5 and 42, then merging.

138

A Truly Optimal Algorithm

Pick the best set of comparisons for size 2.

Then for size 3, 4, 5, ...

Combine them together into one program with
a big case statement.

Is this an algorithm?

139

Numbers

Examples of problems:

• Raise a number to a power.

• Find common factors for two numbers.

• Tell whether a number is prime.

• Generate a random integer.

• Multiply two integers.

These operations use all the digits, and cannot
use floating point approximation.

For large numbers, cannot rely on hardware
(constant time) operations.

• Measure input size by number of binary
digits.

• Multiply, divide become expensive.

140

Analysis of Number Problems

Analysis problem: Cost may depend on
properties of the number other than size.

• It is easy to check an even number for
primeness.

If you consider the cost over all k-bit inputs,
cost grows with k.

Features:

• Arithmetical operations are not cheap.

• There is only one instance of value n.

• There are 2k instances of length k or less.

• The size (length) of value n is logn.

• The cost may decrease when n increases in
value, but generally increases when n
increases in size (length).

141

Exponentiation

How do we compute mn?

We could multiply n− 1 times.

Can we do better?

Approaches to divide and conquer:

• Relate mn to kn for k < m.

• Relate mn to mk for k < n.

If n is even, then mn = mn/2mn/2.

If n is odd, then mn = mbn/2cmbn/2cm.

Power(base, exp) {

if exp = 0 return 1;

half = Power(base, exp/2);

half = half * half;

if (odd(exp)) then half = half * base;

return half;

}

142

Analysis of Power

f(n) =

{
0 n = 1
f(bn/2c) + 1 + n mod 2 n > 1

Solution:

f(n) = blognc+ β(n)− 1

where β is the number of 1’s in the binary
representation of n.

How does this cost compare with the problem
size?

Is this the best possible? What if n = 15?

What if n stays the same but m changes over
many runs?

In general, finding the best set of
multiplications is expensive (probably
exponential).

143

Largest Common Factor

The largest common factor of two numbers is
the largest integer that divides both evenly.

Observation: If k divides n and m, then k
divides n−m.

So,
f(n, m) = f(n−m, n) = f(m, n−m) = f(m, n).

Observation: There exists k and l such that

n = km + l where m > l ≥ 0.

n = bn/mcm + n mod m.

So, f(n, m) = f(m, l) = f(m, n mod m).

f(n, m) =

{
n m = 0
f(m, n mod m) m > 0

int LCF(int n, int m) {

if (m == 0) return n;

return LCF(m, n % m);

}

144

Analysis of LCF

How big is n mod m relative to n?

n ≥ m ⇒ n/m ≥ 1

⇒ 2bn/mc > n/m

⇒ mbn/mc > n/2

⇒ n− n/2 > n−mbn/mc = n mod m

⇒ n/2 > n mod m

The first argument must be halved in no more
than 2 iterations.

Total cost:

145

Matrix Multiplication

Given: n× n matrices A and B.

Compute: C = A×B.

cij =
n∑

k=1

aikbkj.

Straightforward algorithm:

• Θ(n3) multiplications and additions.

Lower bound for any matrix multiplication
algorithm: Ω(n2).

146

Another Approach

Compute:

m1 = (a12 − a22)(b21 + b22)

m2 = (a11 + a22)(b11 + b22)

m3 = (a11 − a21)(b11 + b12)

m4 = (a11 + a12)b22

m5 = a11(b12 − b22)

m6 = a22(b21 − b11)

m7 = (a21 + a22)b11

Then:

c11 = m1 + m2 −m4 + m6

c12 = m4 + m5

c21 = m6 + m7

c22 = m2 −m3 + m5 −m7

7 multiplications and 18 additions/subtractions.

147

Strassen’s Algorithm

(1) Trade more additions/subtractions for
fewer multiplications in 2× 2 case.

(2) Divide and conquer.

In the straightforward implementation, 2× 2
case is:

c11 = a11b11 + a12b21

c12 = a11b12 + a12b22

c21 = a21b11 + a22b21

c22 = a21b12 + a22b22

Requires 8 multiplications and 4 additions.

148

Strassen’s Algorithm (cont)

Divide and conquer step:

Assume n is a power of 2.

Express C = A×B in terms of n
2 ×

n
2 matrices.

By Strassen’s algorithm, this can be computed
with 7 multiplications and 18
additions/subtractions of n/2× n/2 matrices.

Recurrence:

T (n) = 7T (n/2) + 18(n/2)2

T (n) = Θ(nlog2 7) = Θ(n2.81).

Current “fastest” algorithm is Θ(n2.376)

Open question: Can matrix multiplication be
done in O(n2) time?

149

Divide and Conquer Recurrences

These have the form:

T (n) = aT (n/b) + cnk

T (1) = c

... where a, b, c, k are constants.

A problem of size n is divided into a
subproblems of size n/b, while cnk is the
amount of work needed to combine the
solutions.

150

Divide and Conquer Recurrences

(cont)

Expand the sum; n = bm.

T (n) = a(aT (n/b2) + c(n/b)k) + cnk

= amT (1) + am−1c(n/bm−1)k + · · ·+ ac(n/b)k + cnk

= cam
m∑

i=0

(bk/a)i

am = alogb n = nlogb a

The summation is a geometric series whose
sum depends on the ratio

r = bk/a.

There are 3 cases.

151

D & C Recurrences (cont)

(1) r < 1

m∑
i=0

ri < 1/(1− r), a constant.

T (n) = Θ(am) = Θ(nlogb a).

