CS 4104

CS 4104 Data and Algorithm Analysis

2010-11-30

CS 4104: Data and Algorithm Analysis
Title page
Clifford A. Shaffer

Department of Computer Science
Virginia Tech
Blacksburg, Virginia

Fall 2010

Copyright © 2010 by Clifford A. Shaffer

CS 4104 ©S4014: What You Need to Already
Know

LCS4014: What You Need to Already Know

CS4014: What You Need to Already
Know

2010-11-30

Basic data structures: Lists, search trees, heaps, graphs

@ Discrete Math Basic sort algorithms; search techniques such as binary
» Proof by contradiction and induction search, hashing
» Summations
» Set theory, relations
@ The basics of Asymptotic Analysis
» Big-oh, Big-Q2, ©
@ Most of what was covered in CS2606
» Basic data structures
» Algorithms for searching and sorting

CS 4104 CS4104: What We Will Do

LCSAJ.OA: What We Will Do

CS4104: What We Will Do

2010-11-30

) The first homework has been posted. You should get your
@ Finally understand upper/lower bounds partner decided ASAP and get started.

@ Lower bounds proofs
@ Analysis techniques (no hand waving!)
» Recurrance Relations
@ Reductions, N'P-completeness theory, and a little
computability theory
Process:
@ Weekly homework sets (they are hard!)
@ Work in pairs

8 CS 4104 Introduction to Problem Solving (1)
—
. . < L)) —
Introduction to Problem Solving (1) = Introduction to Probiem Solving (1) e
o
N

For more details, see the “PSintro.pdf” notes posted at the
website.

Principle of Intimate Engagement
@ This is the most important consideration
@ Actively engaging the problem, getting involved
@ Need to build up “mental muscles” for problem solving

CS 4104 Introduction to Problem Soiving (2)

efctve probem soers (Engagers ve.

leroduction to Problem Solving (2)

Introduction to Problem Solving (2)

2010-11-30

Mental hurdles: That is, you have the knowledge and ability

Effective vs. Ineffective problem solvers (Engagers vs. - o 7
necessary to solve the problem, if you had sufficient motivation.

Dismissers)

@ Engagers have a history of success

@ Dismissers have a history of failure

@ You probably engage some problems and dismiss
others

@ You could solve more problems if you overcame the
mental hurdles that lead to dismissing

@ Transfer successful problem solving in some parts of
your life to other areas.

8 CS 4104 Introduction to Problem Solving (2)
|
. . ' L . . GEREEy e
Introduction to Problem Solving (2) g Inroduction to Problem Sohving (2)

We will see examples of this concept, initially with doing
summations

Getting your hands dirty
@ Example: Repairing a wobbly table
» Get underneath and look
@ Example: Repairing a dryer
» Open up back panel and look

CS 4104 Investigation and Argument

Llnvestigation and Argument

Investigation and Argument

2010-11-30

Problem solving has two parts: the investigation and the

argument. Unfortunately, while seeing lots of examples of argument
@ Students are used to seeing only the argument in their (proof), too many students don't recognize the importance of
textbooks and lectures. being good at doing it.

@ To be successful in school and in life, one needs to be
good at both

@ To solve the problem, you must investigate successfully.

@ Then, to give the answer to your client, you need to be
able to make the argument in a way that gets the
solution across clearly and succinctly.

@ Writing skills. Proof Skills

@ Methods of argument: Deduction (direct proof),
contradiction, induction

8 CS 4104 Heuristics for Problem Solving (1)
=
Heuristics for Problem Solving (1) S " Heuristicsfor Prablem Sohing (1)
o
N

These heuristics most appropriate for problem solving “in the
small.”
@ Puzzles
@ Math and CS test or homework problems
A list of standard Heuristics:
1 Externalize: write it down
» After motivation and mental attitude, the most important
limitation on your ability to solve problems is biological
» For active manipulation, you can only store 7 + 2 pieces
of information
» Take advantage of your environment to get around this
» Write things down
» Manipulate problem (good representation)

no notes

CS 4104

Heuristics for Problem Solving (2)

2 Gotyourhands dty
- Py arcun e pos 0 gt some il s
3 Look o specil feaures
" euamp

LHeuristics for Problem Solving (2)

Heuristics for Problem Solving (2)

2010-11-30

2 Get your hands dirty Extremes: We will use this often
» “Play around” with the problem to get some initial insight.
3 Look for special features
» Example: Cryptogram addition problems.
A D
+ D |
D I D
4 Go to the extremes
» Study problem boundary conditions
5 Simplify
» This might give a partial solution that can be extended to
the original problem.

