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Mathematical Preliminaries

This chapter presents mathematical notation, background, and techniques used
throughout the book. This material is provided primarily for review and reference.
You might wish to return to the relevant sections when you encounter unfamiliar
notation or mathematical techniques in later chapters.

Section 2.7 on estimating might be unfamiliar to many readers. Estimating is
not a mathematical technique, but rather a general engineering skill. It is enor-
mously useful to computer scientists doing design work, since any proposed solu-
tion whose estimated resource requirements fall well outside the problem’s resource
constraints can be discarded immediately.

2.1 Sets and Relations

The concept of a set in the mathematical sense has wide application in computer
science. The notations and techniques of set theory are commonly used when de-
scribing and implementing algorithms because the abstractions associated with sets
often help to clarify and simplify algorithm design.

A set is a collection of distinguishable members or elements. The members
are typically drawn from some larger population known as the base type. Each
member of a set is either a primitive element of the base type or is a set itself.
There is no concept of duplication in a set. Each value from the base type is either
in the set or not in the set. For example, a set named P might be the three integers 7,
11, and 42. In this case, P’s members are 7, 11, and 42, and the base type is integer.

Figure 2.1 shows the symbols commonly used to express sets and their rela-
tionships. Here are some examples of this notation in use. First define two sets, P
and Q.

P = {2, 3, 5}, Q = {5, 10}.
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{1, 4} A set composed of the members 1 and 4
{x | x is a positive integer} A set definition using a set former

Example: the set of all positive integers
x ∈ P x is a member of set P
x /∈ P x is not a member of set P
∅ The null or empty set
|P| Cardinality: size of set P

or number of members for set P
P ⊆ Q, Q ⊇ P Set P is included in set Q,

set P is a subset of set Q,
set Q is a superset of set P

P ∪ Q Set Union:
all elements appearing in P OR Q

P ∩ Q Set Intersection:
all elements appearing in P AND Q

P − Q Set difference:
all elements of set P NOT in set Q

Figure 2.1 Set notation.

|P| = 3 (since P has three members) and |Q| = 2 (since Q has two members). The
union of P and Q, written P ∪ Q, is the set of elements in either P or Q, which is
{2, 3, 5, 10}. The intersection of P and Q, written P ∩ Q, is the set of elements
that appear in both P and Q, which is {5}. The set difference of P and Q, written
P − Q, is the set of elements that occur in P but not in Q, which is {2, 3}. Note
that P ∪ Q = Q ∪ P and that P ∩ Q = Q ∩ P, but in general P − Q 6= Q − P.
In this example, Q − P = {10}. Note that the set {4, 3, 5} is indistinguishable
from set P, since sets have no concept of order. Likewise, set {4, 3, 4, 5} is also
indistinguishable from P, since sets have no concept of duplicate elements.

The powerset of a set S is the set of all possible subsets for S. Consider the set
S = {a, b, c}. The powerset of S is

{∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.

Sometimes we wish to define a collection of elements with no order (like a
set), but with duplicate-valued elements. Such a collection is called a bag.1 To
distinguish bags from sets, I use square brackets [] around a bag’s elements. For

1The object referred to here as a bag is sometimes called a multilist. But, I reserve the term
multilist for a list that may contain sublists (see Section 12.1).
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example, bag [3, 4, 5, 4] is distinct from bag [3, 4, 5], while set {3, 4, 5, 4} is
indistinguishable from set {3, 4, 5}. However, bag [3, 4, 5, 4] is indistinguishable
from bag [3, 4, 4, 5].

A sequence is a collection of elements with an order, and which may contain
duplicate-valued elements. A sequence is also sometimes called a tuple or a vec-
tor. In a sequence, there is a 0th element, a 1st element, 2nd element, and so
on. I indicate a sequence by using angle brackets 〈〉 to enclose its elements. For
example, 〈3, 4, 5, 4〉 is a sequence. Note that sequence 〈3, 5, 4, 4〉 is distinct from
sequence 〈3, 4, 5, 4〉, and both are distinct from sequence 〈3, 4, 5〉.

A relation R over set S is a set of ordered pairs from S. As an example of a
relation, if S is {a, b, c}, then

{〈a, c〉, 〈b, c〉, 〈c, b〉}

is a relation, and
{〈a, a〉, 〈a, c〉, 〈b, b〉, 〈b, c〉, 〈c, c〉}

is a different relation. If tuple 〈x, y〉 is in relation R, we may use the infix notation
xRy. We often use relations such as the less than operator (<) on the natural
numbers, which includes ordered pairs such as 〈1, 3〉 and 〈2, 23〉, but not 〈3, 2〉 or
〈2, 2〉. Rather than writing the relationship in terms of ordered pairs, we typically
use an infix notation for such relations, writing 1 < 3.

Define the properties of relations as follows, where R is a binary relation over
set S.

• R is reflexive if aRa for all a ∈ S.
• R is symmetric if whenever aRb, then bRa, for all a, b ∈ S.
• R is antisymmetric if whenever aRb and bRa, then a = b, for all a, b ∈ S.
• R is transitive if whenever aRb and bRc, then aRc, for all a, b, c ∈ S.
As examples, for the natural numbers, < is antisymmetric and transitive; ≤ is

reflexive, antisymmetric, and transitive, and = is reflexive, antisymmetric, and tran-
sitive. For people, the relation “is a sibling of” is symmetric and transitive. If we
define a person to be a sibling of himself, then it is reflexive; if we define a person
not to be a sibling of himself, then it is not reflexive.

R is an equivalence relation on set S if it is reflexive, symmetric, and transitive.
An equivalence relation can be used to partition a set into equivalence classes. If
two elements a and b are equivalent to each other, we write a ≡ b. A partition of
a set S is a collection of subsets that are disjoint from each other and whose union
is S. An equivalence relation on set S partitions the set into subsets whose elements
are equivalent. See Section 6.2 for a discussion on how to represent equivalence
classes on a set. One application for disjoint sets appears in Section 11.5.2.
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Example 2.1 For the integers, = is an equivalence relation that partitions
each element into a distinct subset. In other words, for any integer a, three
things are true.

1. a = a,
2. if a = b then b = a, and
3. if a = b and b = c, then a = c.

Of course, for distinct integers a, b, and c there are never cases where
a = b, b = a, or b = c. So the claims that = is symmetric and transitive are
vacuously true (there are never examples in the relation where these events
occur). But since the requirements for symmetry and transitivity are not
violated, the relation is symmetric and transitive.

Example 2.2 If we clarify the definition of sibling to mean that a person
is a sibling of him- or herself, then the sibling relation is an equivalence
relation that partitions the set of people.

Example 2.3 We can use the modulus function (defined in the next sec-
tion) to define an equivalence relation. For the set of integers, use the mod-
ulus function to define a binary relation such that two numbers x and y are
in the relation if and only if x mod m = y mod m. Thus, for m = 4,
〈1, 5〉 is in the relation since 1 mod 4 = 5 mod 4. We see that modulus
used in this way defines an equivalence relation on the integers, and this re-
lation can be used to partition the integers into m equivalence classes. This
relation is an equivalence relation since

1. x mod m = x mod m for all x;
2. if x mod m = y mod m, then y mod m = x mod m; and
3. if x mod m = y mod m and y mod m = z mod m, then x mod

m = z mod m.