(2) r = 1

m∑
i=0

ri = m + 1 = logb n + 1

T (n) = Θ(nlogb a logn) = Θ(nk logn)

(3) r > 1

m∑
i=0

ri =
rm+1 − 1

r − 1
= Θ(rm)

So, from T (n) = cam ∑
ri,

T (n) = Θ(amrm)

= Θ(am(bk/a)m)

= Θ(bkm)

= Θ(nk)

152

Summary

Theorem 3.4:

T (n) =


Θ(nlogb a) if a > bk

Θ(nk logn) if a = bk

Θ(nk) if a < bk

Apply the theorem:

T (n) = 3T (n/5) + 8n2.

a = 3, b = 5, c = 8, k = 2.

bk/a = 25/3.

Case (3) holds: T (n) = Θ(n2).

153

Prime Numbers

How do we tell if a number is prime?

One approach is the prime sieve: Test all prime
up to b

√
nc.

This requires up to b
√

nc − 1 divisions.

• How does this compare to the input size?

Note that it is easy to check the number of
times 2 divides n for the binary representation

• What about 3?

• What if n is represented in trinary?

Is there a polynomial time algorithm?

154

Facts about Primes

Some useful theorems from Number Theory:

Prime Number Theorem: The number of
primes less than n is (approximately)

n

lnn

• The average distance between primes is
lnn.

Prime Factors Distribution Theorem: For
large n, on average, n has about ln lnn different
prime factors with a standard deviation of√

ln lnn.

To prove that a number is composite, need
only one factor.

What does it take to prove that a number is
prime?

Do we need to check all
√

n candidates?

155

Probablistic Algorithms

Some probablistic algorithms:

• Prime(n) = FALSE.

• With probability 1/ lnn, Prime(n) = TRUE.

• Pick a number m between 2 and
√

n. Say n
is prime iff m does not divide n.

Using number theory, we can create a cheap
test that will determine that a number is
composite (if it is) 50% of the time.

Algorithm:

Prime(n) {

for(i=0; i<COMFORT; i++)

if !CHEAPTEST(n)

return FALSE;

return TRUE;

}

Of course, this does nothing to help you find
the factors!

156

Random Numbers

Which sequences are random?

• 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

• 1, 2, 3, 4, 5, 6, 7, 8, 9, ...

• 2, 7, 1, 8, 2, 8, 1, 8, 2, ...

Meanings of “random”:

• Cannot predict the next item:
unpredictable.

• Series cannot be described more briefly
than to reproduce it: equidistribution.

There is no such thing as a random number
sequence, only “random enough” sequences.

A sequence is pseudorandom if no future term
can be predicted in polynomial time, given all
past terms.

157

A Good Random Number Generator

Most computer systems use a deterministic
algorithm to select pseudorandom numbers.

Linear congruential method:

• Pick a seed r(1). Then,

r(i) = (r(i− 1)× b) mod t.

Resulting numbers must be in range:

What happens if r(i) = r(j)?

Must pick good values for b and t.

• t should be prime.

158

Random Number examples

r(i) = 6r(i− 1) mod 13 =
..., 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4,

11, 1, ...

r(i) = 7r(i− 1) mod 13 =
..., 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4,

2, 1, ...

r(i) = 5r(i− 1) mod 13 =
..., 1, 5, 12, 8, 1, ...
..., 2, 10, 11, 3, 2, ...
..., 4, 7, 9, 6, 4, ...
..., 0, 0, ...

Suggested generator:

r(i) = 16807r(i− 1) mod 231 − 1.

159

Introduction to the Slide Rule

Compared to addition, multiplication is hard.

In the physical world, addition is merely
concatenating two lengths.

Observation:

lognm = logn + logm.

Therefore,

nm = antilog(logn + logm).

What if taking logs and antilogs were easy?

The slide rule does exactly this!

• It is essentially two rulers in log scale.

• Slide the scales to add the lengths of the
two numbers (in log form).

• The third scale shows the value for the
total length.

160

Representing Polynomials

A vector a of n values can uniquely represent a
polynomial of degree n− 1

Pa(x) =
n−1∑
i=0

aix
i.

Alternatively, a polynomial can be uniquely
represented by a list of its values at n distinct
points.

• Finding the value for a polynomial at a
given point is called evaluation.

• Finding the coefficients for the polynomial
given the values at n points is called
interpolation.

161

Multiplication of Polynomials

To multiply two n− 1-degree polynomials A
and B normally takes Θ(n2) coefficient
multiplications.

However, if we evaluate both polynomials (at
the same points), we can simply multiply the
corresponding pairs of values to get the
corresponding values for polynomial AB.

Process:

• Evaluate polynomials A and B at enough
points.

• Pairwise multiplications of resulting values.

• Interpolation of resulting values.

This can be faster than Θ(n2) IF a fast way
can be found to do evaluation/interpolation of
2n− 1 points.

• Normally this takes Θ(n2) time. (Why?)

162

An Example

Polynomial A: x2 + 1.

Polynomial B: 2x2 − x + 1.

Polynomial AB: 2x4 − x3 + 3x2 − x + 1.

Note that evaluating a polynomial at 0 is easy.

If we evaluate at 1 and -1, we can share a lot
of the work between the two evaluations.

Can we find enough such points to make the
process cheap?

AB(−1) = (2)(4) = 8

AB(0) = (1)(1) = 1

AB(1) = (2)(2) = 4

But: We need 5 points to nail down Polynomial
AB. And, we also need to interpolate the 5
values to get the coefficients back.

163

An Observation

In general, we can write Pa(x) = Ea(x) + Oa(x)
where Ea is the even powers and Oa is the odd
powers. So,

Pa(x) =
n/2−1∑
i=0

a2ix
2i +

n/2−1∑
i=0

a2i+1x2i+1

The significance is that when evaluating the
pair of values x and −x, we get

Ea(x) + Oa(x) = Ea(x)−Oa(−x)

Oa(x) = −Oa(−x)

Thus, we only need to compute the E’s and O’s
once instead of twice to get both evaluations.

164

Nth Root of Unity

The key to fast polynomial multiplication is
finding the right points to use for
evaluation/interpolation to make the process
efficient.