CS 4104 Heuristcs for Problem Solving (3)

LHeuristics for Problem Solving (3)

Heuristics for Problem Solving (3)

2010-11-30

6 Penultimate step
> What precondition must take place before the final Rush Hour is an excellent example. We will see another
solution step is possible? example next week: TOH
» Solving the penultimate step might be easier than the
original problem.
7 Lateral thinking
» Don't be lead into a blind alley.
» Using an inappropriate problem solving strategy might
blind you to the solution.
8 Wishful thinking
» A version of simplifying the problem
» Transform problem into something easy; take start
position to something that you “wish” was the solution
» That might be a smaller step to the actual solution

CS 4104

Heuristics for Problem Solving (4)

9 Steepone

LHeuristics for Problem Solving (4)

Heuristics for Problem Solving (4)

2010-11-30

no notes

9 Sleep oniit
10 Symmetry & Invariants

» Symmetries in the problem might give clues to the
solution

CS 4104

Pairs Problem Solving

LPairs Problem Solving

Pairs Problem Solving

2010-11-30

An effective way to work in pairs to solve problems:
@ Partner roles: problem solver and listener

See paper on pairs programming.

Responsibilities of the problem solver
@ Constant vocalization
@ Spell out all the assumptions
@ Carefully detail all steps taken

Responsibilities of the listener
@ Continually check for accuracy

@ Demand constant vocalization

CS 4104

Ertors in Reasoning

LErrors in Reasoning

Errors in Reasoning

2010-11-30

In pairs problem solving (such as the homework in this class)
there had to be a serious breakdown if the answer is wrong
since the partner (the listener) should never have let it happen.

Getting the wrong answer on a test or homework usually
results from a “breakdown” in problem solving. Typical
breakdowns:
@ Failing to observe and use all relevant facts of a
problem.

@ Failing to approach the problem in a systematic manner.
Instead, making leaps in logic without checking steps.

@ Failing to spell out relationships fully.

@ Being sloppy and inaccurate in collecting information
and carrying out mental activities.

CS 4104

Program Effciency

Our primaryconcern s EFFICIENCY.

Wi want eficint programs. How o we measire he
eficiency of a proga? (Assume we e conceed
)

L Program Efficiency

Program Efficiency

2010-11-30

Our primary concern is EFFICIENCY. no notes

We want efficient programs. How do we measure the
efficiency of a program? (Assume we are concerned
primarily with time.)

@ On what input?

@ How do we speed it up?

@ When do we stop speeding it up?

@ Should we bother with writing the program in the first
place?

CS 4104

Algorithm Efficiency (1)
‘e e don wan o e wortss programs, we wil
focuson sigortm <fcency.

L Algorithm Efficiency (1)

Algorithm Efficiency (1)

2010-11-30

« ishouid b agood predicor.

.)) Remember that we are discussing an analytic model. We do
Since we don’t want to write worthless programs, we will not want to do performance analysis on a real program.

focus on algorithm efficiency.

We need a yardstick.
@ |t should measure something we care about.
@ It should by quantitative, allowing comparisons.
@ It should be easy to compute (the measure, not the
program).
@ It should be a good predictor.

CS 4104

Algorithm Efficiency (2)

LAIgorithm Efficiency (2)

2010-11-30

Algorithm Efficiency (2)

no notes

We need:
@ A measure for problem size.
@ A measure for solution effort.
@ Use key operations as a measure of solution effort.

@ Total cost is a function of problem size and key
operations.

Cost Model (1)

To get a measurement, we need a model.

Example:
@ Assigning to a variable takes fixed time.
@ All other operations take no time.
sum = n*n;
One assignment was made, so the cost is 1.
sum = 0;
for (i=1; i<=n; i++)
sum = sum + n;
Assignments made are 1 + > ; 1 = n + 1. (Depending on
how you want to deal with loop variables, you might want to
say itis 2n + 1.)
Fall2010 17/351

Cost Model (2)

sum = O;
for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
sum = sum + 1;

Assignments made are 1+, >0 1 =n?+ 1.

What makes a model “good”?

@ Consider string assignment (done by copying). Is this a
good model?

Big Issues

How do we create an efficient algorithm?

Q: How do we recognize a “good” algorithm?
A: By the relationship of its performance to the intrinsic
difficulty of the problem.

How “hard” is a problem?

Big Issues (2)

General Plan:
@ Define a PROBLEM.
@ Build MODEL to measure cost of solution to problem.
@ Design an ALGORITHM to solve the problem.
@ ANALYZE both the problem and the algorithm under the
model.
» Analyze an algorithm to get an UPPER BOUND.
» Analyze a problem to get a LOWER BOUND.
@ COMPARE the bounds to see if our solution is “good
enough”.
» Redesign the algorithm.
» Tighten the lower bound.
» Change the model.
» Change the problem.

2010-11-30

2010-11-30

2010-11-30

2010-11-30

CS 4104 Cost Model (1)

LCost Model (1)

Example of a model for cost measure. It might or might not be a
good model.

n+1vs 2n + 1: Does it matter?

Not so much. We didn’t know the exact amount of time for an
operation to begin with, so the factor of 2 doesn’t seem to mean
much.

What is important is that the growth rates of these two are the
same.

CS 4104 Cost Mol (2)

LCost Model (2)

Wit makes a model oo™
' Consider sing asignment (done b copyin). 1s s a
004 mader?

In our example with for loops, n + 1 and 2n + 1 are both linear,
so they are both equally predictive of growth rate.

CS 4104 i ssues

L Big Issues

Problem solving and algorithm design. We will see some
standard algorithm design techniques. Example: Dynamic
programming.

