
Sec. 16.4 Numerical Algorithms 545

ceed at level 2, so update[2] also stores a pointer to the node with value 2. At
level 1, we proceed to the node storing value 10. This is as far as we can go at
level 1, so update[1] stores a pointer to the node with value 10. Finally, at
level 0 we end up at the node with value 20. At this point, we can add in the new
node with value 30. For each value i, the new node’s forward[i] pointer is
set to be update[i]->forward[i], and the nodes stored in update[i] for
indices 0 through 2 have their forward[i] pointers changed to point to the new
node. This “splices” the new node into the Skip List at all levels.

The remove function is left as an exercise. It is similar to inserting in that the
update array is built as part of searching for the record to be deleted; then those
nodes specified by the update array have their forward pointers adjusted to point
around the node being deleted.

A newly inserted node could have a high level generated by randomLevel, or
a low level. It is possible that many nodes in the Skip List could have many point-
ers, leading to unnecessary insert cost and yielding poor (i.e., Θ(n)) performance
during search, since not many nodes will be skipped. Conversely, too many nodes
could have a low level. In the worst case, all nodes could be at level 0, equivalent
to a regular linked list. If so, search will again require Θ(n) time. However, the
probability that performance will be poor is quite low. There is only once chance in
1024 that ten nodes in a row will be at level 0. The motto of probabilistic data struc-
tures such as the Skip List is “Don’t worry, be happy.” We simply accept the results
of randomLevel and expect that probability will eventually work in our favor.
The advantage of this approach is that the algorithms are simple, while requiring
only Θ(log n) time for all operations in the average case.

In practice, the Skip List will probably have better performance than a BST. The
BST can have bad performance caused by the order in which data are inserted. For
example, if n nodes are inserted into a BST in ascending order of their key value,
then the BST will look like a linked list with the deepest node at depth n− 1. The
Skip List’s performance does not depend on the order in which values are inserted
into the list. As the number of nodes in the Skip List increases, the probability of
encountering the worst case decreases geometrically. Thus, the Skip List illustrates
a tension between the theoretical worst case (in this case, Θ(n) for a Skip List
operation), and a rapidly increasing probability of average-case performance of
Θ(log n), that characterizes probabilistic data structures.

16.4 Numerical Algorithms

Examples of problems:

546 Chap. 16 Patterns of Algorithms

• Raise a number to a power.
• Find common factors for two numbers.
• Tell whether a number is prime.
• Generate a random integer.
• Multiply two integers.

These operations use all the digits, and cannot use floating point approximation.
For large numbers, cannot rely on hardware (constant time) operations. Measure
input size by number of binary digits. Multiply, divide become expensive.

Analysis problem: Cost may depend on properties of the number other than
size. It is easy to check an even number for primeness.

If you consider the cost over all k-bit inputs, cost grows with k. Features:

• Arithmetical operations are not cheap.
• There is only one instance of value n.
• There are 2k instances of length k or less.
• The size (length) of value n is log n.
• The cost may decrease when n increases in value, but generally increases

when n increases in size (length).

16.4.1 Exponentiation

How do we compute mn? We could multiply n − 1 times. Can we do better?
Approaches to divide and conquer:

• Relate mn to kn for k < m.
• Relate mn to mk for k < n.

If n is even, then mn = mn/2mn/2. If n is odd, then mn = mbn/2cmbn/2cm.

Power(base, exp) {
if exp = 0 return 1;
half = Power(base, exp/2);
half = half * half;
if (odd(exp)) then half = half * base;
return half;

}

Analysis of Power:

f(n) =
{

0 n = 1
f(bn/2c) + 1 + n mod 2 n > 1

Sec. 16.4 Numerical Algorithms 547

Solution:
f(n) = blog nc+ β(n)− 1

where β is the number of 1’s in the binary representation of n.
How does this cost compare with the problem size? Is this the best possible?

What if n = 15? What if n stays the same but m changes over many runs? In
general, finding the best set of multiplications is expensive (probably exponential).

16.4.2 Largest Common Factor

The largest common factor of two numbers is the largest integer that divides both
evenly. Observation: If k divides n and m, then k divides n −m. So, f(n, m) =
f(n −m,n) = f(m,n −m) = f(m,n). Observation: There exists k and l such
that

n = km + l where m > l ≥ 0.

n = bn/mcm + n mod m.

