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Note that it is easy to check the number of times 2 divides n for the binary
representation What about 3? What if n is represented in trinary?

Is there a polynomial time algorithm for finding primes?
Some useful theorems from Number Theory: Prime Number Theorem: The

number of primes less than n is (approximately)

n

lnn

The average distance between primes is lnn. Prime Factors Distribution The-
orem: For large n, on average, n has about ln lnn different prime factors with a
standard deviation of

√
ln lnn.

To prove that a number is composite, need only one factor. What does it take
to prove that a number is prime? Do we need to check all

√
n candidates?

Some probablistic algorithms:

• Prime(n) = FALSE.
• With probability 1/ lnn, Prime(n) = TRUE.
• Pick a number m between 2 and

√
n. Say n is prime iff m does not divide n.

Using number theory, we can create a cheap test that will determine that a
number is composite (if it is) 50% of the time. Algorithm:

Prime(n) {
for(i=0; i<COMFORT; i++)
if !CHEAPTEST(n)
return FALSE;

return TRUE;
}

Of course, this does nothing to help you find the factors!

16.3.1 Skip Lists

Skip Lists are designed to overcome a basic limitation of array-based and linked
lists: Either search or update operations require linear time. The Skip List is an
example of a probabilistic data structure, since it makes some of its decisions at
random.

Skip Lists provide an alternative to the BST and related tree structures. The pri-
mary problem with the BST is that it may easily become unbalanced. The 2-3 tree
of Chapter 10 is guaranteed to remain balanced regardless of the order in which data
values are inserted, but it is rather complicated to implement. Chapter 13 presents
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the AVL tree and the splay tree, which are also guaranteed to provide good per-
formance, but at the cost of added complexity as compared to the BST. The Skip
List is easier to implement than known balanced tree structures. The Skip List is
not guaranteed to provide good performance (where good performance is defined
as Θ(log n) search, insertion, and deletion time), but it will provide good perfor-
mance with extremely high probability (unlike the BST which has a good chance
of performing poorly). As such it represents a good compromise between difficulty
of implementation and performance.

Figure 16.2 illustrates the concept behind the Skip List. Figure 16.2(a) shows a
simple linked list whose nodes are ordered by key value. To search a sorted linked
list requires that we move down the list one node at a time, visiting Θ(n) nodes
in the average case. Imagine that we add a pointer to every other node that lets us
skip alternating nodes, as shown in Figure 16.2(b). Define nodes with only a single
pointer as level 0 Skip List nodes, while nodes with two pointers are level 1 Skip
List nodes.

To search, follow the level 1 pointers until a value greater than the search key
has been found, then revert to a level 0 pointer to travel one more node if necessary.
This effectively cuts the work in half. We can continue adding pointers to selected
nodes in this way – give a third pointer to every fourth node, give a fourth pointer
to every eighth node, and so on – until we reach the ultimate of log n pointers in
the first and middle nodes for a list of n nodes as illustrated in Figure 16.2(c). To
search, start with the bottom row of pointers, going as far as possible and skipping
many nodes at a time. Then, shift up to shorter and shorter steps as required. With
this arrangement, the worst-case number of accesses is Θ(log n).

To implement Skip Lists, we store with each Skip List node an array named
forward that stores the pointers as shown in Figure 16.2(c). Position forward[0]
stores a level 0 pointer, forward[1] stores a level 1 pointer, and so on. The Skip
List class definition includes data member level that stores the highest level for
any node currently in the Skip List. The Skip List is assumed to store a header node
named head with level pointers. The find function is shown in Figure 16.3.

Searching for a node with value 62 in the Skip List of Figure 16.2(c) begins at
the header node. Follow the header node’s pointer at level, which in this example
is level 2. This points to the node with value 31. Since 31 is less than 62, we next
try the pointer from forward[2] of 31’s node to reach 69. Since 69 is greater
than 62, we cannot go forward but must instead decrement the current level counter
to 1.