A key issue, because we don’t know whether to stop with trying
to create a “good” algorithm unless we can recognize one. This

is where lower bounds come in.

CS 4104 Big Issues (2)

Generapln

LBig Issues (2)

If not, here are some options:

g Cs4104 pm—
& S ——
by L A —
Problems (1) g Problems (1) R
& bRl il
Our problems must be well-defined enough to be solved on Actually, to solve a problem we need more than just a clear
computers. definition. By the end of the semester, we will discuss problems

that are not computable (i.e., cannot be solved) even though

A problem is a function (i.e., a mapping of inputs to outputs). their definition s clear.

We have different instances (inputs) for the problem, where
each instance has a size.

To solve a problem, we must provide an algorithm, a coding
of problem instances into inputs for the algorithm, and a
coding for outputs into solutions.

CS 4104

Problems (2)

L problems (2)

Problems (2)

2010-11-30

Actually, we will relax this restriction later... Approximation and
Probabilistic algorithms.
An algorithm executes the mapping.

@ A proposed algorithm must work for ALL instances (give We are most often interested in solutions to “large” instances of
the correct mapping to the output for that input the problem (asymptotic Analysis).
instance). Occasionally we are concerned with small instances. Then,

constants matter.

GOAL: Solve problems with as little computational effort per
instance as possible.

8 CS 4104 Categories of Hard Problems (1)
2|
5 . [)
Categories of Hard Problems (1) g Categories of Hard Problems (1)

Or maybe not, but it still might run fast.Important to realize:
Difficulty of analyzing the cost is a different issue from what the
@ A conceptually hard problem. cost is!
» If we understood the problem, the algorithm might be
easy. [Natural Language Processing]
» Artificial Intelligence.

@ An analytically hard problem.

» We have an algorithm, but can’t analyze its cost. [Collatz
sequence]
» Complexity Theory.

8 CS 4104 Categories of Hard Problems (2)
|
5 . [)
Categories of Hard Problems (2) g Categories of Hard Problems (2)

NP-complete problems.
A major focus for this course: Determining if a problem is

@ A computationally hard problem. computationally hard

» The algorithm is expensive.
» Class 1: No inexpensive algorithm is possible. [TOH])))
» Class 2: We don't know if an inexpensive algorithm is No such algorithm can possibly exist.
possible. [Traveling Salesman]
» Complexity Theory
@ A computationally unsolvable problem. [Halting
problem]
» Computability Theory.

CS 4104

LTowers of Hanoi

Towers of Hanoi

2010-11-30

Given: 3 pegs and n disks of different sizes placed in order
of size on Peg 1. no notes

Problem: Move the disks to Peg 3, given the following
constraints:
@ A “move” takes the topmost disk from one peg and
places it on another peg (the only action allowed).
@ A disk may never be on top of a smaller disk.

Model: We will measure the cost of this problem by the
number of moves required.
Fall 2010 25/351

CS 4104 TOH Algoritm

LTOH Algorithm

TOH Algorithm

2010-11-30

(This is an exercise in the process of problem solving.
Pretend that you have never seen this problem before, and
that you are approaching it for the first time.)

Think about all the possible choices for a 3-disk series of
moves.

Because it is always below the other disks, so they can move

Start by trying to solve the problem for small instances. around as though it did not exist.
@ 0 disks, 1 disk, 2 disks...
@ When we get to 3 disks, it starts to get harder. Problem solving often relies on a “key insight” that lets you
@ Can we generalize the insight from solving for 3 disks? “crack” the problem.
4 disks?

Similarly, analysis of the problem might rely on a “key insight”
on how to view the analysis. Often a simplification for the
“states” or progess of the algorithm, or a recognition of the key
input classes for the problem.

Observation: The largest disk has no effect on the
movements of the other disks. Why?
Fall2010 26/351

CS 4104 Recursive Solutions (1)

e e genrasze the TOH roten 0 mor disks,we ond
w ing

Recursive Solutions (1)

LRecursive Solutions (1)

2010-11-30

When we generalize the TOH problem to more disks, we end
up with something like:

@ Move all but the bottom disk to Peg 2.

@ Move the bottom disk from Peg 1 to Peg 3.

@ Move the remaining disks from Peg 2 to Peg 3.

Use recursion.

Problem-solving heuristics used:
@ Get our hands dirty: Try playing with some simple
examples
@ Go to the extremes: Check the small cases first
@ Penultimate step: Key insight is that we can’t solve the
problem until we move the bottom disk.

How do we deal with the n — 1 disks (twice)?
Fall 2010 27/351

CS 4104 Recursive Solutions (2)

LRecursive Solutions (2)

Recursive Solutions (2)

2010-11-30

no notes
Forward-backward strategy: Solve simple special cases and
generalize their solution, then test the generalization on
other special cases.

void TOH(int n, POLE start, POLE goal, POLE tenp) ({

if (n==20) return; /| Base case

TOH(n-1, start, tenp, goal); // Recurse: n-1 rings
nmove(start, goal); /'l Move one di sk
TOH(n-1, tenp, goal, start); // Recurse: n-1 rings

}

Algorithm Upper Bounds (1)

Worst case cost (for size n): Maximum cost for the
algorithm over all problem instances of size n.