Complex number z is a
primitive nth root of unity if

1. zn = 1 and

2. zk 6= 1 for 0 < k < n.

z0, z1, ..., zn−1 are the nth roots of unity.

Example: For n = 4, z = i or z = −i.

Identity: eiπ = −1.

In general, zj = e2πij/n = −12j/n.

• Significance: We can find as many points
on the circle as we need.

165

Evaluation

Define an n× n matrix Az with row i and
column j as

Az = (zij).

Example: n = 4, z = i:

Az =

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

Let a = [a0, a1, ..., an−1]
T be a vector.

We can evaluate the polynomial at the nth
roots of unity:

Fz = Aza = b.

bi =
n−1∑
k=0

akzik.

166

Another Example

For n = 8, z =
√

i. So,

Az =

1 1 1 1 1 1 1 1
1

√
i i i

√
i −1 −

√
i −i −i

√
i

1 i −1 −i 1 i −1 −i

1 i
√

i −i
√

i −1 −i
√

i i −
√

i
1 −1 1 −1 1 −1 1 −1
1 −

√
i i −i

√
i −1

√
i −i i

√
i

1 −i −1 i 1 −i −1 i

1 −i
√

i −i −
√

i −1 i
√

i i
√

i

We still have two problems:

1. We need to be able to do this fast. Its still
n2 multiplies to evaluate.

2. If we multiply the two sets of evaluations
(cheap), we still need to be able to reverse
the process (interpolate).

167

Interpolation

The interpolation step is nearly identical to the
evaluation step.

F−1
z = A−1

z b′ = a′.

What is A−1
z ? This turns out to be simple to

compute.

A−1
z =

1

n
A1/z

In other words, do the same computation as
before but substitute 1/z for z (and multiply by
1/n at the end).

So, if we can do one fast, we can do the other
fast.

168

Fast Polynomial Multiplication

An efficient divide and conquer algorithm exists
to perform both the evaluation and the
interpolation in Θ(n logn) time.

• This is called the
Discrete Fourier Transform (DFT).

• It is a recursive function that decomposes
the matrix multiplications, taking advantage
of the symmetries made available by doing
evaluation at the nth roots of unity.

Polynomial multiplication of A and B:

• Represent an n− 1-degree polynomial as
2n− 1 coefficients:

[a0, a1, ..., an−1,0, ...,0]

• Perform DFT on representations for A and
B

• Pairwise multiply results to get 2n− 1
values.

• Perform inverse DFT on result to get
2n− 1 degree polynomial AB.

169

Discrete Fourier Transform

Fourier_Transform(double *Polynomial, int n) {
// Compute the Fourier transform of Polynomial
// with degree n. Polynomial is a list of
// coefficients indexed from 0 to n-1. n is
// assumed to be a power of 2.
double Even[n/2], Odd[n/2], List1[n/2], List2[n/2];

if (n==1) return Polynomial[0];
for (j=0; j<=n/2-1; j++) {

Even[j] = Polynomial[2j];
Odd[j] = Polynomial[2j+1];

}
List1 = Fourier_Transform(Even, n/2);
List2 = Fourier_Transform(Odd, n/2);
for (j=0; j<=n-1, j++) {

Imaginary z = pow(E, 2*i*PI*j/n);
k = j % (n/2);
Polynomial[j] = List1[k] + z*List2[k];

}
return Polynomial;

}

This just does the transform on one of the two
polynomials. The full process is:

1. Transform each polynomial.

2. Multiply resulting values (O(n) multiplies).

3. Do the inverse transformation on the result.

Cost: Θ(n logn)

170

Fibonacci Revisited

Consider again the recursive function for
computing the nth Fibonacci number.

int Fibr(int n) {
if (n <= 1) return 1; // Base case
return Fibr(n-1) + Fibr(n-2); // Recursive call

}

Cost is Exponential. Why?

If we could eliminate redundancy, cost would be
greatly reduced.

• Keep a table

int Fibrt(int n, int* Values) {
// Assume Values has at least n slots, and all
// slots are initialized to 0
if (n <= 1) return 1; // Base case
if (Values[n] == 0) // Compute and store

Values[n] = Fibrt(n-1, Values) + Fibrt(n-2, Values);
return Values[n];

}

Cost?

We don’t need table, only last 2 values.

• Key is working bottom up.

171

Dynamic Programming

The issue of avoiding recomputation of
subproblems comes up frequently.

• General solution: Store a table to avoid
recomputation.

• Can work bottom up (fill table from
smallest to largest)

• Can work top down (recursively),
remembering any subproblems that happen
to be solved (check table first).

This approach is called
Dynamic Programming

• Name comes from the field of dynamic
control systems

• There, the act of storing precomputed
values is referred to as “programming”.

Dynamic Programming is an alternative to
Divide and Conquer

• D&C: Split problem into subproblems, solve
independently, and recombine.

• DP: Pay bookkeeping costs to remember
solutions to shared subproblems.

172

A Knapsack Problem

Problem: Given an integer capacity K and n
items such that item i has integer size ki, find a
subset of the n items whose sizes exactly sum
to K, if possible.

Formally: Find S ⊂ {1,2, ..., n} such that∑
i∈S

ki = K.

Example:

• K = 163

• 10 items of sizes 4, 9, 15, 19, 27, 44, 54,
68, 73, 101.

What if K is 164?

Instead of parameterizing problem just by n,
parameterize with n and K.

• P (n, K) is the problem with n items and
capacity K.

173

Solving the Knapsack Problem

Think about divide and conquer (alternatively,
induction).

What if we know how to solve P (n− 1, K)?

• If P (n− 1, K) has a solution, then it is a
solution for P (n, K).

• Otherwise, P (n, K) has a solution ⇔
P (n− 1, K − kn) has a solution.

What if we know how to solve P (n− 1, k) for
0 ≤ k ≤ K?

