
Fibonacci Revisited

Consider again the recursive function for
computing the nth Fibonacci number.

int Fibr(int n) {
if (n <= 1) return 1; // Base case
return Fibr(n-1) + Fibr(n-2); // Recursive call

}

Cost is Exponential. Why?

If we could eliminate redundancy, cost would be
greatly reduced.

• Keep a table

int Fibrt(int n, int* Values) {
// Assume Values has at least n slots, and all
// slots are initialized to 0
if (n <= 1) return 1; // Base case
if (Values[n] == 0) // Compute and store

Values[n] = Fibrt(n-1, Values) + Fibrt(n-2, Values);
return Values[n];

}

Cost?

We don’t need table, only last 2 values.

• Key is working bottom up.

171



Dynamic Programming

The issue of avoiding recomputation of
subproblems comes up frequently.

• General solution: Store a table to avoid
recomputation.

• Can work bottom up (fill table from
smallest to largest)

• Can work top down (recursively),
remembering any subproblems that happen
to be solved (check table first).

This approach is called
Dynamic Programming

• Name comes from the field of dynamic
control systems

• There, the act of storing precomputed
values is referred to as “programming”.

Dynamic Programming is an alternative to
Divide and Conquer

• D&C: Split problem into subproblems, solve
independently, and recombine.

• DP: Pay bookkeeping costs to remember
solutions to shared subproblems.

172



A Knapsack Problem

Problem: Given an integer capacity K and n
items such that item i has integer size ki, find a
subset of the n items whose sizes exactly sum
to K, if possible.

Formally: Find S ⊂ {1,2, ..., n} such that∑
i∈S

ki = K.

Example:

• K = 163

• 10 items of sizes 4, 9, 15, 19, 27, 44, 54,
68, 73, 101.

What if K is 164?

Instead of parameterizing problem just by n,
parameterize with n and K.

• P (n, K) is the problem with n items and
capacity K.

173



Solving the Knapsack Problem

Think about divide and conquer (alternatively,
induction).

What if we know how to solve P (n− 1, K)?

• If P (n− 1, K) has a solution, then it is a
solution for P (n, K).

• Otherwise, P (n, K) has a solution ⇔
P (n− 1, K − kn) has a solution.

What if we know how to solve P (n− 1, k) for
0 ≤ k ≤ K?

Cost: T (n) = 2T (n− 1) + c.

T (n) = Θ(2n).

BUT... there are only n(K + 1) subproblems to
solve!

174



Solution

Clearly, there are many subproblems being
solved repeatedly.

Store a n×K + 1 matrix to contain the
solutions for all P (i, k).

Fill in the rows from i = 0 to n, left to right.

If P (n− 1, K) has a solution,
Then P (n, K) has a solution
Else If P (n− 1, K − kn) has a solution

Then P (n, K) has a solution
Else P (n, K) has no solution.

Cost: Θ(nK).

175



Knapsack Example

K = 10.

Five items: 9, 2, 7, 4, 1.

0 1 2 3 4 5 6 7 8 9 10
k1=9 O − − − − − − − − I −
k2=2 O − I − − − − − − O −
k3=7 O − O − − − − I − I/O −
k4=4 O − O − I − I O − O −
k5=1 O I O I O I O I/O I O I

Key:

-: No solution for P (i, k).
O: Solution(s) for P (i, k) with i omitted.
I: Solution(s) for P (i, k) with i included.
I/O: Solutions for P (i, k) with i included
AND omitted.

Example: M(3,9) contains O because P (2,9)
has a solution. It contains I because
P (2,2) = P (2,9− 7) has a solution.

How can we find a solution to P (5,10)?

How can we find ALL solutions to P (5,10)?

176



All Pairs Shortest Paths

For every vertex u, v ∈ V, calculate d(u, v).

Define a k-path from u to v to be any path
whose intermediate vertices all have indices less
than k.

�
�

�
�

�

�

�
� �

�
�����

�	�

�

�

void Floyd(Graph& G) { // All-pairs shortest paths
int D[G.n()][G.n()]; // Store distances
for (int i=0; i<G.n(); i++) // Initialize D

for (int j=0; j<G.n(); j++)
D[i][j] = G.weight(i, j);

for (int k=0; k<G.n(); k++) // Compute all k paths
for (int i=0; i<G.n(); i++)

for (int j=0; j<G.n(); j++)
if (D[i][j] > (D[i][k] + D[k][j]))

D[i][j] = D[i][k] + D[k][j];
}

177