Best case cost (for size n): Minimum cost for the algorithm
over all problem instances of size n.

A: The algorithm.

In: The set of all possible inputs to A of size n.
f4: Function expressing the resource cost of A.
I'is an inputin Iy.

worst cost(A) = rP?fo(I).
€ln

best cost(A) = rlnilan(I).
€ln

Algorithm Upper Bounds (2)

Examples:
@ Factorial: One input of size n, one cost

@ Find: Various models for number of inputs, n different
costs

@ Findmax: Various models for number of inputs, all cases
have same cost

Average Case

We may want the average case cost. For each input of size
n, we need:

@ lts frequency.
@ Its cost.

Given this information, we can calculate the weighted
average.

Q: Can the average cost be worse than the worst cost? Or
better than the best cost?

Analysis of TOH
There is only one input instance of size n.

How does this affect the decision to measure worst, best, or
average case cost?

We want to count the number of moves required as a
function of n.

Some facts:
o f(1)=1.
e f(2)=3.
o f(3)=7.

@ f(n)=f(n—-1)+1+f(n—1)=2f(n—1)+1,vn > 4.
(Actually, we can simplify our list of facts.)

2010-11-30

2010-11-30

2010-11-30

2010-11-30

CS 4104 Algorithm Upper Bounds (1)
s cas cost_(or e oo costor e

i o T o s o1 1

Sestcase cos_(or s . i cost o he agor

O o e o8

LAIgorithm Upper Bounds (1)

A The aigortm,
L The s of ll posiie s 1 A of sz .
 Functon exressing e esourcecost of .

It is possible that the {best, worst} case cost changes radically
with n. That is, even n might have a very different cost from odd

n.

This point that we are considering all of the inputs of size n is
crucial. In other words, we don't pick the n for which the best
(or worst) case occurs. So it is wrong to say something like
“The best case iswhenn =1"

CS 4104

Algorithm Upper Bounds (2)

LAIgorithm Upper Bounds (2)

The input is just a value, n. Model choices:

e All numbers: Infinite number of inputs.
e Permutation of 1 to n: n! inputs.

e Focus only on position of X: n inputs.

Same model choices as for find.

Show graphs of cost vs I, for factorial, find (3rd model) and
findmax (3rd model).

CS 4104

Average Case

e L e R e
bt
ey
LAverage Case e

(Ghen s nformaton, we can calcuate th veighed
aage.

Q-Can ho averagscos b wors han th wers ost? O
Beter v e et cot?

Frequency can be hard to determine!
Example: Average cost of sequential search is (n + 1)/2, but
only if the frequency of occurence for each case is equal.

> freq(l) * cost(l)

I€ln

No, because that would require at least one case with greater
cost than the worst case.
No, for the same reason.

CS 4104 Analysis of TOH

There s oy onenput nstane of sze .

How doss s afet e dcision o measure worst,best, o
average case cos?

e vt 1 count the rmber of moves requied 55
ncin,

LAnaIysis of TOH fanci

A= 1 1M) =200 1)+ 1024
(Acuaty e cansimosy our s o facs)

Worst/best/average cost are the same, so it doesn’t matter
which you do.

We only need f(1) and f(n), facts f(2) and f(3) are redundant
information.

CS 4104

= Recurrence Relation

Recurrence Relation

2010-11-30

The following is a recurrence relation

In practice, this is a common way to start: look for a pattern.

1 n=1 . . .
= It is so common, it has its own name: Guess and Test.
i) {2f(n—1)+1 n>1 ' fhas fis oW .

How can we find a closed form solution for the recurrence?

It looks like each time we add a disk, we roughly double the
cost — something like 2".

If we examine some simple cases, we see that they appear
to fit the equation f(n) = 2" — 1.

How do we prove that this ALWAYS works?
Fall 2010 33/351

CS 4104

L Proof for Recurrence

Proof for Recurrence

2010-11-30

Let's ASSUME that f(n — 1) = 2"! — 1, and see what no notes
happens.

From the recurrence,

fn)=2f(n—-1)+1=22"1—-1)+1=2"—1.

Implication: if there is EVER an n for which f(n) = 2" — 1,
then for all greater values of n, f conforms to this rule.

This is the essence of proof by induction

CS 4104 Proof by Induction

Shom i

Proof by Induction

L Proof by Induction

2010-11-30

To prove by induction, we need to show two things:

@ We can get started (base case). That would depend on what? On the intrinsic difficulty of the
@ Being true for k implies that it is true also for k + 1. problem!

Here again is the proof for TOH:
@ Forn=1,f(1)=1,s0f(1) =2 1.
@ Assume f(k) = 2 — 1, fork < n.
» Then, from the recurrence we have
f(n) = 2f(n—-1)+1
2020 — 1)1 =201
» Thus, being true for k — 1 implies that it is also true for k.
@ Thus, we conclude that formula is correct for all n > 1.
Is this a good algorithm?
Fall2010 35/351

CS 4104

Lower Bound of a Problem (1)

LLower Bound of a Problem (1)

Lower Bound of a Problem (1)

2010-11-30

To decide if the algorithm is good, we need a lower bound on no notes
the cost of the PROBLEM.