A binary relation is called a partial order if it is antisymmetric and transitive.2

The set on which the partial order is defined is called a partially ordered set or a
poset. Elements x and y of a set are comparable under a given relation if either

2Not all authors use this definition for partial order. I have seen at least three significantly different
definitions in the literature. I have selected the one that lets < and≤ both define partial orders on the
integers, since this seems the most natural to me.
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xRy or yRx. If every pair of distinct elements in a partial order are comparable,
then the order is called a total order or linear order.

Example 2.4 For the integers, the relations < and ≤ both define partial
orders. Operation < is a total order since, for every pair of integers x and y
such that x 6= y, either x < y or y < x. Likewise, ≤ is a total order since,
for every pair of integers x and y such that x 6= y, either x ≤ y or y ≤ x.

Example 2.5 For the powerset of the integers, the subset operator de-
fines a partial order (since it is antisymmetric and transitive). For example,
{1, 2} ⊆ {1, 2, 3}. However, sets {1, 2} and {1, 3} are not comparable by
the subset operator, since neither is a subset of the other. Therefore, the
subset operator does not define a total order on the powerset of the integers.

2.2 Miscellaneous Notation

Units of measure: I use the following notation for units of measure. “B” will
be used as an abbreviation for bytes, “b” for bits, “KB” for kilobytes (210 =
1024 bytes), “MB” for megabytes (220 bytes), “GB” for gigabytes (230 bytes), and
“ms” for milliseconds (a millisecond is 1

1000 of a second). Spaces are not placed be-
tween the number and the unit abbreviation when a power of two is intended. Thus
a disk drive of size 25 gigabytes (where a gigabyte is intended as 230 bytes) will be
written as “25GB.” Spaces are used when a decimal value is intended. An amount
of 2000 bits would therefore be written “2 Kb” while “2Kb” represents 2048 bits.
2000 milliseconds is written as 2000 ms. Note that in this book large amounts of
storage are nearly always measured in powers of two and times in powers of ten.

Factorial function: The factorial function, written n! for n an integer greater
than 0, is the product of the integers between 1 and n, inclusive. Thus, 5! =
1 · 2 · 3 · 4 · 5 = 120. As a special case, 0! = 1. The factorial function grows
quickly as n becomes larger. Since computing the factorial function directly is
a time-consuming process, it can be useful to have an equation that provides a
good approximation. Stirling’s approximation states that n! ≈

√
2πn(n

e )n, where
e ≈ 2.71828 (e is the base for the system of natural logarithms).3 Thus we see that
while n! grows slower than nn (since

√
2πn/en < 1), it grows faster than cn for

any positive integer constant c.

3The symbol “≈” means “approximately equal.”
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Permutations: A permutation of a sequence S is simply the members of S ar-
ranged in some order. For example, a permutation of the integers 1 through n
would be those values arranged in some order. If the sequence contains n distinct
members, then there are n! different permutations for the sequence. This is because
there are n choices for the first member in the permutation; for each choice of first
member there are n − 1 choices for the second member, and so on. Sometimes
one would like to obtain a random permutation for a sequence, that is, one of the
n! possible permutations is selected in such a way that each permutation has equal
probability of being selected. A simple C++ function for generating a random per-
mutation is as follows. Here, the n values of the sequence are stored in positions 0
through n − 1 of array A, function swap(A, i, j) exchanges elements i and
j in array A, and Random(n) returns an integer value in the range 0 to n− 1 (see
the Appendix for more information on swap and Random).

// Randomly permute the "n" values of array "A"
template<typename Elem>
void permute(Elem A[], int n) {

for (int i=n; i>0; i--)
swap(A, i-1, Random(i));

}

Boolean variables: A Boolean variable is a variable (of type bool in C++)
that takes on one of the two values true and false. These two values are often
associated with the values 1 and 0, respectively, although there is no reason why this
needs to be the case. It is poor programming practice to rely on the correspondence
between 0 and false, since these are logically distinct objects of different types.

Floor and ceiling: The floor of x (written bxc) takes real value x and returns the
greatest integer ≤ x. For example, b3.4c = 3, as does b3.0c, while b−3.4c = −4
and b−3.0c = −3. The ceiling of x (written dxe) takes real value x and returns
the least integer ≥ x. For example, d3.4e = 4, as does d4.0e, while d−3.4e =
d−3.0e = −3. In C++, the corresponding library functions are floor and ceil.

Modulus operator: The modulus (or mod) function returns the remainder of an
integer division. Sometimes written n mod m in mathematical expressions, the
syntax for the C++ modulus operator is n % m. From the definition of remainder,
n mod m is the integer r such that n = qm + r for q an integer, and 0 ≤ r <
m. Alternatively, the modulus is n − mbn/mc. The result of n mod m must be
between 0 and m − 1. For example, 5 mod 3 = 2; 25 mod 3 = 1, 5 mod 7 = 5,
5 mod 5 = 0, and −3 mod 5 = 2.
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2.3 Logarithms

A logarithm of base b for value y is the power to which b is raised to get y. Nor-
mally, this is written as logb y = x. Thus, if logb y = x then bx = y, and blogby = y.

Logarithms are used frequently by programmers. Here are two typical uses.

Example 2.6 Many programs require an encoding for a collection of ob-
jects. What is the minimum number of bits needed to represent n distinct
code values? The answer is dlog2 ne bits. For example, if you have 1000
codes to store, you will require at least dlog2 1000e = 10 bits to have 1000
different codes (10 bits provide 1024 distinct code values).

Example 2.7 Consider the binary search algorithm for finding a given
value within an array sorted by value from lowest to highest. Binary search
first looks at the middle element and determines if the value being searched
for is in the upper half or the lower half of the array. The algorithm then
continues splitting the appropriate subarray in half until the desired value
is found. (Binary search is described in more detail in Section 3.5.) How
many times can an array of size n be split in half until only one element
remains in the final subarray? The answer is dlog2 ne times.

In this book, nearly all logarithms used have a base of two. This is because
data structures and algorithms most often divide things in half, or store codes with
binary bits. Whenever you see the notation log n in this book, either log2 n is meant
or else the term is being used asymptotically and the actual base does not matter. If
any base for the logarithm other than two is intended, then the base will be shown
explicitly.

Logarithms have the following properties, for any positive values of m, n, and
r, and any positive integers a and b.

1. log(nm) = log n + log m.
2. log(n/m) = log n− log m.
3. log(nr) = r log n.
4. loga n = logb n/ logb a.
The first two properties state that the logarithm of two numbers multiplied (or

divided) can be found by adding (or subtracting) the logarithms of the two num-
bers.4 Property (3) is simply an extension of property (1). Property (4) tells us that,

4These properties are the idea behind the slide rule. Adding two numbers can be viewed as joining
two lengths together and measuring their combined length. Multiplication is not so easily done.
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for variable n and any two integer constants a and b, loga n and logb n differ by
the constant factor logb a, regardless of the value of n. Most runtime analyses in
this book are of a type that ignores constant factors in costs. Property (4) says that
such analyses need not be concerned with the base of the logarithm, since this can
change the total cost only by a constant factor. Note that 2log n = n.