We next try to follow forward[1] of 31 to reach the node with value 58.
Since 58 is smaller than 62, we follow 58’s forward[1] pointer to 69. Since 69
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Figure 16.2 Illustration of the Skip List concept. (a) A simple linked list.
(b) Augmenting the linked list with additional pointers at every other node. To
find the node with key value 62, we visit the nodes with values 25, 31, 58, and 69,
then we move from the node with key value 58 to the one with value 62. (c) The
ideal Skip List, guaranteeing O(log n) search time. To find the node with key
value 62, we visit nodes in the order 31, 69, 58, then 69 again, and finally, 62.

is too big, follow 58’s level 0 pointer to 62. Since 62 is not less than 62, we fall out
of the while loop and move one step forward to the node with value 62.

The ideal Skip List of Figure 16.2(c) has been organized so that (if the first and
last nodes are not counted) half of the nodes have only one pointer, one quarter
have two, one eighth have three, and so on. The distances are equally spaced; in
effect this is a “perfectly balanced” Skip List. Maintaining such balance would be
expensive during the normal process of insertions and deletions. The key to Skip
Lists is that we do not worry about any of this. Whenever inserting a node, we
assign it a level (i.e., some number of pointers). The assignment is random, using
a geometric distribution yielding a 50% probability that the node will have one
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template <typename Key, typename Elem, typename Comp, typename getKey>
bool SkipList<Key, Elem, Comp, getKey>::
find(const Key& K, Elem& e) const {

SkipNode<Elem> *x = head; // Dummy header node
for (int i=level; i>=0; i--)

while ((x->forward[i] != NULL) &&
Comp::gt(K, getKey::key(x->forward[i]->value)))

x = x->forward[i];
x = x->forward[0]; // Move to actual record, if it exists
if ((x != NULL) && Comp::eq(K, getKey::key(x->value))) {

e = x->value;
return true;

}
else return false;

}
Figure 16.3 Implementation for the Skip List find function.

pointer, a 25% probability that it will have two, and so on. The following function
determines the level based on such a distribution:

// Pick a level using an exponential distribution
int randomLevel(void) {

int level = 0;
while (Random(2) == 0) level++;
return level;

}

Once the proper level for the node has been determined, the next step is to find
where the node should be inserted and link it in as appropriate at all of its levels.
Figure 16.4 shows an implementation for inserting a new value into the Skip List.

Figure 16.5 illustrates the Skip List insertion process. In this example, we
begin by inserting a node with value 10 into an empty Skip List. Assume that
randomLevel returns a value of 1 (i.e., the node is at level 1, with 2 pointers).
Since the empty Skip List has no nodes, the level of the list (and thus the level of
the header node) must be set to 1. The new node is inserted, yielding the Skip List
of Figure 16.5(a).

Next, insert the value 20. Assume this time that randomLevel returns 0. The
search process goes to the node with value 10, and the new node is inserted after,
as shown in Figure 16.5(b). The third node inserted has value 5, and again assume
that randomLevel returns 0. This yields the Skip List of Figure 16.5.c.

The fourth node inserted has value 2, and assume that randomLevel re-
turns 3. This means that the level of the Skip List must rise, causing the header
node to gain an additional two (NULL) pointers. At this point, the new node is
added to the front of the list, as shown in Figure 16.5(d).
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template <typename Key, typename Elem, typename Comp, typename getKey>
bool SkipList<Key, Elem, Comp, getKey>::
insert(const Elem& val) {

int i;
SkipNode<Elem> *x = head; // Start at header node
int newLevel = randomLevel(); // Select level for new node
if (newLevel > level) { // New node is deepest in list

AdjustHead(newLevel); // Add null pointers to header
level = newLevel;

}
SkipNode<Elem>* update[level+1]; // Track ends of levels
for(i=level; i>=0; i--) { // Search for insert position

while((x->forward[i] != NULL) &&
Comp::lt(getKey::key(x->forward[i]->value),

getKey::key(val)))
x = x->forward[i];

update[i] = x; // Keep track of end at level i
}
x = new SkipNode<Elem>(val, newLevel); // Create new node
for (i=0; i<=newLevel; i++) { // Splice into list

x->forward[i] = update[i]->forward[i]; // Where x points
update[i]->forward[i] = x; // Where y points

}
reccount++;
return true;

}
Figure 16.4 Implementation for the Skip List Insert function.