We can measure the lower bound (over all possible

algorithms) for the {worst case, best case, or average case}.

Consider a graph of cost for each possible algorithm.

@ For a given problem size n, the graph shows the costs
for all problem instances of size n.

The worst case lower bound is the LEAST of all the
HIGHEST points on all the graphs.
Fall 2010 36/351

CS 4104

Lower Bound of a Problem (2)

LLower Bound of a Problem (2)

2010-11-30

Lower Bound of a Problem (2)

We need the model to define:

e What problem
Ay is the set of algorithms within model M that solve the

problem. Lower Bound on Problem P o What cost metric

Lower Bound on Problem P (for instance of size n).See Rawlins

= min {maxf (I i
AGAM{ Ieellnx A} Figure 1.7.
o CS 4104
(3]
3
Growth Rate vs. I 3 L Gromth Rate vs. I
o
N

Note the important difference between a growth rate graph
for a given problem, and a graph showing all the I,’s (for a Show graphs for each of the cases.
given n) of that problem.

Examples: Consider the graphs for each of these
@ Find: Best, average, and worst cases as n grows
@ Find: Cost for all inputs of a given size n
@ Findmax: Cost as n grows (same for best, average,
worst cases)
@ Findmax: Cost for all inputs of a given size n

The fact that (for some problems) different Is in |, can have
different costs is the reason why we must use the qualifier of
“best” “worst” or “average” cases.

Fall2010 38/351
o CS 4104
%
—
LOWGF Bound (Cont) ;_';: LLower Bound (cont.)
o
@ Lower bounds (of problems) are harder than upper °
bounds (of algorithms) because we must consider ALL Since we cannot even enumerate all the algorithms and check
of the possible algorithms — including the ones we don’t all the bounds, we need a different approach!
know!
» Upper bound: How bad i§ the algorithm? No, sorry!
> Lz lamuiek HOW_ ie17el 8 e [t . Why not? Because we might not have the tightest possible
@ Lower bounds don't give you a good algorithm. They lower boundl
only help you know when to stop looking.
@ If the lower bound for the problem matches the upper
bound for the algorithm (within a constant factor), then
we know that we can find an algorithm that is better only
by a constant factor.
@ Can a lower bound tell us if an algorithm is NOT
optimal?
Fall2010 39/351
o CS 4104 r Bounds for TOH
%
]
LOWEI’ BOUhdS fOI‘ TOH ‘c_'>. LLower Bounds for TOH
o
N
@ Try #1: We must move each disk at least twice, except
for the largest we move once. No! Q(n) isn't close to O(2").
» f(n)=2n - 1.
@ |s this a good match to the cost of our algorithm? We must move n — 1 disks off the bottom disk first.
@ Where is the problem: the lower bound or the algorithm? No! For example, sorting cost depends on particular problem
@ Insight #1: f(n) > f(n — 1). instances.Since it does nothing more than the minimum
» Seems obvious, but why? required by the observation.
» Is this true for all problems?
@ Try #2: To move the bottom disk to Peg 3, we MUST Warning: Normally we cannot “prove” anything about a problem
move n — 1 disks to Peg 2. Then, we MUST move n — 1 in general with this sort of behavioristic argument. Usually, we
disks back to Peg 3. cannot say so much about how an algorithm must work.

f(n) > 2f(n — 1) + 1.
@ Thus, TOH is optimal (for our model).
Fall 2010 40/351

CS 4104 New Models

L New Models

New Models

2010-11-30

Model #1: A big help! O(n) or even O(1).

New model #1: We can move a stack of disks in one move. Model #2: Doesn’t seem to change the cost of the problem.

g esE ez Mot el e s SR e e Combining these two things: Looks to be O(n).

New model #3: Different numbers of pegs.

New model #4: We want to know what the kth move is.

Fall2010 41/351
8' CS 4104 Problem Solving Algorithm
:.i
Problem Solving Algorithm g ' Problem Soting Algorthm
N
If the upper and lower bounds match, Does this “algorithm” always terminate?
then stop, No — you might get stuck in a look if you go through and make
else if close or problem isn’t important, no progress.
then stop,
else if model focuses on wrong thing,
then restate it,
else if the algorithm is too fat,
then generate slimmer algorithm,
else if lower bound is too weak,
then generate stronger bound.
Repeat until done.
Fall2010 42/351
8' CS 4104 Factorial Growth (1)
:.i Which unction grows faster? 1(n) = 2° o g(n) = ol
Factorial Growth (1) o R
N

) . Hopefully your intuition tells you that n! grows much faster than
Which function grows faster? f(n) = 2" or g(n) = n! on

How about h(n) = 22"? This one is probably not as obvious. Of course, this is 4", so if
your intuition is good, you will realize that n! is much faster
growing (since most numbers are bigger than 4).

nj1 2 3 4 5 6 7 8))]
gn) nl|1 2 6 24 120 720 5040 40320 It just so happens that n! will be become bigger than 22" for
fn) 27/2 4 8 16 32 64 128 256 n=9.
h(n) 22" |4 16 64 256 1024 4096 16384 65536

CS 4104 Factorial Growth (1)

Factorial Growth (1)

L Factorial Growth (1)

2010-11-30

Consider the recurrences:
The n > 1 clause is the important part of the recurrence for
growth.

h(n) = 4 n=1 The second recurrence is just n! in recurrence form.
4h(in—-1) n>1
Sorry, we don't know the base case. It must be something
1 n=1 bigger than 8. So, we can’t use induction!
9(M) =9 a(n—
gn—1) n>1
Induction is great for verifying a hypothesis. It is not so good for
| hope your intuition tells you the right thing. generating candidate formulae!

