COURSENOTES

CS4104: Data and Algorithm Analysis

Clifford A. Shaffer Department of Computer Science Virginia Tech Copyright ©1996–2007

CS4014 Prereqs and Major Topics

What you need to already know:

- Discrete Math
 - Proof by contradiction and induction
 - Summations
 - Set theory, relations
- The basics of Asymptotic Analysis
 - Big-oh, Big- Ω , Θ
- Most of what was covered in CS2606
 - Basic data structures
 - Algorithms for searching and sorting

What we will do:

- Finally understand upper/lower bounds
- Lower bounds proofs
- Analysis techniques (no hand waving!)
 Recurrance Relations
- \bullet Reductions, $\mathcal{NP}\text{-}completeness$ theory, and a little computability theory

Process:

- Weekly homework sets (they are hard!)
- Work in pairs

Introduction to Problem Solving

- Principle of Intimate Engagement
 - This is the most important consideration
 - Actively engaging the problem, getting involved
 - Need to build up "mental muscles" for problem solving
- Effective vs. Ineffective problem solvers (Engagers vs. Dismissers)
 - Engagers have a history of success
 - Dismissers have a history of failure
 - You probably engage some problems and dismiss others
 - You could solve more problems if you overcame the mental hurdles that lead to dismissing
 - Transfer successful problem solving in some parts of your life to other areas.
- Getting your hands dirty
 - Example: Repairing a wobbly table
 - Get underneath and look
 - Example: Repairing a dryer
 - Open up back panel and look

Investigation and Argument

Problem solving has two parts: the investigation and the argument.

- Students are used to seeing only the argument in their textbooks and lectures.
- To be successful in school and in life, one needs to be good at both
- To solve the problem, you must investigate successfully.
- Then, to give the answer to your client, you need to be able to make the argument in a way that gets the solution across clearly and succinctly.
- Writing skills. Proof Skills
- Methods of argument: Deduction (direct proof), contradiction, induction

Heuristics for Problem Solving

These are most appropriate for problem solving "in the small."

- Puzzles
- Math and CS test or homework problems

A list of standard Heuristics:

- Write it down
 - After motivation and mental attitude, the most important limitation on your ability to solve problems is biological
 - For active manipulation, you can only store 7 ± 2 pieces of information
 - Take advantage of your environment to get around this
 - Write things down
 - Manipulate problem (good representation)
- Get your hands dirty
 - "Play around" with the problem to get some initial insight.

Heuristics (2)

- Look for special features
 - Example: Cryptogram addition problems.

- Go to the extremes
 - Study problem boundary conditions
- Simplify
 - This might give a partial solution that can be extended to the original problem.
- Penultimate step
 - What precondition must take place before the final solution step is possible?
 - Solving the penultimate step might be easier than the original problem.
- Lateral thinking
 - Don't be lead into a blind alley.
 - Using an inappropriate problem solving strategy might blind you to the solution.

Heuristics (3)

- Wishful thinking
 - A version of simplifying the problem
 - Transform problem into something easy; take start position to something that you "wish" was the solution
 - That might be a smaller step to the actual solution
- Symmetry
 - Symmetries in the problem might give clues to the solution

Problem Solving "In the Large"

- Problem Definition
 - Reformulate problem statement to get at the "real problem".
- Generate Solutions
 - Getting around mental blocks.
 - Blockbusting.
 - Brainstorming.
- Decide the course of action.
 - Situation analysis.
 - Pareto analysis.
 - K.T. Problem analysis.
 - Decision analysis.
- Implement the solution.
 - Getting approval
 - Planning
 - Gannt charts
 - Critical path analysis
 - Experimental design
 - Report results.
- Evaluation
 - Make it an ongoing process at all stages

Pairs Problem Solving

An effective way to work in pairs to solve problems:

• Partner roles: problem solver and listener

Responsibilities of the problem solver

- Constant vocalization
- Spell out all the assumptions
- Carefully detail all steps taken

Responsibilities of the listener

- Continually check for accuracy
- Demand constant vocalization

Errors in Reasoning

Getting the wrong answer on a test or homework usually results from a "breakdown" in problem solving. Typical breakdowns:

- Failing to observe and use all relevant facts of a problem.
- Failing to approach the problem in a systematic manner. Instead, making leaps in logic without checking steps.
- Failing to spell out relationships fully.
- Being sloppy and inaccurate in collecting information and carrying out mental activities.

Myths about reading: These are some popularized misconceptions

- Don't subvocalize when you read
- Read only key words
- Don't be a word-by-word reader
- Read in thought groups
- You can be a speed reader without loss of comprehension
- Don't re-read