14

Analysis Techniques

This book contains many examples of asymptotic analysis of the time requirements
for algorithms and the space requirements for data structures. Often it is easy to
invent an equation to model the behavior of the algorithm or data structure in ques-
tion, and also easy to derive a closed-form solution for the equation should it con-
tain a recurrence or summation.

Sometimes an analysis proves more difficult. It may take a clever insight to de-
rive the right model, such as the snowplow argument for analyzing the average run
length resulting from Replacement Selection (Section 8.7). In this case, once the
snowplow argument is understood, the resulting equations are simple. Sometimes,
developing the model is straightforward but analyzing the resulting equations is
not. An example is the average-case analysis for Quicksort. The equation given
in Section 7.5 simply enumerates all possible cases for the pivot position, sum-
ming corresponding costs for the recursive calls to Quicksort. However, deriving a
closed-form solution for the resulting recurrence relation is not as easy.

Many iterative algorithms require that we compute a summation to determine
the cost of a loop. Techniques for finding closed-form solutions to summations
are presented in Section 14.1. Time requirements for many algorithms based on
recursion are best modeled by recurrence relations. A discussion of techniques for
solving recurrences is provided in Section 14.2. These sections extend the intro-
duction to summations and recurrences provided in Section 2.4; the reader should
already be familiar with that material.

Section 14.3 provides an introduction to the topic of amortized analysis. Am-
ortized analysis deals with the cost of a series of operations. Perhaps a single opera-
tion in the series has high cost, but as a result the cost of the remaining operations is
limited in such a way that the entire series can be done efficiently. Amortized anal-
ysis has been used successfully to analyze several of the algorithms presented in

479

480 Chap. 14 Analysis Techniques

this book, including the cost of a series of UNION/FIND operations (Section 6.2),
the cost of a series of splay tree operations (Section 13.2), and the cost of a series
of operations on self-organizing lists (Section 9.2). Section 14.3 discusses the topic
in more detail.

14.1 Summation Techniques

We will begin our study of techniques for finding the closed-form solution to a
summation by considering the simple example

n

> i

=1

In Section 2.6.2 it was proved by induction that this summation has the well-known
closed form n(n + 1)/2. But while induction is a good technique for proving that
a proposed closed-form expression is correct, how do we find a candidate closed-
form expression to test in the first place? Let’s approach this summation from first
principles, as though we had never seen it before.

A good place to begin analyzing a summation it is to give an estimate of its
value for a given n. Observe that the biggest term for this summation is n, and
there are n terms being summed up. So the total must be less than n?. Actually,
most terms are much less than n, and the sizes of the terms grows linearly. If we
were to draw a picture with bars for the size of the terms, their heights would form a
line, and we could enclose them in a box n units wide and n units high. It is easy to
see from this that a closer estimate for the summation is about (n?)/2. Having this
estimate in hand helps us when trying to determine an exact closed-form solution,
because we will hopefully recognize if our proposed solution is badly wrong.

Let us now consider some ways that we might hit upon an exact value for the
closed form solution to this summation. One particularly clever approach we can
take is to observe that we can “pair up” the first and last terms, the second and
(n — 1)th terms, and so on. Each pair sums to n — 1. The number of pairs is n/2.
Thus, the solution is n(n + 1) /2. This is pretty, and there’s no doubt about it being
correct. The problem is that it is not a useful technique for solving many other
summations.

Now let us try to do something a bit more general. We already recognized that
since the largest term is n and there are n terms, the summation is less than n?.
If we are lucky, the solution is a polynomial. So lets work from that basis, and
use a method that we will call guess-and-test. We will guess that the closed-form
solution for this summation is a polynomial of the form c¢;n? 4 can + c3 for some

Sec. 14.1 Summation Techniques 481

constants ¢y, co, and c3. If this is the case, we can plug in the answers to small
cases of the summation to solve for the coefficients. For this example, substituting
0, 1, and 2 for n leads to three simultaneous equations. Since the summation when
n = 0 is just 0, c3 must be 0. For n = 1 and n = 2 we get the two equations

cir+c = 1
4c1 4+ 2¢c0 = 3,

which in turn yield ¢; = 1/2 and ¢ = 1/2. Thus, if the closed-form solution for
the summation is a polynomial, it can only be

1/2n% +1/2n 40
which is more commonly written

n(n+1)
—

At this point, we still must do the “test” part of the guess-and-test approach.
We can use an induction proof to verify that our candidate closed-form solution is
indeed correct. In this case it is correct, as shown by Example 2.10. The induc-
tion proof is necessary because our initial assumption that the solution is a simple
polynomial could be wrong. For example, it might have been possible that the true
solution includes a logarithmic term, such as ¢;n? + con log n. The process shown
here is essentially fitting a curve to a fixed number of points, and there is always
an n-degree polynomial that fits n 4 1 points, so we cannot be sure that we have
checked enough points to know the true equation.