When discussing logarithms, exponents often lead to confusion. Property (3)
tells us that log n2 = 2 log n. How do we indicate the square of the logarithm
(as opposed to the logarithm of n2)? This could be written as (log n)2, but it is
traditional to use log2 n. On the other hand, we might want to take the logarithm of
the logarithm of n. This is written log log n.

A special notation is used in the rare case where we would like to know how
many times we must take the log of a number before we reach a value ≤ 1. This
quantity is written log∗ n. For example, log∗ 1024 = 4 since log 1024 = 10,
log 10 ≈ 3.33, log 3.33 ≈ 1.74, and log 1.74 < 1, which is a total of 4 log opera-
tions.

2.4 Summations and Recurrences

Most programs contain loop constructs. When analyzing running time costs for
programs with loops, we need to add up the costs for each time the loop is executed.
This is an example of a summation. Summations are simply the sum of costs for
some function applied to a range of parameter values. Summations are typically
written with the following “Sigma” notation:

n∑
i=1

f(i).

This notation indicates that we are summing the value of f(i) over some range of
(integer) values. The parameter to the expression and its initial value are indicated
below the

∑
symbol. Here, the notation i = 1 indicates that the parameter is i and

that it begins with the value 1. At the top of the
∑

symbol is the expression n. This
indicates the maximum value for the parameter i. Thus, this notation means to sum
the values of f(i) as i ranges from 1 through n. This can also be written

f(1) + f(2) + · · ·+ f(n− 1) + f(n).

However, if the numbers are first converted to the lengths of their logarithms, then those lengths can
be added and the inverse logarithm of the resulting length gives the answer for the multiplication (this
is simply logarithm property (1)). A slide rule measures the length of the logarithm for the numbers,
lets you slide bars representing these lengths to add up the total length, and finally converts this total
length to the correct numeric answer by taking the inverse of the logarithm for the result.
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Within a sentence, Sigma notation is typeset as
∑n

i=1 f(i).
Given a summation, you often wish to replace it with a direct equation with the

same value as the summation. This is known as a closed-form solution, and the
process of replacing the summation with its closed-form solution is known as solv-
ing the summation. For example, the summation

∑n
i=1 1 is simply the expression

“1” summed n times (remember that i ranges from 1 to n). Since the sum of n 1s
is n, the closed-form solution is n. The following is a list of useful summations,
along with their closed-form solutions.

n∑
i=1

i =
n(n + 1)

2
. (2.1)

n∑
i=1

i2 =
2n3 + 3n2 + n

6
=

n(2n + 1)(n + 1)
6

. (2.2)

log n∑
i=1

n = n log n. (2.3)

∞∑
i=0

ai =
1

1− a
for 0 < a < 1. (2.4)

n∑
i=0

ai =
an+1 − 1

a− 1
for a 6= 1. (2.5)

As special cases to Equation 2.5,
n∑

i=1

1
2i

= 1− 1
2n

, (2.6)

and
n∑

i=0

2i = 2n+1 − 1. (2.7)

As a corollary to Equation 2.7,
log n∑
i=0

2i = 2log n+1 − 1 = 2n− 1. (2.8)

Finally,
n∑

i=1

i

2i
= 2− n + 2

2n
. (2.9)
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The sum of reciprocals from 1 to n, called the Harmonic Series and written
Hn, has an approximate closed-form solution as follows:

Hn =
n∑

i=1

1
i
; loge n < Hn < 1 + loge n. (2.10)

Most of these equalities can be proved easily by mathematical induction (see
Section 2.6.3). Unfortunately, induction does not help us derive a closed-form solu-
tion. It only confirms when a proposed closed-form solution is correct. Techniques
for deriving closed-form solutions are discussed in Section 14.1.

The running time for a recursive algorithm is most easily expressed by a recur-
sive expression since the total time for the recursive algorithm includes the time
to run the recursive call(s). A recurrence relation defines a function by means
of an expression that includes one or more (smaller) instances of itself. A classic
example is the recursive definition for the factorial function:

n! = (n− 1)! · n for n > 1; 1! = 0! = 1.

Another standard example of a recurrence is the Fibonacci sequence:

Fib(n) = Fib(n− 1) + Fib(n− 2) for n > 2; Fib(1) = Fib(2) = 1.

From this definition we see that the first seven numbers of the Fibonacci sequence
are

1, 1, 2, 3, 5, 8, and 13.

Notice that this definition contains two parts: the general definition for Fib(n) and
the base cases for Fib(1) and Fib(2). Likewise, the definition for factorial contains
a recursive part and base cases.

Recurrence relations are often used to model the cost of recursive functions. For
example, the number of multiplications required by function fact of Section 2.5
for an input of size n will be zero when n = 0 or n = 1 (the base cases), and it will
be one plus the cost of calling fact on a value of n− 1. This can be defined using
the following recurrence:

T(n) = T(n− 1) + 1 for n > 1; T(0) = T(1) = 0.

As with summations, we typically wish to replace the recurrence relation with
a closed-form solution. One approach is to expand the recurrence by replacing any
occurrences of T on the right-hand side with its definition.
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Example 2.8 If we expand the recurrence T(n) = T(n− 1) + 1, we get

T(n) = T(n− 1) + 1

= (T(n− 2) + 1) + 1.

We can expand the recurrence as many steps as we like, but the goal is
to detect some pattern that will permit us to rewrite the recurrence in terms
of a summation. In this example, we might notice that

(T(n− 2) + 1) + 1 = T(n− 2) + 2

and if we expand the recurrence again, we get

T(n) = T(n− 2) + 2 = T(n− 3) + 1 + 2 = T(n− 3) + 3

which generalizes to the pattern T(n) = T(n− i) + i. We might conclude
that

T(n) = T(n− (n− 1)) + (n− 1)

= T(1) + n− 1

= n− 1.

Since we have merely guessed at a pattern and not actually proved that
this is the correct closed form solution, we can use an induction proof to
complete the process (see Example 2.13).

Example 2.9 A slightly more complicated recurrence is

T(n) = T(n− 1) + n; T (1) = 1.

Expanding this recurrence a few steps, we get

T(n) = T(n− 1) + n

= T(n− 2) + (n− 1) + n

= T(n− 3) + (n− 2) + (n− 1) + n.



38 Chap. 2 Mathematical Preliminaries

We should then observe that this recurrence appears to have a pattern that
leads to

T(n) = T(n− (n− 1)) + (n− (n− 2)) + · · ·+ (n− 1) + n

= 1 + 2 + · · ·+ (n− 1) + n.

This is equivalent to the summation
∑n

i=1 i, for which we already know the
closed-form solution.

Techniques to find closed-form solutions for recurrence relations are discussed
in Section 14.2. Prior to Chapter 14, recurrence relations are used infrequently in
this book, and the corresponding closed-form solution and an explanation for how
it was derived will be supplied at the time of use.