So, f(n, m) = f(m, l) = f(m,n mod m).

f(n, m) =
{

n m = 0
f(m,n mod m) m > 0

int LCF(int n, int m) {
if (m == 0) return n;
return LCF(m, n % m);

}

How big is n mod m relative to n?

n ≥ m ⇒ n/m ≥ 1
⇒ 2bn/mc > n/m

⇒ mbn/mc > n/2
⇒ n− n/2 > n−mbn/mc = n mod m

⇒ n/2 > n mod m

The first argument must be halved in no more than 2 iterations. Total cost:

548 Chap. 16 Patterns of Algorithms

16.4.3 Matrix Multiplication

The standard algorithm for multiplying two n × n matrices requires Θ(n3) time.
It is possible to do better than this by rearranging and grouping the multiplications
in various ways. One example of this is known as Strassen’s matrix multiplication
algorithm. Assume that n is a power of two. In the following, A and B are n×n ar-
rays, while Aij and Bij refer to arrays of size n/2×n/2. Strassen’s algorithm is to
multiply the subarrays together in a particular order, as expressed by the following
equation:[

A11 A12

A21 A22

][
B11 B12

B21 B22

]
=

[
s1 + s2 − s4 + s6 s4 + s5

s6 + s7 s2 − s3 + s5 − s7

]
.

In other words, the result of the multiplication for an n × n array is obtained by a
series of matrix multiplications and additions for n/2×n/2 arrays. Multiplications
between subarrays also use Strassen’s algorithm, and the addition of two subarrays
requires Θ(n2) time. The subfactors are defined as follows:

s1 = (A12 −A22) · (B21 + B22)
s2 = (A11 + A22) · (B11 + B22)
s3 = (A11 −A21) · (B11 + B12)
s4 = (A11 + A12) ·B22

s5 = A11 · (B12 −B22)
s6 = A22 · (B21 −B11)
s7 = (A21 + A22) ·B11.

1. Show that Strassen’s algorithm is correct.
2. How many multiplications of subarrays and how many additions are required

by Strassen’s algorithm? How many would be required by normal matrix
multiplication if it were defined in terms of subarrays in the same manner?
Show the recurrence relations for both Strassen’s algorithm and the normal
matrix multiplication algorithm.

3. Derive the closed-form solution for the recurrence relation you gave for
Strassen’s algorithm (use Theorem 14.1).

4. Give your opinion on the practicality of Strassen’s algorithm.

Given: n× n matrices A and B. Compute: C = A×B.

cij =
n∑

k=1

aikbkj .

Sec. 16.4 Numerical Algorithms 549

Straightforward algorithm requires Θ(n3) multiplications and additions.
Lower bound for any matrix multiplication algorithm: Ω(n2).
Another Approach — Compute:

m1 = (a12 − a22)(b21 + b22)
m2 = (a11 + a22)(b11 + b22)
m3 = (a11 − a21)(b11 + b12)
m4 = (a11 + a12)b22

m5 = a11(b12 − b22)
m6 = a22(b21 − b11)
m7 = (a21 + a22)b11

Then:

c11 = m1 + m2 −m4 + m6

c12 = m4 + m5

c21 = m6 + m7

c22 = m2 −m3 + m5 −m7

This requires 7 multiplications and 18 additions/subtractions.
Strassen’s Algorithm (1) Trade more additions/subtractions for fewer multipli-

cations in 2 × 2 case. (2) Divide and conquer. In the straightforward implementa-
tion, 2× 2 case is:

c11 = a11b11 + a12b21

c12 = a11b12 + a12b22

c21 = a21b11 + a22b21

c22 = a21b12 + a22b22

Requires 8 multiplications and 4 additions.
Divide and conquer step: Assume n is a power of 2. Express C = A × B in

terms of n
2 ×

n
2 matrices. By Strassen’s algorithm, this can be computed with 7

multiplications and 18 additions/subtractions of n/2× n/2 matrices.
Recurrence:

T (n) = 7T (n/2) + 18(n/2)2

T (n) = Θ(nlog2 7) = Θ(n2.81).

550 Chap. 16 Patterns of Algorithms

Current “fastest” algorithm is Θ(n2.376) Open question: Can matrix multipli-
cation be done in O(n2) time?

16.4.4 Random Numbers

Which sequences are random?

• 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
• 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
• 2, 7, 1, 8, 2, 8, 1, 8, 2, ...

Meanings of “random”:

• Cannot predict the next item: unpredictable.
• Series cannot be described more briefly than to reproduce it: equidistribu-

tion.

There is no such thing as a random number sequence, only “random enough”
sequences. A sequence is pseudorandom if no future term can be predicted in
polynomial time, given all past terms.