Guess-and-test is useful whenever the solution is a polynomial expression. In
particular, similar reasoning can be used to solve for > ;" ; i, or more generally
> i, i for ¢ any positive integer. Why is this not a universal approach to solving
summations? Because many summations do not have a polynomial as their closed
form solution.

A more general approach is based on the subtract-and-guess or divide-and-
guess strategies. Subtract-and-guess is also known as the shifting method The
shifting method subtracts the summation from a variation on the summation. The
variation selected for the subtraction should be one that makes most of the terms
cancel out. To solve sum f, we pick a known function ¢ and find a pattern in terms

of f(n) — g(n) or f(n)/g(n).

482

Chap. 14 Analysis Techniques

Example 14.1 Find the closed form solution for ;" ; ¢ using the divide-
and-guess approach. We will try two example functions to illustrate the
divide-and-guess method: dividing by n and dividing by f(n — 1). Our
goal is to find patterns that we can use to guess a closed-form expression as
our candidate for testing with an induction proof. To aid us in finding such
patterns, we can construct a table showing the first few numbers of each
function, and the result of dividing one by the other, as follows.

n 1 2 3 4 5 6 7 8 9 10

fln 1 3 6 10 15 21 28 36 46 o7

n 1 2 3 4) 6 7 8 9 10
fn)/n|2/2 3/2 4/2 5/2 6/2 7/2 8/2 9/2 10/2 11/2
fn=1)| o 1 3 6 10 15 21 28 36 46
f(n)/fln—1) 3/1 4/2 5/3 6/4 7/5 8/6 9/7 10/8 11/9
Dividing by both n and f(n — 1) happen to give us useful patterns to
work with. @ = %‘H and f{ﬁ)l) = Z—ﬂ Of course, lots of other

approaches do not work. For examle, f(n) —n = f(n — 1). Knowing that
f(n) = f(n — 1) + nis not useful. Or consider f(n) — f(n — 1) = n.
Again, knowing that f(n) = f(n — 1) 4+ n is not useful. Finding the right
combination of equations can be like finding a needle in a haystack.

In our first example, we can see directly what the closed-form solution
should be.

fn) n+1

Obviously, f(n) =n(n +1)/2.
Dividing f(n) by f(n — 1) does not give so obvious a result, but it
provides another useful illustration.

f) ntl
f(n—1) n—1

) = (n+1Df(n-1)

) = (n+1)(f(n) —n)
nf(n) = f(n) = nf(n)+f(n)—n*-n

)

)

= n*+n=nn+1)
n(n+1)
2

Sec. 14.1 Summation Techniques 483

Once again, we still do not have a proof that f(n) = n(n+1)/2. Why?
Because we did not prove that f(n)/n = (n + 1)/2 nor that f(n)/f(n —
1) = (n+ 1)(n — 1). We merely hypothesized patterns from looking at
a few terms. Fortunately, its relatively easy to check our hypothesis with
induction.

Example 14.2 Solve the summation

n
F(n):Zari:a+ar+ar2+---+ar”.
i=0

This is called a geometric series. Our goal is to find some variation for
F(n) such that subtracting one from the other leaves us with an easily ma-
nipulated equation. Since the difference between consecutive terms of the
summation is a factor of r, we can shift terms if we multiply the entire
expression by r:

n
rF(n) = rZari =ar+ar? +ar® 4+ ar"
i=0
We can now subtract the one equation from the other, as follows:
F(n)—rF(n)=a + ar+ar®+ar®+---+ar"
— (ar+ar* +ar® +---+ar") —ar™tt,
The result leaves only the end terms: " "
F(n)—rF(n) = Zari - rZari.
i=0 i=0
(1-7r)F(n) = a—ar"™.

Thus, we get the result

a — ar™tl

where r # 1.