2.5 Recursion

An algorithm is recursive if it calls itself to do part of its work. For this approach
to be successful, the “call to itself” must be on a smaller problem then the one
originally attempted. In general, a recursive algorithm must have two parts: the
base case, which handles a simple input that can be solved without resorting to
a recursive call, and the recursive part which contains one or more recursive calls
to the algorithm where the parameters are in some sense “closer” to the base case
than those of the original call. Here is a recursive C++ function to compute the
factorial of n. (See the appendix for the definition of Assert.) A trace of fact’s
execution for a small value of n is presented in Section 4.3.4.

long fact(int n) { // Compute n! recursively
// To fit n! into a long variable, we require n <= 12
Assert((n >= 0) && (n <= 12), "Input out of range");
if (n <= 1) return 1; // Base case: return base solution
return n * fact(n-1); // Recursive call for n > 1

}

The first two lines of the function constitute the base cases. If n ≤ 1, then one
of the base cases computes a solution for the problem. If n > 1, then fact calls
a function that knows how to find the factorial of n − 1. Of course, the function
that knows how to compute the factorial of n − 1 happens to be fact itself. But
we should not think too hard about this while writing the algorithm. The design
for recursive algorithms can always be approached in this way. First write the base
cases. Then think about solving the problem by combining the results of one or
more smaller — but similar — subproblems. If the algorithm you write is correct,
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(a) (b)

Figure 2.2 Towers of Hanoi example. (a) The initial conditions for a problem
with six rings. (b) A necessary intermediate step on the road to a solution.

then certainly you can rely on it (recursively) to solve the smaller subproblems.
The secret to success is: Do not worry about how the recursive call solves the
subproblem. Simply accept that it will solve it correctly, and use this result to in
turn correctly solve the original problem. What could be simpler?

Recursion has no counterpart in everyday problem solving. The concept can be
difficult to grasp since it requires you to think about problems in a new way. To use
recursion effectively, it is necessary to train yourself to stop analyzing the recursive
process beyond the recursive call. The subproblems will take care of themselves.
You just worry about the base cases and how to recombine the subproblems.

The recursive version of the factorial function might seem unnecessarily com-
plicated to you since the same effect can be achieved by using a while loop.
Here is another example of recursion, based on a famous puzzle called “Towers of
Hanoi.” The natural algorithm to solve this problem has multiple recursive calls. It
cannot be rewritten easily using while loops.

The Towers of Hanoi puzzle begins with three poles and n rings, where all rings
start on the leftmost pole (labeled Pole 1). The rings each have a different size, and
are stacked in order of decreasing size with the largest ring at the bottom, as shown
in Figure 2.2.a. The problem is to move the rings from the leftmost pole to the
rightmost pole (labeled Pole 3) in a series of steps. At each step the top ring on
some pole is moved to another pole. There is one limitation on where rings may be
moved: A ring can never be moved on top of a smaller ring.

How can you solve this problem? It is easy if you don’t think too hard about
the details. Instead, consider that all rings are to be moved from Pole 1 to Pole 3.
It is not possible to do this without first moving the bottom (largest) ring to Pole 3.
To do that, Pole 3 must be empty, and only the bottom ring can be on Pole 1.
The remaining n − 1 rings must be stacked up in order on Pole 2, as shown in
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Figure 2.2.b. How can you do this? Assume that a function X is available to solve
the problem of moving the top n − 1 rings from Pole 1 to Pole 2. Then move
the bottom ring from Pole 1 to Pole 3. Finally, again use function X to move the
remaining n− 1 rings from Pole 2 to Pole 3. In both cases, “function X” is simply
the Towers of Hanoi function called on a smaller version of the problem.

The secret to success is relying on the Towers of Hanoi algorithm to do the
work for you. You need not be concerned about the gory details of how the Towers
of Hanoi subproblem will be solved. That will take care of itself provided that two
things are done. First, there must be a base case (what to do if there is only one
ring) so that the recursive process will not go on forever. Second, the recursive call
to Towers of Hanoi can only be used to solve a smaller problem, and then only one
of the proper form (one that meets the original definition for the Towers of Hanoi
problem, assuming appropriate renaming of the poles).

Here is a C++ implementation for the recursive Towers of Hanoi algorithm.
Function move(start, goal) takes the top ring from Pole start and moves
it to Pole goal. If the move function were to print the values of its parameters,
then the result of calling TOHwould be a list of ring-moving instructions that solves
the problem.

void TOH(int n, Pole start, Pole goal, Pole temp) {
if (n == 0) return; // Base case
TOH(n-1, start, temp, goal); // Recursive call: n-1 rings
move(start, goal); // Move one ring
TOH(n-1, temp, goal, start); // Recursive call: n-1 rings

}

Those who are unfamiliar with recursion might find it hard to accept that it is
used primarily as a tool for simplifying the design and description of algorithms.
A recursive algorithm usually does not yield the most efficient computer program
for solving the problem since recursion involves function calls, which are typically
more expensive than other alternatives such as a while loop. However, the re-
cursive approach usually provides an algorithm that is reasonably efficient in the
sense discussed in Chapter 3. (But not always! See Exercise 2.11.) If necessary,
the clear, recursive solution can later be modified to yield a faster implementation,
as described in Section 4.3.4.

Many data structures are naturally recursive, in that they can be defined as be-
ing made up of self-similar parts. Tree structures are an example of this. Thus,
the algorithms to manipulate such data structures are often presented recursively.
Many searching and sorting algorithms are based on a strategy of divide and con-
quer. That is, a solution is found by breaking the problem into smaller (similar)
subproblems, solving the subproblems, then combining the subproblem solutions
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to form the solution to the original problem. This process is often implemented
using recursion. Thus, recursion plays an important role throughout this book, and
many more examples of recursive functions will be given.

2.6 Mathematical Proof Techniques

Solving any problem has two distinct parts: the investigation and the argument.
Students are too used to seeing only the argument in their textbooks and lectures.
But to be successful in school (and in life after school), one needs to be good at
both, and to understand the differences between these two phases of the process.
To solve the problem, you must investigate successfully. That means engaging the
problem, and working through until you find a solution. Then, to give the answer
to your client (whether that “client” be your instructor when writing answers on
a homework assignment or exam, or a written report to your boss), you need to
be able to make the argument in a way that gets the solution across clearly and
succinctly. The argument phase involves good technical writing skills — the ability
to make a clear, logical argument.

Being conversant with standard proof techniques can help you in this process.
Knowing how to write a good proof helps in many ways. First, it clarifies your
thought process, which in turn clarifies your explanations. Second, if you use one of
the standard proof structures such as proof by contradiction or an induction proof,
then both you and your reader are working from a shared understanding of that
structure. That makes for less complexity to your reader to understand your proof,
since the reader need not decode the structure of your argument from scratch.

This section briefly introduces three commonly used proof techniques: (i) de-
duction, or direct proof; (ii) proof by contradiction, and (iii) proof by mathematical
induction.

2.6.1 Direct Proof

In general, a direct proof is just a “logical explanation.” A direct proof is some-
times referred to as an argument by deduction. This is simply an argument in terms
of logic. Often written in English with words such as “if ... then,” it could also
be written with logic notation such as “P ⇒ Q.” Even if we don’t wish to use
symbolic logic notation, we can still take advantage of fundamental theorems of
logic to structure our arguments. For example, if we want to prove that P and Q
are equivalent, we can first prove P ⇒ Q and then prove Q ⇒ P . And if it helps,
we can prove P ⇒ Q by proving (not Q) ⇒ (not P ).



42 Chap. 2 Mathematical Preliminaries

In some domains, proofs are essentially a series of state changes from a start
state to an end state. Formal predicate logic can be viewed in this way, with the vari-
ous “rules of logic” being used to make the changes from one formula or combining
a couple of formulas to make a new formula on the route to the destination. Sym-
bolic manipulations to solve integration problems in introductory calculus classes
are similar in spirit, as are high school geometry proofs.