Cost: T (n) = 2T (n− 1) + c.

T (n) = Θ(2n).

BUT... there are only n(K + 1) subproblems to
solve!

174

Solution

Clearly, there are many subproblems being
solved repeatedly.

Store a n×K + 1 matrix to contain the
solutions for all P (i, k).

Fill in the rows from i = 0 to n, left to right.

If P (n− 1, K) has a solution,
Then P (n, K) has a solution
Else If P (n− 1, K − kn) has a solution

Then P (n, K) has a solution
Else P (n, K) has no solution.

Cost: Θ(nK).

175

Knapsack Example

K = 10.

Five items: 9, 2, 7, 4, 1.

0 1 2 3 4 5 6 7 8 9 10
k1=9 O − − − − − − − − I −
k2=2 O − I − − − − − − O −
k3=7 O − O − − − − I − I/O −
k4=4 O − O − I − I O − O −
k5=1 O I O I O I O I/O I O I

Key:

-: No solution for P (i, k).
O: Solution(s) for P (i, k) with i omitted.
I: Solution(s) for P (i, k) with i included.
I/O: Solutions for P (i, k) with i included
AND omitted.

Example: M(3,9) contains O because P (2,9)
has a solution. It contains I because
P (2,2) = P (2,9− 7) has a solution.

How can we find a solution to P (5,10)?

How can we find ALL solutions to P (5,10)?

176

All Pairs Shortest Paths

For every vertex u, v ∈ V, calculate d(u, v).

Define a k-path from u to v to be any path
whose intermediate vertices all have indices less
than k.

�
�

�
�

�

�

�
� �

�
�����

�	�

�

�

void Floyd(Graph& G) { // All-pairs shortest paths
int D[G.n()][G.n()]; // Store distances
for (int i=0; i<G.n(); i++) // Initialize D

for (int j=0; j<G.n(); j++)
D[i][j] = G.weight(i, j);

for (int k=0; k<G.n(); k++) // Compute all k paths
for (int i=0; i<G.n(); i++)

for (int j=0; j<G.n(); j++)
if (D[i][j] > (D[i][k] + D[k][j]))

D[i][j] = D[i][k] + D[k][j];
}

177

Reductions

A reduction is a transformation of one problem
to another.

Purposes: To compare the difficulty of two
problems.

• To use one algorithm to solve another
problem (upper bound).

• To compare the relative difficulty of two
problems (lower bound).

Notation: A problem is a mapping of inputs to
outputs.

A definition looks as follows:

SORTING:

• Input: A sequence of integers
x0, x1, ..., xn−1.

• Output: A permutation y0, y1, ..., yn−1 of the
sequence such that yi ≤ yj whenever i < j.

178

PAIRING

PAIRING:

• Input: Two sequences of integers
X = (x0, x1, ..., xn−1) and
Y = (y0, y1, ..., yn−1).

• Output: A pairing of the elements in the
two sequences such that the least value in
X is paired with the least value in Y , and so
on.

How can we solve this?

One algorithm:

• Sort X.

• Sort Y .

• Now, pair xi with yi for 0 ≤ i < n.

Terminology: We say that PAIRING is reduced
to SORTING, since SORTING is used to solve
PAIRING.

179

PAIRING Reduction Process

The reduction of PAIRING to SORTING
requires 3 steps:

• Convert an instance of PAIRING to two
instances of SORTING.

• Run SORTING (twice).

• CONVERT the output for the two
instances of SORTING to an output for the
original PAIRING instance.

What do we require about the transformations
to make them useful?

What is the cost of this algorithm?

180

PAIRING Lower Bound

We have an upper bound for PAIRING equal to
that of SORTING.

What is the lower bound for PAIRING?

Pretend that there is a O(n) time algorithm for
PAIRING.

Consider this algorithm for SORTING:

• Transform SORTING to PAIRING with X
being the input sequence for SORTING,
and Y a sequence containing the values 0
through n− 1

• Run the O(n) time PAIRING algorithm.

• Take the pairs output by PAIRING and use
a simple binsort to order them by the
second value of the pair. The first items of
the pair will be the sorted list.

What is the cost of this algorithm?

What does this say about the existence of an
O(n) time algorithm for PAIRING?

181

Reduction Process

Consider any two problems for which a suitable
reduction from one to the other can be found.

The first problem P1 takes input instance I and
transforms that to solution S.

The second problem P2 takes input instance I′

and transforms that to solution S′.

A reduction is the following three-step process:

• Transform an arbitrary instance I of
problem P1 and transform it to a (possibly
special) instance I′ of P2.

• Apply an algorithm for P2 to I′, yielding S′.

• Transform S′ to a solution for P1 (S). Note
that S MUST BE THE CORRECT
SOLUTION for I!

182

Reduction Process (Cont.)

Note that reduction is NOT an algorithm for
either problem.

It does mean, given “cheap” transformations,
that:

• The upper bound for P1 is at most the
upper bound for P2.

• The lower bound for P2 is at least the
lower bound for P1.

183

Another Reduction Example

How much does it cost to multiply two n-digit
numbers?

• Naive algorithm requires Θ(n2) single-digit
multiplications.

• Faster (but more complicated) algorithms
are known, but none so fast as to be O(n).

Is it faster to square an n-digit number than it
is to multiply two n-digit numbers?

• This is a special case, so might go faster.

Answer: No, because

X × Y =
(X + Y)2 − (X − Y)2

4
.

If a fast algorithm can be found for squaring,
then it could be used to make a fast algorithm
for multiplying.

184

Matrix Multiplication

Standard matrix multiplication for two n× n
matrices requires Θ(n3) multiplications.

Faster algorithms are known, but none so fast
as to be O(n2).

A symmetric matrix is one in which Mij = Mji.

Can we multiply symmetric matrices faster than
regular matrices?