484 Chap. 14 Analysis Techniques

Example 14.3 For our second example of the shifting method, we solve

n
Fn)=) i2"=1-2"42-2243-2%+ ... 4+ n.2".
i=1
We can achieT\L/e our goal if we multiply by two:
2F(n)=2) i2'=1-2242.2%43-2" 4. 4 (n—1)- 2"+ n-2""".
i=1
The ith term of 2F(n) is 4 - 2/, while the (i + 1)th term of F(n) is
(i +1) - 2°+1, Subtracting one expression from the other yields the sum-

mation of 2¢ and a few non-canceled terms:
n

2F(n) — F(n) = zzn:mi—zm
=1

=1
n n

= Zm’“ - 212
=1 =1

Shift i’s value in the second summation, substituting (¢ + 1) for i:

n—1 n—1
— n27’l+1 + 22214—1 _ Z(Z + 1)2i+1‘
=0 =0

Break the second summation into two parts:
n—1 n—1 n—1
— n2n+l + Z Z'Qi-‘rl o Z Z'2i+l o Z 2i+1.
i=0 i=0 i=0
Cancel like terms:
n—1
S Z i+l
i=0
Again shift i’s value in the summation, substituting i for (i 4+ 1):

n
_ n2n+1 o Z 27L.
=1

Replace the new summation with a solution that we already know:
— n2n+1 _ (2n+1 _ 2))

Finally, reorganize the equation:
= (n—1)2"" 2,

Sec. 14.2 Recurrence Relations 485

14.2 Recurrence Relations

Recurrence relations are often used to model the cost of recursive functions. For
example, the standard Mergesort (Section 7.4) takes a list of size n, splits it in half,
performs Mergesort on each half, and finally merges the two sublists in n steps.
The cost for this can be modeled as

T(n) =2T(n/2) + n.

In other words, the cost of the algorithm on input of size n is two times the cost for
input of size n/2 (due to the two recursive calls to Mergesort) plus n (the time to
merge the sublists together again).

There are many approaches to solving recurrence relations, and we briefly con-
sider three here. The first is an estimation technique: Guess the upper and lower
bounds for the recurrence, use induction to prove the bounds, and tighten as re-
quired. The second approach is to expand the recurrence to convert it to a summa-
tion and then use summation techniques. The third approach is to take advantage
of already proven theorems when the recurrence is of a suitable form. In particu-
lar, typical divide and conquer algorithms such as Mergesort yield recurrences of a
form that fits a pattern for which we have a ready solution.

14.2.1 Estimating Upper and Lower Bounds

The first approach to solving recurrences is to guess the answer and then attempt
to prove it correct. If a correct upper or lower bound estimate is given, an easy
induction proof will verify this fact. If the proof is successful, then try to tighten
the bound. If the induction proof fails, then loosen the bound and try again. Once
the upper and lower bounds match, you are finished. This is a useful technique
when you are only looking for asymptotic complexities. When seeking a precise
closed-form solution (i.e., you seek the constants for the expression), this method
will not be appropriate.

Example 14.4 Use the guessing technique to find the asymptotic bounds
for Mergesort, whose running time is described by the equation

T(n) =2T(n/2)+n; T(2)=1.

We begin by guessing that this recurrence has an upper bound in O(n?). To
be more precise, assume that

T(n) < n?

486 Chap. 14 Analysis Techniques

We prove this guess is correct by induction. In this proof, we assume that
n is a power of two, to make the calculations easy. For the base case,
T(2) =1 < 22. For the induction step, we need to show that T'(n) < n?
implies that T(2n) < (2n)? for n = 2V, N > 1. The induction hypothesis
is

T(i) < i? foralli < n.

It follows that
T(2n) = 2T(n) 4+ 2n < 2n% + 2n < 4n? < (2n)?

which is what we wanted to prove. Thus, T'(n) is in O(n?).

Is O(n?) a good estimate? In the next-to-last step we went from n?+2n
to the much larger 4n2. This suggests that O(n?) is a high estimate. If we
guess something smaller, such as T'(n) < ¢n for some constant ¢, it should
be clear that this cannot work since c¢2n = 2cn and there is no room for
the extra n cost to join the two pieces together. Thus, the true cost must be
somewhere between cn and n?.