But, how do you PROVE it?

Induction? What is the base case?
Fall2010 447351

Using Logarithms (1)

n! > 22" iff logn! > log 22" = 2n. Why?

nl = nx(nfl)x---xgx(gfl)x---x2><1
> gxgx---xgxlx---xlxl
o En/Z
- 3
Therefore

logn! > Iog(g)”/2 = (g) Iog(g).

Need only show that this grows to be bigger than 2n.

Using Logarithms (2)

(3)log(3) = 2n
= log(3) > 4
— n > 32

So, n! > 2" once n > 32.

Now we could prove this with induction, using 32 for the
base case.

@ What is the tightest base case?
@ How did we get such a big over-estimate?

Logs and Factorials

We have proved that n! € Q(22").
We have also proved that logn! € Q(nlogn).

From here, its easy to prove that logn! € O(nlogn), so
logn! = ©(nlogn).

This does not mean that n! = ©(n").
@ Note that logn = ©(log n?) but n £ ©(n?).
@ The log function is a “flattener” when dealing with
asymptotics.

A Simple Sum (1)

sum = 0; inc = 0;
for (i=1; i<=n; i++)

for (j=1; j<=i; j++) {
sum = sum + inc;
i nc++;

}

Use summations to analyze this code fragment. The number
of assignments is:

2+i(22):2+i2i:2+2ii

=1 j=1

2010-11-30

2010-11-30

2010-11-30

2010-11-30

CS 4104

LUsing Logarithms (1)

Take log of both sides.
Note that log always means log, unless explicitly stated
otherwise.

We have 5 n/2 times and we have 1 also n/2 times. This isn't
quite perfect. What if n is odd?

Since we noted earlier that logn! > 2n if n! > 22",

CS 4104

Using Logarithms (2)

@ty >
o) S 8
pudii

LUsing Logarithms (2)

Multiply by 2/n2 - 2 = 32. Take antilog and multiply by 2.

We grossly overestimated when going from n! to (g)”/z.

CS 4104

Logs and Factorials
Vi have praved i € 27,
Wi have iso proved hat g < (o).

hatiogn < O(nlogn), o

LLogs and Factorials

Graphically, we can see a curve for n! that is above the curve
for 22", But we dn’t know how big the gap is (if any).

Why? Because n! < n".

Note from a previous slide that we claimed
nl > 22" iff logn! > log22" = 2n.

But while A > B iff log A > log B, it is NOT TRUE that A > B iff
logA > log B.

CS 4104 Asimple Sum (1)

LA simple sum (1)

no notes

CS 4104

A Simple Sum (2)

LA simple Sum (2)

A Simple Sum (2)

2010-11-30

Give a good estimate. 2n +2n2

@ Observe that the biggest term is 2 + 2n and there are n
terms, so its at most: 2n + 2n? About half of this, so about n?.

@ Actually, most terms are much less, and its a linear
ramp, so a better estimate is: about n?.

Give the exact solution.
@ Of course, we all know the closed form solution for
P
@ And we should all know how to prove it using induction.
@ But where did it come from?

CS 4104

A Problem-Specific Approach

LA Problem-Specific Approach

A Problem-Specific Approach

2010-11-30

Each pair sums to n + 1.
of pairsis n/2.

Observe that we can “pair up” the first and last terms, the The solutionis (n + 1)(n/2).

2nd and (n — 1)th terms, and so on. Each pair sums to: n+1. o - .
This is pretty! But it is not useful for solving any other
summation!

The number of pairs is: n/2. Note that there is no question about its being correct.

Thus, the solution is: (n + 1)(n/2).

CS 4104

ALittle More General

Since e lrgest termis n and here e erms, he
Summaton s ess 1an -

10 ara ucky, e souton s a poyroia.

LA Little More General

A Little More General

2010-11-30

Since the largest term is n and there are n terms, the Being polynomial is an assumption.
summation is less than n?.

If we are lucky, the solution is a polynomial.

Guess: f(n) = cyn? + con + c3.

f(0)=0socs =0.

For f(1), we getcy + ¢, = 1.

For f(2), we get 4c; + 2c, = 3.

Setting this up as a system of 2 equations on 2 variables, we
can solve to find that ¢c; = 1/2 and ¢, = 1/2.

CS 4104

More General (2)

So,iituuely s apoynamia,

LMore General) - io-

More General (2)

use i

2010-11-30

Wiy i i not unversal approach 1 sovig sumatons?”