2.6.2 Proof by Contradiction

The simplest way to disprove a theorem or statement is to find a counterexample
to the theorem. Unfortunately, no number of examples supporting a theorem is
sufficient to prove that the theorem is correct. However, there is an approach that
is vaguely similar to disproving by counterexample, called Proof by Contradiction.
To prove a theorem by contradiction, we first assume that the theorem is false. We
then find a logical contradiction stemming from this assumption. If the logic used
to find the contradiction is correct, then the only way to resolve the contradiction is
to recognize that the assumption that the theorem is false must be incorrect. That
is, we conclude that the theorem must be true.

Example 2.10 Here is a simple proof by contradiction.

Theorem 2.1 There is no largest integer.
Proof: Proof by contradiction.

Step 1. Contrary assumption: Assume that there is a largest integer.
Call it B (for “biggest”).

Step 2. Show this assumption leads to a contradiction: Consider
C = B + 1. C is an integer since it is the sum of two integers. Also,
C > B, which means that B is not the largest integer after all. Thus, we
have reached a contradiction. The only flaw in our reasoning is the initial
assumption that the theorem is false. Thus, we conclude that the theorem is
correct. 2

2.6.3 Proof by Mathematical Induction

Mathematical induction is much like recursion. It is applicable to a wide variety
of theorems. Induction also provides a useful way to think about algorithm design,
since it encourages you to think about solving a problem by building up from simple
subproblems. Induction can help to prove that a recursive function produces the
correct result.
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Within the context of algorithm analysis, one of the most important uses for
mathematical induction is as a method to test a hypothesis. As explained in Sec-
tion 2.4, when seeking a closed-form solution for a summation or recurrence we
might first guess or otherwise acquire evidence that a particular formula is the cor-
rect solution. If the formula is indeed correct, it is often an easy matter to prove
that fact with an induction proof.

Let Thrm be a theorem to prove, and express Thrm in terms of a positive
integer parameter n. Mathematical induction states that Thrm is true for any value
of parameter n (for n ≥ c, where c is some constant) if the following two conditions
are true:

1. Base Case: Thrm holds for n = c, and
2. Induction Step: If Thrm holds for n− 1, then Thrm holds for n.

Proving the base case is usually easy, typically requiring that some small value
such as 1 be substituted for n in the theorem and applying simple algebra or logic
as necessary to verify the theorem. Proving the induction step is sometimes easy,
and sometimes difficult. An alternative formulation of the induction step is known
as strong induction. The induction step for strong induction is:

2a. Induction Step: If Thrm holds for all k, c ≤ k < n, then Thrm holds for n.

Proving either variant of the induction step (in conjunction with verifying the base
case) yields a satisfactory proof by mathematical induction.

The two conditions that make up the induction proof combine to demonstrate
that Thrm holds for n = 2 as an extension of the fact that Thrm holds for n = 1.
This fact, combined again with condition (2) or (2a), indicates that Thrm also holds
for n = 3, and so on. Thus, Thrm holds for all values of n (larger than the base
cases) once the two conditions have been proved.

What makes mathematical induction so powerful (and so mystifying to most
people at first) is that we can take advantage of the assumption that Thrm holds for
all values less than n to help us prove that Thrm holds for n. This is known as the
induction hypothesis. Having this assumption to work with makes the induction
step easier to prove than tackling the original theorem itself. Being able to rely on
the induction hypothesis provides extra information that we can bring to bear on
the problem.

There are important similarities between recursion and induction. Both are
anchored on one or more base cases. A recursive function relies on the ability
to call itself to get the answer for smaller instances of the problem. Likewise,
induction proofs rely on the truth of the induction hypothesis to prove the theorem.
The induction hypothesis does not come out of thin air. It is true if and only if the
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theorem itself is true, and therefore is reliable within the proof context. Using the
induction hypothesis it do work is exactly the same as using a recursive call to do
work.

Example 2.11 Here is a sample proof by mathematical induction. Call
the sum of the first n positive integers S(n).

Theorem 2.2 S(n) = n(n + 1)/2.
Proof: The proof is by mathematical induction.

1. Check the base case. For n = 1, verify that S(1) = 1(1 + 1)/2.
S(1) is simply the sum of the first positive number, which is 1. Since
1(1 + 1)/2 = 1, the formula is correct for the base case.

2. State the induction hypothesis. The induction hypothesis is

S(n− 1) =
n−1∑
i=1

i =
(n− 1)((n− 1) + 1)

2
=

(n− 1)(n)
2

.

3. Use the assumption from the induction hypothesis for n − 1 to
show that the result is true for n. The induction hypothesis states
that S(n− 1) = (n − 1)(n)/2, and since S(n) = S(n− 1) + n, we
can substitute for S(n− 1) to get

n∑
i=1

i =

(
n−1∑
i=1

i

)
+ n =

(n− 1)(n)
2

+ n

=
n2 − n + 2n

2
=

n(n + 1)
2

.

Thus, by mathematical induction,

S(n) =
n∑

i=1

i = n(n + 1)/2.

2

Note carefully what took place in this example. First we cast S(n) in terms
of a smaller occurrence of the problem: S(n) = S(n− 1) + n. This is important
because once S(n− 1) comes into the picture, we can use the induction hypothesis
to replace S(n− 1)) with (n − 1)(n)/2. From here, it is simple algebra to prove
that S(n− 1) + n equals the right-hand side of the original theorem.
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Example 2.12 Here is another simple proof by induction that illustrates
choosing the proper variable for induction. We wish to prove by induction
that the sum of the first n positive odd numbers is n2. First we need a way
to describe the nth odd number, which is simply 2n − 1. This also allows
us to cast the theorem as a summation.

Theorem 2.3
∑n

i=1(2i− 1) = n2.
Proof: The base case of n = 1 yields 1 = 12, which is true. The induction
hypothesis is

n−1∑
i=1

(2i− 1) = (n− 1)2.

We now use the induction hypothesis to show that the theorem holds true
for n. The sum of the first n odd numbers is simply the sum of the first
n− 1 odd numbers plus the nth odd number. In the second line below, we
will use the induction hypothesis to replace the partial summation (shown
in brackets in the first line) with its closed-form solution. After that, algebra
takes care of the rest.

n∑
i=1

(2i− 1) =

[
n−1∑
i=1

(2i− 1)

]
+ 2n− 1

= (n− 1)2 + 2n− 1

= n2 − 2n + 1 + 2n− 1

= n2.

Thus, by mathematical induction,
∑n

i=1(2i− 1) = n2. 2

Example 2.13 This example shows how we can use induction to prove
that a proposed closed-form solution for a recurrence relation is correct.

Theorem 2.4 The recurrence relation T(n) = T(n−1)+1; T(1) = 0
has closed-form solution T(n) = n− 1.
Proof: To prove the base case, we observe that T(1) = 1 − 1 = 0. The
induction hypothesis is that T(n− 1) = n − 2. Combining the definition
of the recurrence with the induction hypothesis, we see immediately that

T(n) = T(n− 1) + 1 = n− 2 + 1 = n− 1
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for n > 1. Thus, we have proved the theorem correct by mathematical
induction. 2

Example 2.14 This example uses induction without involving summa-
tions or other equations. It also illustrates a more flexible use of base cases.