[
0 A

AT 0

] [
0 BT

B 0

]
=

[
AB 0
0 ATBT

]
.

185

Some Puzzles

1. A hiker leaves at 8:00 AM and hikes over
the mountain. The next day, she again leaves
at 8:00 AM and returns to her starting point
along the same path. Prove that there is a
point on the path such that she was at that
point at the same time on both days.

2. Take a chessboard and cover it with
dominos (a domino covers two adjacent squares
of the board). Now, remove the upper left and
lower right corners of the board. Now, can it
still be covered with dominos?

These puzzles have the quality that, while their
answers may be hard to FIND, they are easy to
CHECK.

3. Is 667 composite or prime?

186

Complexity and Computability

Complexity:

• How cheaply can this be computed?

• How hard is this to compute?

Computability:

• When can this be computed?

• Can this be computed at all?

Types of “hard” problems:

• Hard to understand (or specify) the problem

– Software Engineering

• Hard to design a solution

– Artificial Intelligence

• Hard to compute in reasonable time

– Complexity Theory

• Hard (impossible) to do at all

– Computability Theory

187

Hard Problems

We say that a problem is computationally
“hard” if the running time of the best known
algorithm is exponential on the size of its input.

Support:

• Polynomials are closed under composition
and addition.

– Doing polynomial time operations in
series is polynomial.

• All computers today are polynomially
related.

– If it takes polynomial time on one
computer, it will take polynomial time on
any other computer.

• Polynomial time is (generally) feasible, while
exponential time is (generally) infeasible.

– An empirical observation: For most
polynomial-time algorithms, the
polynomial is of low degree.

188

Hard Problems (Cont.)

Note that for a faster machine, the size of
problem that can be run in a fixed amount of
time

• grows by a multiplicative factor for a
polynomial-time algorithm.

• grows by an additive factor for an
exponential-time algorithm.

189

Nondeterminism

Imagine a computer that works by guessing the
correct solution from among all possible
solutions to a problem.

Alternative: Super parallel machine that tests
all possible solutions simultaneously.

It might solve some problems more quickly than
a regular computer.

Consider a problem which, when given a
proposed solution, we can check in polynomial
time if the solution is correct.

Even if the number of guesses is exponential,
checking (in this case) is polynomial.

Conversely: if you can’t guess an answer and
check in polynomial time, there can be no
polynomial time algorithm!

190

Nondeterministic Algorithm

An algorithm is nondeterministic if it works by
guessing the right answer from among a finite
number of choices.

Alternatively, imagine a tree of choices,
polynomial levels deep.

• A super parallel machine follows all
branches of the tree in parallel.

• If any single branch reaches a solution, the
problem is solved.

A problem that can be solved in polynomial
time by a nondeterministic machine is said to
be “in NP.”

Is Towers of Hanoi in NP?

191

Traveling Salesman Problem

TRAVELING SALESMAN (1):

• Input: A complete, directed graph G with
distances assigned to each edge in the
graph.

• Output: The shortest simple cycle that
includes every vertex.

A

3

E

2

3 6

8
4

1

B

C

2

1 1
D

Problem: How to tell if a proposed solution is
shortest?

192

Traveling Salesman (Cont.)

Decision problem: A problem with a YES or
NO answer.

TRAVELING SALESMAN (2):

• Input: A complete, directed graph G with
distances assigned to each edge in the
graph, and an integer K.

• Output: YES if there is a simple cycle with
total distance ≤ K containing every vertex
in G, and NO otherwise.

In NP: We can guess a cycle, and quickly
check if it meets the requirements.

193

NP-complete Problems

Many problems are like traveling salesman:

• They are in NP.

• Nobody knows a polynomial time algorithm.

Is there any relationship between them?

A problem X is said to be NP-hard if ANY
problem in NP can be reduced to X in
polynomial time.

• X is AS HARD AS any problem in NP.

A problem X is said to be NP-complete if

1. It is in NP.

2. It is NP-hard.

To start the process we need to prove just one
problem H is NP-complete.

• To show that X is NP-hard, just reduce H
to X.

• DON’T GET IT BACKWARDS!

194

Why Care about NP-Completeness?

Your boss asks you to write a fast program for
TRAVELING SALESMAN.

• Its obviously an easy problem to
understand.

• She can easily see some algorithm to solve
the problem.

• It must be easy to speed up!

If you can’t do the job, what do you tell her?

• I can’t do it.

• I can’t find evidence that anyone can do it.

• Nobody has been able to do it, despite the
fact that many people have tried.
Furthermore, if anyone solved any of this
long list of problems, then they would be
able to do this problem too.

195

Satisfiability

Let E be a Boolean expression over variables
x1, x2, ..., xn in Conjunctive Normal form:

E = (x5+x7+x8+x10) ·(x2+x3) ·(x1+x3+x6).

SATISFIABILITY (SAT):

• INPUT: A Boolean expression E over
variables x1, x2, ... in Conjunctive Normal
Form.

• OUTPUT: YES if there is an assignment to
the variables that makes E true, NO
otherwise.

This is the “grand-daddy” NP-complete
problem.

Cook’s Theorem: SAT is NP-complete.

196

NP-completeness Proof Model

Implication: If a polynomial time algorithm can
be found for ANY problem that is
NP-complete, then by a chain of polynomial
time reductions, ALL NP-complete problems
can be solved in polynomial time.

To show that a decision problem X is
NP-complete:

1. Show that X is in NP.

• Give a polynomial-time, nondeterministic
algorithm.

2. Show that X is NP-hard.

• Choose a known NP-complete problem,
A.

• Describe a polynomial-time
transformation that takes an
ARBITRARY instance I of A to an
instance I′ of X.

• Describe a polynomial-time
transformation from S′ to S such that S
is the solution for I.

197

Cook’s Proof Outline

1. Any decision problem can be recast as a
language acceptance problem:

F (I) = YES ⇔ L(I ′) = ACCEPT.