Most computer systems use a deterministic algorithm to select pseudorandom
numbers. Linear congruential method: Pick a seed r(1). Then,

r(i) = (r(i− 1)× b) mod t.

Resulting numbers must be in range: What happens if r(i) = r(j)? Must pick
good values for b and t. t should be prime.

Examples:

r(i) = 6r(i− 1) mod 13 =
..., 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, ...

r(i) = 7r(i− 1) mod 13 =
..., 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1, ...

r(i) = 5r(i− 1) mod 13 =
..., 1, 5, 12, 8, 1, ...
..., 2, 10, 11, 3, 2, ...
..., 4, 7, 9, 6, 4, ...
..., 0, 0, ...

Suggested generator:

r(i) = 16807r(i− 1) mod 231 − 1.

Sec. 16.4 Numerical Algorithms 551

16.4.5 Fast Fourier Transform

An example of a useful reduction is multiplication through the use of logarithms.
Multiplication is considerably more difficult than addition, since the cost to mul-
tiply two n-bit numbers directly is O(n2), while addition of two n-bit numbers is
O(n). Recall from Section 2.3 that one property of logarithms is

log nm = log n + log m.

Thus, if taking logarithms and anti-logarithms were cheap, then we could reduce
multiplication to addition by taking the log of the two operands, adding, and then
taking the anti-log of the sum.

Under normal circumstances, taking logarithms and anti-logarithms is expen-
sive, and so this reduction would not be considered practical. However, this reduc-
tion is precisely the basis for the slide rule. The slide rule uses a logarithmic scale
to measure the lengths of two numbers, in effect doing the conversion to logarithms
automatically. These two lengths are then added together, and the inverse logarithm
of the sum is read off another logarithmic scale. The part normally considered ex-
pensive (taking logarithms and anti-logarithms) is cheap since it is a physical part
of the slide rule. Thus, the entire multiplication process can be done cheaply via a
reduction to addition.

Compared to addition, multiplication is hard. In the physical world, addition is
merely concatenating two lengths. Observation:

log nm = log n + log m.

Therefore,
nm = antilog(log n + log m).

What if taking logs and antilogs were easy? The slide rule does exactly this! It
is essentially two rulers in log scale. Slide the scales to add the lengths of the two
numbers (in log form). The third scale shows the value for the total length.

Now lets consider multiplying polynomials. A vector a of n values can uniquely
represent a polynomial of degree n− 1

Pa(x) =
n−1∑
i=0

aix
i.

Alternatively, a polynomial can be uniquely represented by a list of its values
at n distinct points. Finding the value for a polynomial at a given point is called

552 Chap. 16 Patterns of Algorithms

evaluation. Finding the coefficients for the polynomial given the values at n points
is called interpolation.

To multiply two n− 1-degree polynomials A and B normally takes Θ(n2) co-
efficient multiplications. However, if we evaluate both polynomials (at the same
points), we can simply multiply the corresponding pairs of values to get the corre-
sponding values for polynomial AB. Process:

• Evaluate polynomials A and B at enough points.
• Pairwise multiplications of resulting values.
• Interpolation of resulting values.

This can be faster than Θ(n2) IF a fast way can be found to do evaluation/interpolation
of 2n− 1 points. Normally this takes Θ(n2) time. (Why?)

Example 16.2 Polynomial A: x2 + 1. Polynomial B: 2x2 − x + 1. Poly-
nomial AB: 2x4 − x3 + 3x2 − x + 1.

Note that evaluating a polynomial at 0 is easy. If we evaluate at 1 and
-1, we can share a lot of the work between the two evaluations. Can we find
enough such points to make the process cheap?

AB(−1) = (2)(4) = 8
AB(0) = (1)(1) = 1
AB(1) = (2)(2) = 4

But: We need 5 points to nail down Polynomial AB. And, we also need
to interpolate the 5 values to get the coefficients back.

Observation: In general, we can write Pa(x) = Ea(x) + Oa(x) where Ea is
the even powers and Oa is the odd powers. So,

Pa(x) =
n/2−1∑

i=0

a2ix
2i +

n/2−1∑
i=0

a2i+1x
2i+1

The significance is that when evaluating the pair of values x and −x, we get

Ea(x) + Oa(x) = Ea(x)−Oa(−x)
Oa(x) = −Oa(−x)

Sec. 16.4 Numerical Algorithms 553

Thus, we only need to compute the E’s and O’s once instead of twice to get
both evaluations.