Let us now try T(n) < nlogn. For the base case, the definition of the
recurrence sets T'(2) = 1 < (2-log2) = 2. Assume (induction hypothesis)
that T'(n) < nlogn. Then,

T(2n) = 2T(n) + 2n < 2nlogn + 2n < 2n(logn + 1) < 2nlog2n

which is what we seek to prove. In similar fashion, we can prove that T'(n)
is in Q(nlogn). Thus, T(n) is also O(nlogn).

Example 14.5 We know that the factorial function grows exponentially.
How does it compare to 2™? To n"? Do they all grow “equally fast” (in an
asymptotic sense)? We can begin by looking at a few initial terms.

n ‘ 1 2 3 4 5 6 7 8 9
nl|1 2 6 24 120 720 5040 40320 362880
2" 12 4 8 16 32 64 128 256 512
n" |1 4 9 256 3125 46656 823543 16777216 387420489

We can also look at these functions in terms of their recurrences.

| 1 n=1
n! =
nn—1)"! n>1

Sec. 14.2 Recurrence Relations 487

on _ 2 n=1
Tl 202vh) n>1

n n n=1
n =
n(n™ 1t n>1

At this point, our intuition should be telling us pretty clearly the relative
growth rates of these three functions. But how do we prove formally which
grows the fastest? And how do we decide if the differences are significant
in an asymptotic sense, or just constant factor differences?

We can use logarithms to help us get an idea about the relative growth
rates of these functions. Clearly, log 2" = n. Equally clearly, logn" =
nlogn. We can easily see from this that 2" is o(n™), that is, n™ grows
asymptotically faster than 2",

How does n! fit into this? We can again take advantage of logarithms.
Obviously n! < n", so we know that logn! is O(nlogn). But what about
a lower bound for the factorial function? Consider the following.

nl = nx(n-1)x x—x(g—l)xu-xel

> gxgx X —xX1x---x1x1

— En/2

(5
Therefore

n n n
lgn! > 1g(=)"? = (=) lg(=).
gnl > 1g(3) (5)1e(3)

In other words, log n! is in 2(nlog n). Thus, logn! = ©(nlogn).

Note that this does not mean that n! = ©O(n"). Note that Ilgn =
O(lgn?) but n # O(n?). The log function often works as a “flattener”
when dealing with asymptotics. That is, whenever log f(n) isin O(log g(n))
we know that f(n) isin O(g(n)). But knowing thatlog f(n) = ©(log g(n))
does not necessarily mean that f(n) = ©(g(n)).

488 Chap. 14 Analysis Techniques

Example 14.6 What is the growth rate of the fibonacci sequence f(n) =
fn—=1)+ f(n—2)forn > 2; f(0) = f(1) =1?

In this case it is useful to compare the ratio of f(n) to f(n — 1). The
following table shows the first few values.

n 1 2 3 4 5 6 7
Fn) 1 2 3 5 8 13 21
fn)/fn—1)|1 2 15 1666 1.625 1.615 1.619

Following this out, it appears to settle to a ratio of 1.618. Assuming
f(n)/f(n — 1) really does tend to a fixed value, we can determine what
that value must be.

f(n) fin=1) fln=2)

fn-2) " fn-2) " jm-2) "

This comes from knowing that f(n) = f(n—1)+ f(n—2). We divide
by f(n — 2) to make the second term go away, and we also get something
useful in the first term. Remember that the goal of such manipulations is to
give us an equation that relates f(n) to something without recursive calls.

For large n, we also observe that:

f(n) fln) fln=1) =,

= — T
fln=2) fln—=1) f(n-2)
as n gets big. This comes from mulitiplying f(n)/f(n — 2) by f(n —
1)/f(n — 1) and rearranging.
If exists, then 22 —x — 1 — 0. Using the quadratic equation, the only
solution greater than one is

1+5
T = 5

~ 1.618.

This expression also has the name ¢. What does this say about the growth
rate of the fibonacci sequence? It is exponential, specifically, f(n) ~ ¢".

14.2.2 Expanding Recurrences

Estimating bounds is effective if you only need an approximation to the answer.
More precise techniques are required to find an exact solution. One such technique
is called expanding the recurrence. In this method, the smaller terms on the right

Sec. 14.2 Recurrence Relations 489

side of the equation are in turn replaced by their definition. This is the expanding
step. These terms are again expanded, and so on, until a full series with no recur-
rence results. This yields a summation, and techniques for solving summations can
then be used. A couple of simple expansions were shown in Section 2.4; a more
complex example is given below.