2. Turing machines are a simple model of
computation for writing programs that are
language acceptors.

3. There is a “universal” Turing machine that
can take as input a description for a Turing
machine, and an input string, and return the
execution of that machine on that string.

4. This in turn can be cast as a boolean
expression such that the expression is
satisfiable if and only if the Turing machine
yields ACCEPT for that string.

5. Thus, any decision problem that is
performable by the Turing machine is
transformable to SAT: This is NP-hard.

198

The World of Exponential-time(?)

Problems

NP-complete problems

TRAVELING SALESMAN

P problems

SORTING

TOH

Exponential time problems

NP problems

Question: Does P = NP?

199

3-SATISFIABILITY (3 SAT)

Input: Boolean expression E in CNF such that
each clause contains exactly 3 literals.

Output: YES if the expression can be satisfied,
NO otherwise.

A special case of SAT.

• Is 3 SAT easier than SAT?

Theorem: 3 SAT is NP-complete.

Proof:

• 3 SAT is in NP.

– Guess (nondeterministically) values for
the variables.

– The correctness of the guess can be
verified in polynomial time.

• 3 SAT is NP-hard, by a reduction from
SAT to 3 SAT.

200

3 SAT is NP-hard

Find a polynomial time reduction from SAT to
3 SAT.

Let E = C1 · C2 · ... · Ck by any instance of SAT.

Strategy: Replace any clause Ci that does not
have exactly 3 literals with two or more clauses
having exactly 3 literals.

Let Ci = x1 + x2 + ... + xj where x1, ..., xj are
literals.

201

Replacement

1. j = 1, so Ci = x1. Replace Ci with

(x1+v+w)·(x1+v+w)·(x1+v+w)·(x1+v+w)

where v and w are new variables.

2. j = 2, so Ci = (x1 + x2). Replace Ci with

(x1 + x2 + z) · (x1 + x2 + z)

where z is a new variable.

3. j > 3. Replace Ci with

(x1+x2+z1) ·(x3+z1+z2) ·(x4+z2+z3) · ...

·(xj−2 + zj−4 + zj−3) · (xj−1 + xj + zj−3)

where z1, ..., zj−3 are new variables.

After appropriate replacements have been made
for each Ci, a Boolean expression results that is
an instance of 3 SAT.

Each replacement is satisfiable if and only if the
original clause is satisfiable.

The reduction is clearly polynomial time.

202

Third Case

If E is satisfiable, then E′ is satisfiable:

• Assume xm is assigned true.

• Then assign zt, t ≤ m− 2 as true and
zk, t ≥ m− 1 as false.

• Then all clauses in Case (3) are satisfied.

If E′ is satisfiable, then E is satisfiable:

• Proof by contradiction.

• If x1, x2, ..., xj are all false, then
z1, z2, ..., zj−3 are all true.

• But then (xj−1 + xj−2 + zj−3) is false, a
contradiction.

(Not necessary for proof, but may help insight.)

Conversely, if E is not satisfiable, then E′ is not
satisfiable.

• E not satisfiable means all xi are false.

• This leaves E′ as

(z1) · (z1 + z2) · ... · (zj−4 + zj−3) · (zj−3)

which is NOT satisfiable.

203

Two Problems

VERTEX COVER:

Input: An undirected graph G and an integer k.

Output: YES if there is a subset of vertices in
G of size k or less such that every edge in the
graph has at least one of its ends in the subset;
NO otherwise.

K-CLIQUE:

Input: An undirected graph G and an integer k.

Output: YES if there is a subset of the vertices
of size k or greater that is a complete graph (a
clique).

We can reduce either problem to the other by
switching G to its inverse G′.

• If edge (i, j) is in G, it is NOT in G′.

• If edge (i, j) is NOT in G, it IS in G′.

204

K CLIQUE is NP-Complete

Easy to show that K CLIQUE is in NP.

Reduce SAT to K CLIQUE.

An instance of SAT is a Boolean expression

B = C1 · C2 · ... · Cm

where

Ci = y[i,1] + y[i,2] + ... + y[i, ki].

Transform this to an instance of K CLIQUE as
follows.

V = {v[i, j]|1 ≤ i ≤ m,1 ≤ j ≤ ki}.

All vertices v[i1, j1] and v[i2, j2] have an edge
between them UNLESS they are two literals
within the same clause (i1 = i2) OR they are
opposite values for the same variable.

Set k = m.

205

Example

B = (y1 + y2) · (y1 + y2 + y3).

B is satisfiable if and only if G has a clique of
size ≥ k.

• B satisfiable implies there is a truth
assignment such that y[i, ji] is true for each
i.

• But then, v[i, ji] must be in a clique of size
k = m.

• If G has a clique of size ≥ k, then the clique
must have size exactly k and there is one
vertex v[i, ji] in the clique for each i.

• There is a truth assignment making each
y[i, ji] true. That truth assignment satisfies
B.

We conclude that K CLIQUE is NP-hard,
therefore NP-complete.

206

Coping with NP-Completeness

1. Organize to reduce costs.

• Dynamic programming.

• Backtracking.

• Branch and Bounds.

2. Find subproblems of the original problem
that have polynomial-time solutions.

• Significant special cases that are useful
to answer.

3. Approximation algorithms.

4. Randomized algorithms.

5. Use heuristics.

• Greedy algorithms.

• Simulated Annealing.

• Genetic Algorithms.

207

Knapsack Analysis Revisited

Fact: Knapsack is NP-complete.

But we have a Θ(nK) algorithm!!

Question: How big is K?

• Input size is typically O(n logK) since the
item sizes are smaller than K.

• Thus, Θ(nK) is exponential on input size.

This algorithm is tractable if the numbers are
“reasonable.”

• nK can be thousands.

• This is different from TRAVELING
SALESMAN which cannot handle n = 100.