Because we merely guessed that it is a polynomial and then fit
So, if it truely is a polynomial, it must be some points. For all we know, it could be something like
cin? + conlogn.
n(n+1)
2 Because lots of summations do not have polynomial
closed-form solutions.

f(n)=n?/2+n/2+0=

Use induction to prove. Why is this step necessary?

Why is this not a universal approach to solving summations?

o CS4104 e
%
]
An Even More General Approach g o
- . no notes
Subtract-and-Guess or Divide-and-Guess strategies.
To solve sum f, pick a known function g and find a pattern in
terms of f(n) — g(n) or f(n)/g(n).
Find the closed form solution for
n
f(n)=>"i.
i=1
Fall 2010 53/351
o CS 4104 Guessing (cont)
(‘? Examples: Try u(n) = n: ga(n) = f(n - 2).
i]
GueSS|ng (Cont) ‘C_'>' LGuessing (cont.)
o
N

Examples: Try g:(n) = n; gz(n) = f(n — 1).
(n+1)/2
(n+1)/(n—1)

nf| 1 2 3 4 5 6 7 8
fn)) 13 6 10 15 21 28 36 Of couse, lots of other approachs do NOT work.
ga(n) 1 2 3 4 5 6 7 8
f(n)/gu(n) | 2/2 3/2 4/2 5/2 6/2 7/2 8/2 9/2 e f(n) — g1(n) = f(n — 1). Knowing that f(n) = f(n — 1) 4+ n is
Go(n)| O 1 3 6 10 15 21 28 not useful.
f(n)/gz2(n) 3/1 4/2 5/3 6/4 7/5 8/6 9/7

e f(n) —g2(n) = n. Knowing that f(n) = f(n — 1) + n is not

useful.
What are the patterns?
f(n) It can be like finding a needle in a haystack.

OB
f(n) _
g2(n)
Falzon0 541351
8 CS 4104 Solving Summations (cont)
:I [
Solving Summations (cont.) g Solving Summations (cont.)

(1) is pretty direct. So f(n) = (n+ 1)(n)/2.

B2 Sl O D (R EIRES EXel S el (7)) (2) is not so direct, but useful as an example

f(n) _n+1
n 2
f(n) n+1

8 CS 4104 ‘Solving Summations (cont)
~ mey - 2
SO|V|ng SummatlonS (Cont) ;_3: LSoIving Summations (cont.)
g Important Note: This is not a proof that f(n) = n(n + 1)/2.
f(n) _ n+1 So long as we have both f(n) and f(n — 1) in the equation, we
fn—1) n-1 are stuck. So, how can we get rid of f(n — 1)? What can we
fn(n—-1) = (n+21)f(n—1) replace it with? Something in terms of f(n). Replacing f(n — 1)
with f(n) — n is the key step.
f(n)(n—-1) = (n+1)(f(n)—n)
nf(n) —f(n) = nf(n)+f(n)—n?-n Because we did not prove either (1) or (2). We merely detected
2f(n) = nin= n(n + 1) a pattern from looking at a few terms. Now we have a
hypothesis. Fortunately, its easy to check a hypothesis with
f(n) = n(n+1) induction.

2

Important Note: This is not a proof that f(n) = n(n +1)/2.
Why?
Fall 2010 56/351

Growth Rates

Two functions of n have different growth rates if as n goes
to infinity their ratio either goes to infinity or goes to zero.

L0 2 2w Snlogn

1200
1000 =
w00 _-

w00

00

20 Z

Estimating Growth Rates

Exact equations relating program operations to running time
require machine-dependent constants.

Sometimes, the equation for exact running time is
complicated to compute.

Usually, we are satisfied with knowing an approximate
growth rate.

Example: Given two algorithms with growth rate c;n and
c,2™, do we need to know the values of ¢; and c,?

Consider n? and 3n. PROVE that n?> must eventually become
(and remain) bigger.

Proof by Contradiction

Assume there are some values for constants r and s such
that, for all values of n,

n®<rn+s.

Then,n <r +s/n.
But, as n grows, what happens to s/n?

Since n grows toward infinity, the assumption must be false.

Some Growth Rates (1)

Since n? grows faster than n,

@ 2" grows faster than 2".
@ n“ grows faster than n2.
@ n grows faster than v/n.
@ 2logn grows no slower than log n.

2010-11-30

2010-11-30

2010-11-30

2010-11-30

CS 4104

Growth Rates

T fnctons of n ave ifrent o i3 oes.
1o ity i o cne goes 6 I o1 556

LGrowth Rates

Where does (1.618)" go on here?

CS 4104 Estimating Growth Rates

Exac equaton ratng program operatons o uming e
requre machinedependent consans.

e, th cquaton o exactuning s
Compicaied o compute,

LEstimating Growth Rates

no notes

CS 4104

Proof by Contradiction
Assume there ar some valves forconsans 1 and s such

. o v of

L Proof by Contradiction

Then.n < +5/n.
Bt 5.1 grows, wha hagpens 0317

Sinca n grows oward iy, e assumpon mustbeflse

It goes to zero.

