
534 Chap. 16 Patterns of Algorithms

16.2 Dynamic Programming

Consider again the recursive function for computing the nth Fibonacci number.

int Fibr(int n) {
if (n <= 1) return 1; // Base case
return Fibr(n-1) + Fibr(n-2); // Recursive call

}

The cost of this algorithm (in terms of function calls) is the size of the nth Fi-
bonocci number itself, which our analysis showed to be exponential (approximately
n1.62) Why is this so expensive? It is expensive primarily because two recursive
calls are made by the function, and they are largely redundant. That is, each of the
two calls is recomputing most of the series, as is each sub-call, and so on. Thus,
the smaller values of the function are being recomputed a huge number of times. If
we could eliminate this redundancy, the cost would be greatly reduced.

One way to accomplish this goal is to keep a table of values, and first check the
table to see if the computation can be avoided. Here is a straightforward example
of doing so.

int Fibrt(int n, int* Values) {
// Assume Values has at least n slots, and all
// slots are initialized to 0
if (n <= 1) return 1; // Base case
if (Values[n] != 0) return Values[n];
Values[n] = Fibr(n-1, Values) + Fibr(n-2, Values);
return Values[n];

}

This version of the algorithm will not compute a value more than once, so its
cost should be linear. Of course, we didn’t actually need to use a table. Instead, we
could build the value by working from 0 and 1 up to n rather than backwards from
n down to 0 and 1. Going up from the bottom we only need to store the previous
two values of the function, as is done by our iterative version.

long Fibi(int n) {
long past, prev, curr;
past = prev = curr = 1; // curr holds Fib(i)
for (int i=2; i<=n; i++) { // Compute next value

past = prev; prev = curr; // past holds Fib(i-2)
curr = past + prev; // prev holds Fib(i-1)

}
return curr;

}



Sec. 16.2 Dynamic Programming 535

This issue of recomputing subproblems comes up frequently. In many cases,
arbitrary subproblems (or at least a wide variety of subproblems) might need to be
recomputed, so that storing subresults in a fixed number of variables will not work.
Thus, there are many times where storing a table of subresults can be useful.

This approach to designing an algorithm that works by storing a table of results
for subproblems is called dynamic programming. The name is somewhat arcane,
since it doesn’t bear much obvious similarity to the process that is taking place
of storing subproblems in a table. However, it comes originally from the field of
dynamic control systems, which got its start before what we think of as computer
programming. The act of storing precomputed values in a table for later reuse is
referred to as “programming” in that field.

Dynamic programming is a powerful alternative to the standard principle of
divide and conquer. In divide and conquer, a problem is split into subproblems,
the subproblems are solved (independently), and the recombined into a solution
for the problem being solved. Dynamic programming is appropriate whenever the
subproblems to be solved are overlapping in some way. Whenever this happens,
dynamic programming can be used if we can find a suitable way of doing the neces-
sary bookkeeping. Dynamic programming algorithms are usually not implemented
by simply using a table to store subproblems for recursive calls (i.e., going back-
wards as is done by Fibrt). Instead, such algorithms more typically implemented
by building the table of subproblems from the bottom up. Thus, Fibi is actually
closer in spirit to dynamic programming than is Fibrt even though it doesn’t need
the actual table.

16.2.1 Knapsack Problem

Knapsack problem: Given an integer capacity K and n items such that item i
has integer size ki, find a subset of the n items whose sizes exactly sum to K,
if possible. Formally: Find S ⊂ {1, 2, ..., n} such that∑

i∈S

ki = K.

Example: K = 163 10 items of sizes 4, 9, 15, 19, 27, 44, 54, 68, 73, 101. What
if K is 164?

Instead of parameterizing problem just by n, parameterize with n and K. P (n, K)
is the problem with n items and capacity K.

Think about divide and conquer (alternatively, induction). What if we know
how to solve P (n− 1,K)? If P (n− 1,K) has a solution, then it is a solution for
P (n, K). Otherwise, P (n, K) has a solution ⇔ P (n− 1,K − kn) has a solution.



536 Chap. 16 Patterns of Algorithms

What if we know how to solve P (n − 1, k) for 0 ≤ k ≤ K? Cost: T (n) =
2T (n− 1) + c. T (n) = Θ(2n).

BUT... there are only n(K + 1) subproblems to solve! Clearly, there are many
subproblems being solved repeatedly. Store a n × K + 1 matrix to contain the
solutions for all P (i, k). Fill in the rows from i = 0 to n, left to right.

If P (n− 1,K) has a solution,
Then P (n, K) has a solution
Else If P (n− 1,K − kn) has a solution

Then P (n, K) has a solution
Else P (n, K) has no solution.