Such an algorithm is called a
pseudo-polynomial time algorithm.

208

Subproblems and Special Cases

Some restricted cases of NP-complete
problems are useful, and not NP-complete.

• VERTEX COVER and K CLIQUE have
polynomial time algorithms for bipartite
graphs.

• 2-SATISFIABILITY has a polynomial time
solution.

• Several geometric problems are
polynomial-time in two dimensions, but not
in three or more.

• KNAPSACK is polynomial if the numbers
are “small.”

209

Approximation Algorithms

Seek algorithms for optimization problems with
a guaranteed bound on quality of the solution.

For VERTEX COVER:

• Let M be a maximal (not necessarily
maximum) matching in G.

– A matching pairs vertices (with
connecting edges) so that no vertex is
paired with more than one match.

– Maximal means pick as many pairs as
possible.

• If OPT is the size of a minimum vertex
cover, then

|M | ≤ 2 ·OPT

because at least one endpoint of every
matched edge must be in ANY vertex cover.

210

BIN PACKING

INPUT: Numbers x1, x2, ..., xn between 0 and 1,
and an unlimited supply of bins of size 1.

OUTPUT: An assignment of numbers to bins
that requires the fewest possible number of
bins (no bin can hold numbers whose sum
exceeds 1).

This problem is NP-complete.

Heuristic: First fit

• Place a number in the first bin that fits.

• The number of bins used is no more than
twice the sum of the numbers.

• First fit can be much worse than optimal.

• Consider 6 of 1/7 + ε, 6 of 1/3 + ε, 6 of
1/2 + ε.

Better Heuristic: Decreasing first fit

• Sort the items, then use first fit.

• This can be proven to yield no more than
11/9 the optimal number of bins.

211

Summary

The theory of NP-completeness gives a
technique for separating tractable from
(probably) untractable problems.

When faced with a new problem, we might
alternate between:

• Check if it is tractable (find a fast solution).

• Check if it is intractable (prove the problem
is NP-complete).

If the problem is in NP-complete, then use one
of the “coping” strategies.

212

Countable vs. Uncountably Infinite

Sets

Two sets have the same cardinality if there is
a bijection between them.

Notation: |A| = |B|.

This concept can also be applied to infinite
sets.

Example: Let Odd and Even be the sets of odd
and even natural numbers, respectively.

Then, |Odd| = |Even| because the function
f : |Odd → Even| defined by f(x) = x− 1 is a
bijection.

How about |Even| = |N|?

213

Counting Infinite Sets

A set C is countable if it is finite or if |C| = |N|.

If a set is not countable, then it is
uncountable.

If A is a finite alphabet, then A∗ is countably
infinite.

Proof: Arrange the strings in order by length,
and within a given length by alphabetical order.
This provides a bijection.

As a corollary, the set of all computer programs
is countable.

214

There are more Functions than

Programs

Consider the set of functions f(x) = y for x, y
natural numbers.

The set of such functions is uncountable.

Diagonalization argument:

�

� � � � �

�
�
���
���

�
�
�
�
�

�
�
�
�
�

� �
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�	�
���
���
� �

�
�
�
�
�
�
�
�

�
�������
�������������� ��������� �
�	�
���� ��� �!�����
� �

�
�
�
�
�

��
�
�
�
�
�

Thus, not all functions on natural numbers are
computable.

215

Halting Problem for Programs

Does this terminate?

while (n > 1)

if (ODD(n))

n = 3 * n + 1;

else

n = n / 2;

Can a C++ program be written to solve the
following problem?

Halting Problem:

• Input: A program P and input X.

• Output: “Halts” if P halts when run with X
as input. “Does not Halt” otherwise.

216

Halting Problem Proof

Theorem: There is no program to solve the
Halting Problem.

Proof: (by contradiction).

Assumption: There is a C++ program that
solves the Halting Problem.

bool halt(char* prog, char* input)

{

Code to solve halting problem

if (prog does halt on input) then

return(TRUE);

else

return(FALSE);

}

217

Two More Procedures

bool selfhalt(char *prog) {

// Return TRUE if program halts

// when given itself as input.

if (halt(prog, prog))

return(TRUE);

else

return(FALSE);

}

void contrary(char *prog) {

if (selfhalt(prog))

while(TRUE); // Go into an infinite loop

}

218

The Punchline

What happens when function contrary is run on
itself?

Case 1: selfhalt returns TRUE.

• contrary will go into an infinite loop.

• This contradicts the result from selfhalt.

selfhalt returns FALSE.

• contrary will halt.

• This contradicts the result from selfhalt.

Either result is impossible.

The only flaw in this argument is the
assumption that halt exists.

Therefore, halt cannot exist.

219

Computability Reduction Proof

Given arbitrary program M , does it halt on the
EMPTY input?

This is uncomputable. Proof:

• Suppose that program M0 determines if M
halts on the EMPTY input.

• Given arbitrary program M and string w, we
can create a new program Mw that
operates as follows on empty input:

– Write w into a static variable.

– Simulate the execution of M .

• So, we can take arbitrary program M and
string w, create Mw, and invoke M0 on Mw

(with empty input) to solve the original
halting problem.

• Thus, M0 must not exist.

220

Another Reduction Proof

Does there exist ANY input for which an
arbitrary program halts?

Proof that this is uncomputable:

• Suppose that program M0 could decide if
arbitrary program M halts on ANY input.

• We can take an arbitrary program M and
string w, and modify it so that it ignores its
input before proceeding.

• Thus, arbitrary program M is modified to
be M ′ that effectively is M operating on the
empty input.

• Thus, we can take arbitrary program M and
string w, modify it to become M ′ and feed
that to M0 to solve the problem of deciding
if M halts on the empty input.

• We already know that is undecidable.

• Thus, M0 cannot exist.

221

Other Noncomputable Functions

Does a program halt on EVERY input?