Theorem 2.5 2c/ and 5c/ stamps can be used to form any value (for values
≥ 4).
Proof: The theorem defines the problem for values≥ 4 because it does not
hold for the values 1 and 3. Using 4 as the base case, a value of 4c/ can be
made from two 2c/ stamps. The induction hypothesis is that a value of n−1
can be made from some combination of 2c/ and 5c/ stamps. We now use the
induction hypothesis to show how to get the value n from 2c/ and 5c/ stamps.
Either the makeup for value n − 1 includes a 5c/ stamp, or it does not. If
so, then replace a 5c/ stamp with three 2c/ stamps. If not, then the makeup
must have included at least two 2c/ stamps (since it is at least of size 4 and
contains only 2c/ stamps). In this case, replace two of the 2c/ stamps with a
single 5c/ stamp. In either case, we now have a value of n made up of 2c/
and 5c/ stamps. Thus, by mathematical induction, the theorem is correct. 2

Example 2.15 Here is an example using strong induction.

Theorem 2.6 For n > 1, n is divisible by some prime number.
Proof: For the base case, choose n = 2. 2 is divisible by the prime num-
ber 2. The induction hypothesis is that any value a, 2 ≤ a < n, is divisible
by some prime number. There are now two cases to consider when proving
the theorem for n. If n is a prime number, then n is divisible by itself. If n
is not a prime number, then n = a× b for a and b, both integers less than
n but greater than 1. The induction hypothesis tells us that a is divisible by
some prime number. That same prime number must also divide n. Thus,
by mathematical induction, the theorem is correct. 2

Our next example of mathematical induction proves a theorem from geometry.
It also illustrates a standard technique of induction proof where we take n objects
and remove some object to use the induction hypothesis.
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Figure 2.3 A two-coloring for the regions formed by three lines in the plane.

Example 2.16 Define a two-coloring for a set of regions as a way of as-
signing one of two colors to each region such that no two regions sharing a
side have the same color. For example, a chessboard is two-colored. Fig-
ure 2.3 shows a two-coloring for the plane with three lines. We will assume
that the two colors to be used are black and white.

Theorem 2.7 The set of regions formed by n infinite lines in the plane can
be two-colored.

Proof: Consider the base case of a single infinite line in the plane. This line
splits the plane into two regions. One region can be colored black and the
other white to get a valid two-coloring. The induction hypothesis is that the
set of regions formed by n − 1 infinite lines can be two-colored. To prove
the theorem for n, consider the set of regions formed by the n − 1 lines
remaining when any one of the n lines is removed. By the induction hy-
pothesis, this set of regions can be two-colored. Now, put the nth line back.
This splits the plane into two half-planes, each of which (independently)
has a valid two-coloring inherited from the two-coloring of the plane with
n − 1 lines. Unfortunately, the regions newly split by the nth line violate
the rule for a two-coloring. Take all regions on one side of the nth line and
reverse their coloring (after doing so, this half-plane is still two-colored).
Those regions split by the nth line are now properly two-colored, since the
part of the region to one side of the line is now black and the region to the
other side is now white. Thus, by mathematical induction, the entire plane
is two-colored. 2
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Compare the proof of Theorem 2.7 with that of Theorem 2.5. For Theorem 2.5,
we took a collection of stamps of size n − 1 (which, by the induction hypothesis,
must have the desired property) and from that “built” a collection of size n that
has the desired property. We therefore proved the existence of some collection of
stamps of size n with the desired property.

For Theorem 2.7 we must prove that any collection of n lines has the desired
property. Thus, our strategy is to take an arbitrary collection of n lines, and “re-
duce” it so that we have a set of lines that must have the desired property since it
matches the induction hypothesis. From there, we merely need to show that revers-
ing the original reduction process preserves the desired property.

In contrast, consider what would be required if we attempted to “build” from a
set of lines of size n− 1 to one of size n. We would have great difficulty justifying
that all possible collections of n lines are covered by our building process. By
reducing from an arbitrary collection of n lines to something less, we avoid this
problem.

This section’s final example shows how induction can be used to prove that a
recursive function produces the correct result.

Example 2.17 We would like to prove that function fact does indeed
compute the factorial function. There are two distinct steps to such a proof.
The first is to prove that the function always terminates. The second is to
prove that the function returns the correct value.

Theorem 2.8 Function fact will terminate for any value of n.
Proof: For the base case, we observe that fact will terminate directly
whenever n ≤ 0. The induction hypothesis is that fact will terminate for
n − 1. For n, we have two possibilities. One possibility is that n ≥ 12.
In that case, fact will terminate directly, since it will fail its assertion
test. Otherwise, fact will make a recursive call to fact(n-1). By the
induction hypothesis, fact(n-1) must terminate. 2

Theorem 2.9 Function fact does compute the factorial function for any
value in the range 0 to 12.
Proof: To prove the base case, observe that when n = 0 or n = 1,
fact(n) returns the correct value of 1. The induction hypothesis is that
fact(n-1) returns the correct value of (n− 1)!. For any value n within
the legal range, fact(n) returns n ∗ fact(n-1). By the induction hy-
pothesis, fact(n-1) = (n − 1)!, and since n ∗ (n − 1)! = n!, we have
proved that fact(n) produces the correct result. 2
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We can use a similar process to prove many recursive programs correct. The
general form is to show that the base cases perform correctly, and then to use the
induction hypothesis to show that the recursive step also produces the correct result.
Prior to this, we must prove that the function always terminates, which might also
be done using an induction proof.

2.7 Estimating

One of the most useful life skills that you can gain from your computer science
training is knowing how to perform quick estimates. This is sometimes known as
“back of the napkin” or “back of the envelope” calculation. Both nicknames sug-
gest that only a rough estimate is produced. Estimation techniques are a standard
part of engineering curricula but are often neglected in computer science. Estima-
tion is no substitute for rigorous, detailed analysis of a problem, but it can serve to
indicate when a rigorous analysis is warranted: If the initial estimate indicates that
the solution is unworkable, then further analysis is probably unnecessary.

Estimating can be formalized by the following three-step process:

1. Determine the major parameters that affect the problem.
2. Derive an equation that relates the parameters to the problem.
3. Select values for the parameters, and apply the equation to yield an estimated

solution.

When doing estimations, a good way to reassure yourself that the estimate is
reasonable is to do it in two different ways. In general, if you want to know what
comes out of a system, you can either try to estimate that directly, or you can
estimate what goes into the system (assuming that what goes in must later come
out). If both approaches (independently) give similar answers, then this should
build confidence in the estimate.

When calculating, be sure that your units match. For example, do not add feet
and pounds. Verify that the result is in the correct units. Always keep in mind that
the output of a calculation is only as good as its input. The more uncertain your
valuation for the input parameters in Step 3, the more uncertain the output value.
However, back of the envelope calculations are often meant only to get an answer
within an order of magnitude, or perhaps within a factor of two. Before doing an
estimate, you should decide on acceptable error bounds, such as within 10%, within
a factor of two, and so forth. Once you are confident that an estimate falls within
your error bounds, leave it alone! Do not try to get a more precise estimate than
necessary for your purpose.
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Example 2.18 How many library bookcases does it take to store books
containing one million pages? I estimate that a 500-page book requires one
inch on the library shelf (for example, look at the size of this book), yielding
about 200 feet of shelf space for one million pages. If a shelf is 4 feet
wide, then 50 shelves are required. If a bookcase contains 5 shelves, this
yields about 10 library bookcases. To reach this conclusion, I estimated the
number of pages per inch, the width of a shelf, and the number of shelves
in a bookcase. None of my estimates are likely to be precise, but I feel
confident that my answer is correct to within a factor of two. (After writing
this, I went to Virginia Tech’s library and looked at some real bookcases.
They were only about 3 feet wide, but typically had 7 shelves for a total
of 21 shelf-feet. So I was correct to within 10% on bookcase capacity, far
better than I expected or needed. One of my selected values was too high,
and the other too low, which canceled out the errors.)