Example 14.7 Find the solution for
T(n) = 2T(n/2) + 5n?%; T(1) =T.

For simplicity we assume that n is a power of two, so we will rewrite it as
n = 2%, This recurrence can be expanded as follows:

T(n) = 2T(n/2)+ 5n?
2(2T(n/4) + 5(n/2)?) + 5n?
= 2(2(2T(n/8) + 5(n/4)?) + 5(n/2)?) + 5n?

2 2
_ 2’“T(1)+2’“_1-5(%) +---+2-5(g) + 502,

This last expression can best be represented by a summation as follows:

k—1
Tn+5) n?/2
=0

k—1
= Tn+5n") 1/2".
=0

From Equation 2.7, we have:
— 7+ 0 (2 - 1/2k—1)
= Tn+5n2(2—2/n)
= Tn+10n% — 10n
= 10n* - 3n.
This is the exact solution to the recurrence for n a power of two. At this

point, we should use a simple induction proof to verify that our solution is
indeed correct.

490 Chap. 14 Analysis Techniques

Example 14.8 Our next example comes from the algorithm to build a
heap. Recall from Section 5.5 that to build a heap, we first heapify the two
subheaps, then push down the root to its proper position. The cost is:

f(n) <2f(n/2) + 2logn.

Lets find a closed form solution for this recurrence. We can expand the
recurrence a few times to see that

f(n) 2f(n/2) +2logn
2[2f(n/4) + 2logn/2] + 2logn

2[2(2f(n/8) + 2logn/4) + 2logn/2] + 2logn

IN A TN

We can deduce from this expansion that this recurrence is equivalent to
following summation and its derivation:

lgn—1
fn) < Y 27 g(n/2))
=0
Ign—1
= 2 Z 2 (lgn — 1)
=0
lgn—1 Ign—1

= 2lgn » 20 -4) 27!

=0 =0
= 2nlgn—2Ign—2nlgn+4n—4
= 4dn—2lgn —4.

14.2.3 Divide and Conquer Recurrences

The third approach to solving recurrences is to take advantage of known theorems
that describe the solution for classes of recurrences. One useful example is a the-
orem that gives the answer for a class known as divide and conquer recurrences.
These have the form

T(n) = aT(n/b) +cn®; T(1)=c

Sec. 14.2 Recurrence Relations 491

where a, b, ¢, and k are constants. In general, this recurrence describes a problem
of size n divided into a subproblems of size n/b, while cn* is the amount of work
necessary to combine the partial solutions. Mergesort is an example of a divide and
conquer algorithm, and its recurrence fits this form. So does binary search. We use
the method of expanding recurrences to derive the general solution for any divide
and conquer recurrence, assuming that n = b™.

T(n) = a(aT(n/b?) + c(n/b)¥) + en®
= a™T(1)+a™ te(n/b™ HF + - 4 ac(n/b)k + en®

m

— C§ :amfzbzk
=0
m

= ca™ Z(bk/a)i.

i=0
Note that
a™ = q'°8 " = plos e, (14.1)
The summation is a geometric series whose sum depends on the ratio 7 = b* /a.

There are three cases.

1. » < 1. From Equation 2.4,

m
Z r* < 1/(1 —r),a constant.
=0

Thus,
T(n) = O(a™) = O(nlo®?).

2. 7 = 1. Since r = b¥/a, we know that a = b*. From the definition of
logarithms it follows immediately that £ = log;, a. We also note from Equa-
tion 14.1 that m = log, n. Thus,

m
Zr:m—i—l:logbn—i—l.
i=0

k

Since ™ = nlog, a = n”, we have

T(n) = O(n'% % logn) = O(n* logn).

492 Chap. 14 Analysis Techniques

3. r > 1. From Equation 2.6,

Terl -1

m
— — m
Zr = o(r™).
=0
Thus,
T(n) = O(a™r™) = O(a™ (b /a)™) = O(*™) = O(nF).
We can summarize the above derivation as the following theorem.

Theorem 14.1

O(n'er %) ifa > bF
T(n) =<{ O(nflogn) ifa=1"1"
O(n") ifa < V"

This theorem may be applied whenever appropriate, rather than rederiving the
solution for the recurrence. For example, apply the theorem to solve

T(n) = 3T(n/5) + 8n.