Do two programs compute the SAME function?

Does a particular line in a program get
executed?

Does a program compute a particular function?

Does a program contain a “computer virus”?

222

A General Model

Want a general model of computation that is
as simple as possible.

• Wish to be able to reason about the model.

• “State machines” are simple.

Necessary features:

• Read

• Write

• Compute

223

Turing Machines

A tape, divided into squares.

A single I/O head:

• Read current symbol

• Change current symbol

Control Unit Actions:

• Put the control unit into a new state.

• Either:

1. Write a symbol in current tape square.

2. Move I/O head one square left or right.

Tape has a fixed left end, infinite right end.

• Machine ceases to operate if head moves
off left end.

• By convention, input is placed on left end
of tape.

A halt state (h) signals end of computation.

“#” indicates a blank tape square.

224

Formal definition of Turing Machine

A Turing Machine is a quadruple (K, Σ, δ, s)
where

• K is a finite set of states (not including h).

• Σ is an alphabet (containing #, not L or
R).

• s ∈ K is the initial state.

• δ is a function from K ×Σ to
(K ∪ {h})× (Σ ∪ {L, R}).

If q ∈ K, a ∈ Σ and δ(q, a) = (p, b), then when in
state q and scanning a, enter state p and

1. If b ∈ Σ then replace a with b.

2. Else (b is L or R) Move head.

225

Turing Machine Example 1

M = (K,Σ, δ, s) where

• K = {q0, q1},
• Σ = {a,#},
• s = q0,

• δ =

q σ δ(q, σ)
q0 a (q1,#)
q0 # (h,#)
q1 a (q0, a)
q1 # (q0, R)

226

Turing Machine Example 2

M = (K,Σ, δ, s) where

• K = {q0},
• Σ = {a,#},
• s = q0,

• δ =
q σ δ(q, σ)
q0 a (q0, L)
q0 # (h,#)

227

Notation

Configuration: (q, aaba##a)

Halted configuration: q is h.

Hanging configuration: Move left from
leftmost square.

A computation is a sequence of configurations
for some n ≥ 0. Such a computation is of
length n.

(q0, aaaa) `M (q1,#aaa)

`M (q0,#aaa)

`M (q1,##aa)

`M (q0,##aa)

`M (q1,###a)

`M (q0,###a)

`M (q1,####)

`M (q0,#####)

`M (h,#####)

228

Computations

Convention:

M is said to halt on input w iff (s,#w#)
yields some halted configuration.

M is said to hang on input w if (s,#w#)
yields some hanging configuration.

Turing machines compute functions from
strings to strings.

Formally: Let f be a function from Σ∗
0 to Σ∗

1.
Turing machine M is said to compute f if for
any w ∈ Σ∗

0, if f(w) = u then

(s,#w#) `∗M (h,#u#).

f is said to be a Turing-computable function.

Multiple parameters: f(w1, ..., wk) = u,
(s,#w1#w2#...#wk#) `∗M (h,#u#).

229

Functions on Natural Numbers

Represent numbers in unary notation on
symbol I (zero is represented by the empty
string).

f : N → N is computed by M if M computes
f ′ : {I}∗ → {I}∗ where f ′(In) = If(n) for each
n ∈ N.

Example: f(n) = n + 1 for each n ∈ N.

q σ δ(q, σ)
q0 I (h, R)
q0 # (q0, I)

(q0,#II#) `M (q0,#III) `M (h,#III#).

In general, (q0,#In#) `∗M (h,#In+1#).

What about n = 0?

230

Turing-decidable Languages

A language L ⊂ Σ∗
0 is Turing-decidable iff

function χL : Σ∗
0 → { Y , N } is

Turing-computable, where for each w ∈ Σ∗
0,

χL(w) =

{
Y if w ∈ L

N otherwise

Ex: Let Σ0 = {a}, and let
L = {w ∈ Σ∗

0 : |w| is even}.

M erases the marks from right to left, with
current parity encode by state. Once blank at
left is reached, mark Y or N as appropriate.

231

Turing-acceptable Languages

M accepts a string w if M halts on input w.

• M accepts a language iff M halts on w iff
w ∈ L.

• A language is Turing-acceptable if there is
some Turing machine that accepts it.

Ex: Σ0 = {a, b},
L = {w ∈ Σ∗

0 : w contains at least one a}.

q σ δ(q, σ)
q0 a (h, a)
q0 b (q0, L)
q0 # (q0, L)

Every Turing-decidable language is
Turing-acceptable.

232

Combining Turing Machines

Lemma: If

(q1, w1a1u1) `∗M (q2, ww2a2u2)

for string w and

(q2, w2a2u2) `∗M (q3, w3a3u3),

then

(q1, w1a1u1) `∗M (q3, ww3a3u3).

Insight: Since (q2, w2a2u2) `∗M (q3, w3a3u3), this
computation must take place without moving
the head left of w2

• The machine cannot “sense” the left end of
the tape

233

Combining Turing Machines (Cont)

Thus, the head won’t move left of w2 even if it
is not at the left end of the tape.

This means that Turing machine computations
can be combined into larger machines:

• M2 prepares string as input to M1.

• M2 passes control to M1 with I/O head at
end of input.

• M2 retrieves control when M1 has
completed.

234

Some Simple Machines

Basic machines:

• |Σ| symbol-writing machines (one for each
symbol).

• Head-moving machines R and L move the
head appropriately.

More machines:

• First do M1, then do M2 or M3 depending
on current symbol.

• (For Σ = {a, b, c}) Move head to the right
until a blank is found.

• Find first blank square to left: L#

• Copy Machine: Transform #w# into
#w#w#.

• Shift a string left or right.

235

Extensions

The following extensions do not increase the
power of Turing Machines.

• 2-way infinite tape

• Multiple tapes

• Multiple heads on one tape

• Two-dimensional “tape”

• Non-determinism

236