Cost: Θ(nK).

Example 16.1 Knapsack Example: K = 10. Five items: 9, 2, 7, 4, 1.
0 1 2 3 4 5 6 7 8 9 10

k1 =9 O − − − − − − − − I −
k2 =2 O − I − − − − − − O −
k3 =7 O − O − − − − I − I/O −
k4 =4 O − O − I − I O − O −
k5 =1 O I O I O I O I/O I O I

Key:
-: No solution for P (i, k).
O: Solution(s) for P (i, k) with i omitted.
I: Solution(s) for P (i, k) with i included.
I/O: Solutions for P (i, k) with i included AND omitted.

Example: M(3, 9) contains O because P (2, 9) has a solution. It con-
tains I because P (2, 2) = P (2, 9 − 7) has a solution. How can we find a
solution to P (5, 10)? How can we find ALL solutions to P (5, 10)?

16.2.2 All-Pairs Shortest Paths

We next consider the problem of finding the shortest distance between all pairs of
vertices in the graph, called the all-pairs shortest-paths problem. To be precise,
for every u, v ∈ V, calculate d(u, v).

One solution is to run Dijkstra’s algorithm |V| times, each time computing the
shortest path from a different start vertex. If G is sparse (that is, |E| = Θ(|V|))
then this is a good solution, since the total cost will be Θ(|V|2 + |V||E| log |V|) =
Θ(|V|2 log |V|) for the version of Dijkstra’s algorithm based on priority queues.



Sec. 16.2 Dynamic Programming 537

∞

1 7

4
5 3

1122

12

∞
0

1

3∞

∞

Figure 16.1 An example of k-paths in Floyd’s algorithm. Path 1, 3 is a 0-path
by definition. Path 3, 0, 2 is not a 0-path, but it is a 1-path (as well as a 2-path,
a 3-path, and a 4-path) since the largest intermediate vertex is 0. Path 1, 3, 2 is a
4-path, but not a 3-path since the intermediate vertex is 3. All paths in this graph
are 4-paths.

For a dense graph, the priority queue version of Dijkstra’s algorithm yields a cost
of Θ(|V|3 log |V|), but the version using MinVertex yields a cost of Θ(|V|3).

Another solution that limits processing time to Θ(|V|3) regardless of the num-
ber of edges is known as Floyd’s algorithm. Define a k-path from vertex v to
vertex u to be any path whose intermediate vertices (aside from v and u) all have
indices less than k. A 0-path is defined to be a direct edge from v to u. Figure 16.1
illustrates the concept of k-paths.

Define Dk(v, u) to be the length of the shortest k-path from vertex v to vertex u.
Assume that we already know the shortest k-path from v to u. The shortest (k+1)-
path either goes through vertex k or it does not. If it does go through k, then
the best path is the best k-path from v to k followed by the best k-path from k
to u. Otherwise, we should keep the best k-path seen before. Floyd’s algorithm
simply checks all of the possibilities in a triple loop. Here is the implementation
for Floyd’s algorithm. At the end of the algorithm, array D stores the all-pairs
shortest distances.



538 Chap. 16 Patterns of Algorithms

// Floyd’s all-pairs shortest paths algorithm
void Floyd(Graph* G) {

int D[G->n()][G->n()]; // Store distances
for (int i=0; i<G->n(); i++) // Initialize D with weights

for (int j=0; j<G->n(); j++)
D[i][j] = G->weight(i, j);

for (int k=0; k<G->n(); k++) // Compute all k paths
for (int i=0; i<G->n(); i++)

for (int j=0; j<G->n(); j++)
if (D[i][j] > (D[i][k] + D[k][j]))

D[i][j] = D[i][k] + D[k][j];
}

Clearly this algorithm requires Θ(|V|3) running time, and it is the best choice
for dense graphs because it is (relatively) fast and easy to implement.

16.3 Randomized Algorithms

What if we settle for the “approximate best?” Types of guarentees, given that the
algorithm produces X and the best is Y :

1. X = Y .
2. X’s rank is “close to” Y ’s rank:

rank(X) ≤ rank(Y ) + “small”.

3. X is “usually” Y .
P(X = Y ) ≥ “large”.

4. X’s rank is “usually” “close” to Y ’s rank.

We often give such algorithms names:

1. Exact or deterministic algorithm.
2. Approximation algorithm.
3. Probabilistic algorithm.
4. Heuristic.

We can also sacrifice reliability for speed:

1. We find the best, “usually” fast.
2. We find the best fast, or we don’t get an answer at all (but fast).

Choose m elements at random, and pick the best.

• For large n, if m = log n, the answer is pretty good.
• Cost is m− 1.
• Rank is mn

m+1 .


