
Finding the Second Best

In a single-elimination tournament, is the
second best the one who loses in the finals?

Simple algorithm:

• Find the best.

• Discard it.

• Now, find the second best of the n− 1
remaining elements.

Cost?

Is this optimal?

Lower bound:

• Anyone who lost to anyone who is not the
max cannot be second.

• So, the only candidates are those who lost
to max.

• Find_max might compare max to n− 1
others.

• Thus, we might need n− 2 additional
comparisons to find second.

• Wrong!

96



Lower Bound for Second

The previous argument exhibits the
necessity fallacy:

• Our algorithm does something, therefore all
algorithms solving the problem must do the
same.

Alternative: Divide and conquer

• Break the list into two halves.

• Run Find_max on each half.

• Compare the winners.

• Run Find_max on the winner’s half for
second.

• Compare that second to second winner.

Cost: d3n/2e − 2.

Is this optimal?

What if we break the list into four pieces?
Eight?

97



Binomial Trees

Pushing this idea to its extreme, we want each
comparison to be between winners of equal
numbers of comparisons.

The only candidates for second are losers to
the eventual winner.

A binomial tree of height m has 2m nodes
organized as:

• a single node, if m = 0, or

• two height m− 1 binomial trees with one
tree’s root becoming a child of the other.

Algorithm:

• Build the tree.

• Compare the dlogne children of the root for
second.

Cost?

98



Binomial Tree Representation

We could store the binomial tree as an explicit
tree structure.

We can also store the binomial tree implicitly:
In an array.

Assume two trees, each with 2k nodes, are in
the array as:

• First tree in positions 1 to 2k.

• Second tree in positions 2k + 1 to 2k+1.

• The root of a subtree is in the final array
position for that subtree.

To join:

• Compare the roots of the subtrees.

• If necessary, swap subtrees so larger root
element is second subtree.

Trades space for time.

99



Adversarial Lower Bounds Proof

Many lower bounds proofs use the concept of
an adversary.

The adversary’s job is to make an algorithm’s
cost as high as possible.

The algorithm asks the adversary for
information about the input.

The adversary may never lie.

Imagine that the adversary keeps a list of all
possible inputs.

• When the algorithm asks a question, the
adversary answers, and crosses out all
remaining inputs inconsistent with that
answer.

• The adversary is permitted to give any
answer that is consistent with at least one
remaining input.

Examples:

• Hangman.
• Search an unordered list.

100



Lower Bound for Second Best

At least n− 1 values must lose at least once.

• At least n− 1 compares.

In addition, at least k − 1 values must lose to
the second best.

• I.e., k direct losers to the winner must be
compared.

There must be at least n + k − 2 comparisons.

How low can we make k?

101



Adversarial Lower Bound

Call the strength of element L[i] the number
of elements L[i] is (known to be) bigger than.

If L[i] has strength a, and L[j] has strength b,
then the winner has strength a + b + 1.

What should the adversary do?

• Minimize the rate at which any element
improves.

• Do this by making the stronger element
always win.

• Is this legal?

102



Lower Bound (Cont.)

What should the algorithm do?

If a ≥ b, then 2a ≥ a + b.

• From the algorithm’s point of view, the
best outcome is that an element doubles in
strength.

• This happens when a = b.

• All strengths begin at zero, so the winner
must make at least k comparisons for
2k−1 < n ≤ 2k.

Thus, there must be at least n + dlogne − 2
comparisons.

103