Sincea = 3,b =5, c = 8, and k = 2, we find that 3 < 5. Applying case (3) of
the theorem, T'(n) = ©(n?).
As another example, use the theorem to solve the recurrence relation for Merge-
sort:
T(n) =2T(n/2)+n; T(1)=1.

Sincea = 2,b=2,c=1,and k = 1, we find that 2 = 2'. Applying case (2) of
the theorem, T'(n) = ©(nlogn).
14.2.4 Average-Case Analysis of Quicksort

In Section 7.5, we determined that the average-case analysis of Quicksort had the
following recurrence:

n—1
T(n) = en + % STk + T —1-K)], T(0)=T(1) =c
k=0

The cn term is an upper bound on the £indpivot and partition steps. This
equation comes from observing that each element k is equally likely to be the par-
titioning element. It can be simplified by observing that the two recurrence terms

Sec. 14.2 Recurrence Relations 493

T(k) and T(n — 1 — k) are equivalent, since one simply counts up from 7°(0) to
T'(n — 1) while the other counts down from 7'(n — 1) to 7°(0). This yields

T(n) = cn + 2 > T(k).

This form is known as a recurrence with full history. The key to solving such a
recurrence is to cancel out the summation terms. The shifting method for summa-
tions provides a way to do this. Multiply both sides by n and subtract the result
from the formula for n'T'(n + 1):

nT(n) = cn2+22T(/~s)
(n+1)T(n+1) = dn+wﬂnﬁéTw)

k=1

Subtracting n'T(n) from both sides yields:

(n+1DT(n+1) —nT(n) = c(n+1)*—cn®+2T(n)

(n+1)T(n+1)—nT(n) = c2n+1)+2T(n)
(n+1)T(n+1) = c¢2n+1)+ (n+2)T(n)
Tnt1) = 2D nr2p,,

n—+1 n—+1

At this point, we have eliminated the summation and can now use our normal meth-
ods for solving recurrences to get a closed-form solution. Note that M < 2c,

so we can simplify the result. Expanding the recurrence, we get

n+ 2

T 1) < 2 T
(n+1) < C+n+1 (n)
2 1
= 20—|—n+ 20—|—n+ T(n—1)>
n—+1 n

2 1
= oo P2 (e P (oo (- 2)
n+1 n n—1

4 3
24+ (20 + 2T(1))>

494 Chap. 14 Analysis Techniques

n+l n+1 n n+1 n 2

1 1 1
= 2|1 N —— =+ 4=
c< + (n +)<n+1+n+ +2)>

= 2c+2c(n+2)(Hps1 — 1)

2 2 1 2 1 3
2C<1+n—|— n+2n+ +”.+n—i- nt+l)

for H,,+1, the Harmonic Series. From Equation 2.10, H,,+1 = ©(logn), so the
final solution is ©(nlogn).

14.3 Amortized Analysis

This section presents the concept of amortized analysis, which is the analysis for
a series of operations. In particular, amortized analysis allows us to deal with the
situation where the worst-case cost for n operations is less than n times the worst-
case cost of any one operation. Rather than focusing on the individual cost of each
operation independently and summing them, amortized analysis looks at the cost
of the entire series and “charges” each individual operation with a share of the total
cost.

We can apply the technique of amortized analysis in the case of a series of se-
quential searches in an unsorted array. For n random searches, the average-case
cost for each search is n/2, and so the expected total cost for the series is n?/2.
Unfortunately, in the worst case all of the searches would be to the last item in the
array. In this case, each search costs n for a total worst-case cost of n?. Compare
this to the cost for a series of n searches such that each item in the array is searched
for precisely once. In this situation, some of the searches must be expensive, but
also some searches must be cheap. The total number of searches, in the best, av-
erage, and worst case, for this problem must be y ;' . i ~ n?/2. This is a factor
of two better than the more pessimistic analysis that charges each operation in the
series with its worst-case cost.

As another example of amortized analysis, consider the process of increment-
ing a binary counter. The algorithm is to move from the lower-order (rightmost)
bit toward the high-order (leftmost) bit, changing 1s to Os until the first O is en-
countered. This 0 is changed to a 1, and the increment operation is done. Below
is C++ code to implement the increment operation, assuming that a binary number
of length n is stored in array A of length n.

for (i=0; ((i<n) && (A[i] == 1)); i++)
A[i] = O;

if (i < n)
Ali] = 1;