Finally, insert a node with value 30 at level 2. This time, let us take a close
look at what array update is used for. It stores the farthest node reached at each
level during the search for the proper location of the new node. The search process
begins in the header node at level 3 and proceeds to the node storing value 2. Since
forward[3] for this node is NULL, we cannot go further at this level. Thus,
update[3] stores a pointer to the node with value 2. Likewise, we cannot pro-
ceed at level 2, so update[2] also stores a pointer to the node with value 2. At
level 1, we proceed to the node storing value 10. This is as far as we can go at
level 1, so update[1] stores a pointer to the node with value 10. Finally, at
level 0 we end up at the node with value 20. At this point, we can add in the new
node with value 30. For each value i, the new node’s forward[i] pointer is
set to be update[i]->forward[i], and the nodes stored in update[i] for
indices 0 through 2 have their forward[i] pointers changed to point to the new
node. This “splices” the new node into the Skip List at all levels.

The remove function is left as an exercise. It is similar to inserting in that the
update array is built as part of searching for the record to be deleted; then those
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Figure 16.5 Illustration of Skip List insertion. (a) The Skip List after inserting
initial value 10 at level 1. (b) The Skip List after inserting value 20 at level 0.
(c) The Skip List after inserting value 5 at level 0. (d) The Skip List after inserting
value 2 at level 3. (e) The final Skip List after inserting value 30 at level 2.
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nodes specified by the update array have their forward pointers adjusted to point
around the node being deleted.

A newly inserted node could have a high level generated by randomLevel, or
a low level. It is possible that many nodes in the Skip List could have many point-
ers, leading to unnecessary insert cost and yielding poor (i.e., Θ(n)) performance
during search, since not many nodes will be skipped. Conversely, too many nodes
could have a low level. In the worst case, all nodes could be at level 0, equivalent
to a regular linked list. If so, search will again require Θ(n) time. However, the
probability that performance will be poor is quite low. There is only once chance in
1024 that ten nodes in a row will be at level 0. The motto of probabilistic data struc-
tures such as the Skip List is “Don’t worry, be happy.” We simply accept the results
of randomLevel and expect that probability will eventually work in our favor.
The advantage of this approach is that the algorithms are simple, while requiring
only Θ(log n) time for all operations in the average case.

In practice, the Skip List will probably have better performance than a BST. The
BST can have bad performance caused by the order in which data are inserted. For
example, if n nodes are inserted into a BST in ascending order of their key value,
then the BST will look like a linked list with the deepest node at depth n− 1. The
Skip List’s performance does not depend on the order in which values are inserted
into the list. As the number of nodes in the Skip List increases, the probability of
encountering the worst case decreases geometrically. Thus, the Skip List illustrates
a tension between the theoretical worst case (in this case, Θ(n) for a Skip List
operation), and a rapidly increasing probability of average-case performance of
Θ(log n), that characterizes probabilistic data structures.

16.4 Numerical Algorithms

Examples of problems:

• Raise a number to a power.
• Find common factors for two numbers.
• Tell whether a number is prime.
• Generate a random integer.
• Multiply two integers.

These operations use all the digits, and cannot use floating point approximation.
For large numbers, cannot rely on hardware (constant time) operations. Measure
input size by number of binary digits. Multiply, divide become expensive.

Analysis problem: Cost may depend on properties of the number other than
size. It is easy to check an even number for primeness.