Example 2.19 Is it more economical to buy a car that gets 20 miles per
gallon, or one that gets 30 miles per gallon but costs $2000 more? The
typical car is driven about 12,000 miles per year. If gasoline costs $2/gallon,
then the yearly gas bill is $1200 for the less efficient car and $800 for the
more efficient car. If we ignore issues such as the payback that would be
received if we invested $2000 in a bank, it would take 5 years to make
up the difference in price. At this point, the buyer must decide if price is
the only criterion and if a 5-year payback time is acceptable. Naturally,
a person who drives more will make up the difference more quickly, and
changes in gasoline prices will also greatly affect the outcome.

Example 2.20 When at the supermarket doing the week’s shopping, can
you estimate about how much you will have to pay at the checkout? One
simple way is to round the price of each item to the nearest dollar, and add
this value to a mental running total as you put the item in your shopping
cart. This will likely give an answer within a couple of dollars of the true
total.
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2.8 Further Reading

Most of the topics covered in this chapter are considered part of Discrete Math-
ematics. An introduction to this field is Discrete Mathematics with Applications
by Susanna S. Epp [Epp04]. An advanced treatment of many mathematical topics
useful to computer scientists is Concrete Mathematics: A Foundation for Computer
Science by Graham, Knuth, and Patashnik [GKP89].

See “Technically Speaking” from the February 1995 issue of IEEE Spectrum
[Sel95] for a discussion on the standard for indicating units of computer storage
used in this book.

Introduction to Algorithms by Udi Manber [Man89] makes extensive use of
mathematical induction as a technique for developing algorithms.

For more information on recursion, see Thinking Recursively by Eric S. Roberts
[Rob86]. To learn recursion properly, it is worth your while to learn the program-
ming language LISP, even if you never intend to write a LISP program. In particu-
lar, Friedman and Felleisen’s The Little LISPer [FF89] is designed to teach you how
to think recursively as well as teach you LISP. This book is entertaining reading as
well.

A good book on writing mathematical proofs is Daniel Solow’s How to Read
and Do Proofs [Sol90]. To improve your general mathematical problem-solving
abilities, see The Art and Craft of Problem Solving by Paul Zeitz [Zei07]. Zeitz
also discusses the three proof techniques presented in Section 2.6, and the roles of
investigation and argument in problem solving.

For more about estimating techniques, see two Programming Pearls by John
Louis Bentley entitled The Back of the Envelope and The Envelope is Back [Ben84,
Ben86a, Ben86b, Ben88]. Genius: The Life and Science of Richard Feynman by
James Gleick [Gle92] gives insight into how important back of the envelope calcu-
lation was to the developers of the atomic bomb, and to modern theoretical physics
in general.

2.9 Exercises

2.1 For each relation below, explain why the relation does or does not satisfy
each of the properties reflexive, symmetric, antisymmetric, and transitive.

(a) The empty relation ∅ (i.e., the relation with no ordered pairs for which
it is true) on the set of integers.

(b) “isBrotherOf” on the set of people.
(c) “isFatherOf” on the set of people.
(d) The relation R = {〈x, y〉 |x2 + y2 = 1} for real numbers x and y.
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(e) The relation R = {〈x, y〉 |x2 = y2} for real numbers x and y.
(f) The relation R = {〈x, y〉 |x mod y = 0} for x, y ∈ {1, 2, 3, 4}.

2.2 For each of the following relations, either prove that it is an equivalence
relation or prove that it is not an equivalence relation.

(a) For integers a and b, a ≡ b if and only if a + b is even.
(b) For integers a and b, a ≡ b if and only if a + b is odd.
(c) For nonzero rational numbers a and b, a ≡ b if and only if a× b > 0.
(d) For nonzero rational numbers a and b, a ≡ b if and only if a/b is an

integer.
(e) For rational numbers a and b, a ≡ b if and only if a− b is an integer.
(f) For rational numbers a and b, a ≡ b if and only if |a− b| ≤ 2.

2.3 State whether each of the following relations is a partial ordering, and explain
why or why not.

(a) “isFatherOf” on the set of people.
(b) “isAncestorOf” on the set of people.
(c) “isOlderThan” on the set of people.
(d) “isSisterOf” on the set of people.
(e) {〈a, b〉, 〈a, a〉, 〈b, a〉} on the set {a, b}.
(f) {〈2, 1〉, 〈1, 3〉, 〈2, 3〉} on the set {1, 2, 3}.

2.4 How many total orderings can be defined on a set with n elements? Explain
your answer.

2.5 Define an ADT for a set of integers (remember that a set has no concept of
duplicate elements, and has no concept of order). Your ADT should consist
of the functions that can be performed on a set to control its membership,
check the size, check if a given element is in the set, and so on. Each function
should be defined in terms of its input and output.

2.6 Define an ADT for a bag of integers (remember that a bag may contain du-
plicates, and has no concept of order). Your ADT should consist of the func-
tions that can be performed on a bag to control its membership, check the
size, check if a given element is in the set, and so on. Each function should
be defined in terms of its input and output.

2.7 Define an ADT for a sequence of integers (remember that a sequence may
contain duplicates, and supports the concept of position for its elements).
Your ADT should consist of the functions that can be performed on a se-
quence to control its membership, check the size, check if a given element is
in the set, and so on. Each function should be defined in terms of its input
and output.
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2.8 An investor places $30,000 into a stock fund. 10 years later the account has
a value of $69,000. Using logarithms and anti-logarithms, present a formula
for calculating the average annual rate of increase. Then use your formula to
determine the average annual growth rate for this fund.

2.9 Rewrite the factorial function of Section 2.5 without using recursion.
2.10 Rewrite the for loop for the random permutation generator of Section 2.2

as a recursive function.
2.11 Here is a simple recursive function to compute the Fibonacci sequence:

long fibr(int n) { // Recursive Fibonacci generator
// fibr(46) is largest value that fits in a long
Assert((n > 0) && (n < 47), "Input out of range");
if ((n == 1) || (n == 2)) return 1; // Base cases
return fibr(n-1) + fibr(n-2); // Recursion

}

This algorithm turns out to be very slow, calling Fibr a total of Fib(n) times.
Contrast this with the following iterative algorithm:

long fibi(int n) { // Iterative Fibonacci generator
// fibi(46) is largest value that fits in a long
Assert((n > 0) && (n < 47), "Input out of range");
long past, prev, curr; // Store temporary values
past = prev = curr = 1; // initialize
for (int i=3; i<=n; i++) { // Compute next value

past = prev; // past holds fibi(i-2)
prev = curr; // prev holds fibi(i-1)
curr = past + prev; // curr now holds fibi(i)

}
return curr;

}

Function Fibi executes the for loop n− 2 times.
(a) Which version is easier to understand? Why?
(b) Explain why Fibr is so much slower than Fibi.