The key to fast polynomial multiplication is finding the right points to use
for evaluation/interpolation to make the process efficient. Complex number z is
a primitive nth root of unity if

1. zn = 1 and
2. zk 6= 1 for 0 < k < n.

z0, z1, ..., zn−1 are the nth roots of unity. Example: For n = 4, z = i or z = −i.
Identity: eiπ = −1.

In general, zj = e2πij/n = −12j/n. Significance: We can find as many points
on the circle as we need.

Define an n× n matrix Az with row i and column j as

Az = (zij).

Example: n = 4, z = i:

Az =

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

Let a = [a0, a1, ..., an−1]T be a vector. We can evaluate the polynomial at the nth
roots of unity:

Fz = Aza = b.

bi =
n−1∑
k=0

akz
ik.

For n = 8, z =
√

i. So,

Az =

1 1 1 1 1 1 1 1
1

√
i i i

√
i −1 −

√
i −i −i

√
i

1 i −1 −i 1 i −1 −i

1 i
√

i −i
√

i −1 −i
√

i i −
√

i
1 −1 1 −1 1 −1 1 −1
1 −

√
i i −i

√
i −1

√
i −i i

√
i

1 −i −1 i 1 −i −1 i

1 −i
√

i −i −
√

i −1 i
√

i i
√

i

554 Chap. 16 Patterns of Algorithms

We still have two problems: We need to be able to do this fast. Its still n2

multiplies to evaluate. If we multiply the two sets of evaluations (cheap), we still
need to be able to reverse the process (interpolate).

The interpolation step is nearly identical to the evaluation step.

F−1
z = A−1

z b′ = a′.

What is A−1
z ? This turns out to be simple to compute.

A−1
z =

1
n

A1/z.

In other words, do the same computation as before but substitute 1/z for z (and
multiply by 1/n at the end). So, if we can do one fast, we can do the other fast.

An efficient divide and conquer algorithm exists to perform both the evalua-
tion and the interpolation in Θ(n log n) time. This is called the Discrete Fourier
Transform (DFT). It is a recursive function that decomposes the matrix multipli-
cations, taking advantage of the symmetries made available by doing evaluation at
the nth roots of unity.

Polynomial multiplication of A and B:

• Represent an n− 1-degree polynomial as 2n− 1 coefficients:

[a0, a1, ..., an−1, 0, ..., 0]

• Perform DFT on representations for A and B

• Pairwise multiply results to get 2n− 1 values.
• Perform inverse DFT on result to get 2n− 1 degree polynomial AB.

Fourier_Transform(double *Polynomial, int n) {
// Compute the Fourier transform of Polynomial
// with degree n. Polynomial is a list of
// coefficients indexed from 0 to n-1. n is
// assumed to be a power of 2.
double Even[n/2], Odd[n/2], List1[n/2], List2[n/2];

if (n==1) return Polynomial[0];

for (j=0; j<=n/2-1; j++) {
Even[j] = Polynomial[2j];
Odd[j] = Polynomial[2j+1];

}
List1 = Fourier_Transform(Even, n/2);

Sec. 16.5 Further Reading 555

List2 = Fourier_Transform(Odd, n/2);
for (j=0; j<=n-1, J++) {

Imaginary z = pow(E, 2*i*PI*j/n);
k = j % (n/2);
Polynomial[j] = List1[k] + z*List2[k];

}
return Polynomial;

}

This just does the transform on one of the two polynomials. The full process is:
1. Transform each polynomial.
2. Multiply the resulting values (O(n) multiplies).
3. Do the inverse transformation on the result.

16.5 Further Reading

For further information on Skip Lists, see “Skip Lists: A Probabilistic Alternative
to Balanced Trees” by William Pugh [Pug90].

16.6 Exercises

16.1 Solve Towers of Hanoi using a dynamic programming algorithm.
16.2 There are six permutations of the lines

for (int k=0; k<G.n(); k++)
for (int i=0; i<G.n(); i++)
for (int j=0; j<G.n(); j++)

in floyd’s algorithm. Which ones give a correct algorithm?
16.3 Show the result of running Floyd’s all-pairs shortest-paths algorithm on the

graph of Figure 11.25.
16.4 The implementation for Floyd’s algorithm given in Section 16.2.2 is ineffi-

cient for adjacency lists because the edges are visited in a bad order when
initializing array D. What is the cost of of this initialization step for the adja-
cency list? How can this initialization step be revised so that it costs Θ(|V|2)
in the worst case?

16.5 State the greatest possible lower bound that you can for the all-pairs shortest-
paths problem, and justify your answer.

16.6 Show the Skip List that results from inserting the following values. Draw
the Skip List after each insert. With each value, assume the depth of its
corresponding node is as given in the list.