2.12 Write a recursive function to solve a generalization of the Towers of Hanoi
problem where each ring may begin on any pole so long as no ring sits on
top of a smaller ring.

2.13 Consider the following function:

void foo (double val) {
if (val != 0.0)

foo(val/2.0);
}
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This function makes progress towards the base case on every recursive call.
In theory (that is, if double variables acted like true real numbers), would
this function ever terminate for input val a nonzero number? In practice (an
actual computer implementation), will it terminate?

2.14 Write a function to print all of the permutations for the elements of an array
containing n distinct integer values.

2.15 Write a recursive algorithm to print all of the subsets for the set of the first n
positive integers.

2.16 The Largest Common Factor (LCF) for two positive integers n and m is
the largest integer that divides both n and m evenly. LCF(n, m) is at least
one, and at most m, assuming that n ≥ m. Over two thousand years ago,
Euclid provided an efficient algorithm based on the observation that, when
n mod m 6= 0, LCF(n, m) = GCD(m, n mod m). Use this fact to write two
algorithms to find LCF for two positive integers. The first version should
compute the value iteratively. The second version should compute the value
using recursion.

2.17 Prove by contradiction that the number of primes is infinite.
2.18 (a) Use induction to show that n2 − n is always even.

(b) Give a direct proof in one or two sentences that n2 − n is always even.
(c) Show that n3 − n is always divisible by three.
(d) Is n5 − n aways divisible by 5? Explain your answer.

2.19 Prove that
√

2 is irrational.
2.20 Explain why

n∑
i=1

i =
n∑

i=1

(n− i + 1) =
n−1∑
i=0

(n− i).

2.21 Prove Equation 2.2 using mathematical induction.
2.22 Prove Equation 2.6 using mathematical induction.
2.23 Prove Equation 2.7 using mathematical induction.
2.24 Find a closed-form solution and prove (using induction) that your solution is

correct for the summation
n∑

i=1

3i.

2.25 Prove that the sum of the first n even numbers is n2 + n

(a) indirectly by assuming that the sum of the first n odd numbers is n2.
(b) directly by mathematical induction.
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2.26 Give a closed-form formula for the summation
∑n

i=a i where a is an integer
between 1 and n.

2.27 Prove that Fib(n) < (5
3)n.

2.28 Prove, for n ≥ 1, that
n∑

i=1

i3 =
n2(n + 1)2

4
.

2.29 The following theorem is called the Pigeonhole Principle.

Theorem 2.10 When n + 1 pigeons roost in n holes, there must be some
hole containing at least two pigeons.

(a) Prove the Pigeonhole Principle using proof by contradiction.
(b) Prove the Pigeonhole Principle using mathematical induction.

2.30 For this problem, you will consider arrangements of infinite lines in the plane
such that three or more lines never intersect at a single point.

(a) Give a recurrence relation that expresses the number of regions formed
by n lines, and explain why your recurrence is correct.

(b) Give the summation that results from expanding your recurrence.
(c) Give a closed-form solution for the summation.

2.31 Prove (using induction) that the recurrence T(n) = T(n− 1)+n; T(1) = 1
has as its closed-form solution T(n) = n(n + 1)/2.

2.32 Expand the following recurrence to help you find a closed-form solution, and
then use induction to prove your answer is correct.

T(n) = 2T(n− 1) + 1 for n > 0; T(0) = 0.

2.33 Expand the following recurrence to help you find a closed-form solution, and
then use induction to prove your answer is correct.

T(n) = T(n− 1) + 3n + 1 for n > 0; T(0) = 1.

2.34 Assume that an n-bit integer (represented by standard binary notation) takes
any value in the range 0 to 2n − 1 with equal probability.

(a) For each bit position, what is the probability of its value being 1 and
what is the probability of its value being 0?

(b) What is the average number of “1” bits for an n-bit random number?
(c) What is the expected value for the position of the leftmost “1” bit? In

other words, how many positions on average must we examine when
moving from left to right before encountering a “1” bit? Show the
appropriate summation.
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2.35 What is the total volume of your body in liters (or, if you prefer, gallons)?
2.36 An art historian has a database of 20,000 full-screen color images.

(a) About how much space will this require? How many CD-ROMs would
be required to store the database? (A CD-ROM holds about 600MB
of data). Be sure to explain all assumptions you made to derive your
answer.

(b) Now, assume that you have access to a good image compression tech-
nique that can store the images in only 1/10 of the space required for
an uncompressed image. Will the entire database fit onto a single CD-
ROM if the images are compressed?

2.37 How many cubic miles of water flow out of the mouth of the Mississippi
River each day? DO NOT look up the answer or any supplemental facts. Be
sure to describe all assumptions made in arriving at your answer.

2.38 When buying a home mortgage, you often have the option of paying some
money in advance (called “discount points”) to get a lower interest rate. As-
sume that you have the choice between two 15-year mortgages: one at 8%,
and the other at 73

4% with an up-front charge of 1% of the mortgage value.
How long would it take to recover the 1% charge when you take the mort-
gage at the lower rate? As a second, more precise estimate, how long would
it take to recover the charge plus the interest you would have received if you
had invested the equivalent of the 1% charge in the bank at 5% interest while
paying the higher rate? DO NOT use a calculator to help you answer this
question.

2.39 When you build a new house, you sometimes get a “construction loan” which
is a temporary line of credit out of which you pay construction costs as they
occur. At the end of the construction period, you then replace the construc-
tion loan with a regular mortgage on the house. During the construction loan,
you only pay each month for the interest charged against the actual amount
borrowed so far. Assume that your house construction project starts at the
beginning of April, and is complete at the end of six months. Assume that
the total construction cost will be $300,000 with the costs occurring at the be-
ginning of each month in $50,000 increments. The construction loan charges
6% interest. Estimate the total interest payments that must be paid over the
life of the construction loan.

2.40 Here are some questions that test your working knowledge of how fast com-
puters operate. Is disk drive access time normally measured in milliseconds
(thousandths of a second) or microseconds (millionths of a second)? Does
your RAM memory access a word in more or less than one microsecond?
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How many instructions can your CPU execute in one year if the machine is
left running at full speed all the time? DO NOT use paper or a calculator to
derive your answers.

2.41 Does your home contain enough books to total one million pages? How
many total pages are stored in your school library building?

2.42 How many words are in this book?
2.43 How many hours are one million seconds? How many days? Answer these

questions doing all arithmetic in your head.
2.44 How many cities and towns are there in the United States?
2.45 How many steps would it take to walk from Boston to San Francisco?
2.46 A man begins a car trip to visit his in-laws. The total distance is 60 miles,

and he starts off at a speed of 60 miles per hour. After driving exactly 1 mile,
he loses some of his enthusiasm for the journey, and (instantaneously) slows
down to 59 miles per hour. After traveling another mile, he again slows to
58 miles per hour. This continues, progressively slowing by 1 mile per hour
for each mile traveled until the trip is complete.

(a) How long does it take the man to reach his in-laws?
(b) How long would the trip take in the continuous case where the speed

smoothly diminishes with the distance yet to travel?