Conclusion: In the limit, as n — oo, constants don’t matter.
Limits are the typical way to prove that one function grows
faster than another.

CS 4104

‘Some Growth Rates (1)

LSome Growth Rates (1)

Took antilog of both sides.

We squared boths sides.

n = (v/n)2. We replaced n with \/n.

Took log of both sides. Log “flattens” growth rates.

Some Growth Rates (2)

Since n! grows faster than 2",
@ n!! grows faster than 2"!.
@ 2" grows faster than 22",
@ n!? grows faster than 22",
@ +/n! grows faster than v/2".
@ logn! grows no slower than n.

par 2010

Some Growth Rates (3)

If f grows faster than g, then
@ Must V/f grow faster than /g?

@ Must logf grow faster than log g?

61/351

log n is related to n in exactly the same way that n is related

to 2".
@ 21090 —
Fall 2010

Fibonacci Numbers (Iterative)

f(n) =f(n—1)+f(n—2)forn>2;f(0) =f(1) = 1.

long Fibi(int n) {

| ong past, prev, curr;

past = prev = curr = 1; I

for (int i=2; i<=n; i++) { [/
past = prev; prev = curr; //
curr = past + prev; /1

}

return curr;

}

The cost of Fibi is easy to compute:

curr holds Fib(i)

Conput e next val ue
past hol ds Fib(i-2)
prev holds Fib(i-1)

pa 2010

Fibonacci Numbers (Recursive)

int Fibr(int n) {
if ((n<=1) return 1;
return Fibr(n-1) + Fibr(n-2);
}

What is the cost of Fibr?

/| Base case
/'l Recursive call

T

62/351

63 /351

64 /351

2010-11-30

2010-11-30

2010-11-30

2010-11-30

CS 4104

‘Some Growth Rates (2)

arows fastr than 2,
rous faster pan

LSome Growth Rates (2)

Apply factorial to both sides.

Take antilog of both sides.

Squared both sides.

Took square root of both sides.

Took log of both sides. Actually, it grows faster since
logn! = ©(nlogn).

CS 4104 Some Growth Rates (3)
LSome Growth Rates (3) v Mt e oas?
| e oy
Yes.
No.

logn ~ log n? within a constant factor, that is, the growth rate is
the same!

CS 4104

Fibonacei Numbers (lterative)

(0-1)+1(0-2)forn 221(0) = 1(1) = 1.

LFibonacci Numbers (Iterative)

i cosof it i ey 0 compute:

3n assignments.

CS 4104

Fibonacei Numbers (Recursive)

LFibonacci Numbers (Recursive)

i e costof o7

It is a recursive function.

So we use a recurrence relation to describe its cost.

Basically, the number of function calls (the cost, since each
function does constant work aside from calling other functions)
is the same as the size of the Fibonacci number itself!

Analysis of Fibr

Use divide-and-guess with f(n — 1).

n |1 23 4 5 6 7 8
f(n) 123 5 8 13 21 28
f(n)/f(n—1)|1 2 15 1666 1.6 1.625 1.615 1.619

Following this out, it appears to settle to a ratio of 1.618.

Assuming f(n)/f(n — 1) really tends to a fixed value x, let's
verify what x must be.

f(n) f(n-1) f(n-2)
fn—2) f(n-2) "fn-2 X1

Analysis of Fibr (cont.)

For large n,
f(n) fin) fn-1) .,

fn-2) fn_Dfn-2) *

If x exists, then x? —x —1 — 0.

Using the quadratic equation, the only solution greater than

one is
o +2‘/§ ~ 1.618.

What does this say about the growth rate of f?

Order Notation

little oh f(n) eo(g(n)) < limf(n)/g(n)=0
big oh f(n) € O(g(n)) <
Theta f(n)=©(g(n)) = f=0(g)and
g =0(f)
Big Omega f(n) € Q(g(n)) >
Little Omega f(n) € w(g(n)) > limg(n)/f(n)=0

| prefer “f € O(n?)” to “f = O(n?)”
@ While n € O(n?) and n? € O(n?), O(n) # O(n?).

Note: Big oh does not say how good an algorithm is — only
how bad it CAN be.

If A € O(n) and B € O(n?), is A better than B?

Perhaps... but perhaps better analysis will show that
A = ©(n) while B = ©(logn).

Limitations on Order Notation

Statement: Algorithm A’s resource requirements grow
slower than Algorithm B’s resource requirements.

Is A better than B?

Potential problems:

@ How big must the input be?

@ Some growth rate differences are trivial
» Example: ©(log?n) vs. ©(n'/10).

@ It is not always practical to reduce an algorithm’s growth

rate
» Shaving a factor of n reduces cost by a factor of a million
for input size of a million.

» Shaving a factor of log log n saves only a factor of 4-5.

2010-11-30

2010-11-30

2010-11-30

2010-11-30

CS 4104

LAnaIysis of Fibr

Fromf(n) =f(n—1) +f(n—-2).

We divide by f(n — 2) to make the second term go away — and
we also get something useful in the first term. Remember that
the goal of such manipulations is to give us an equation that
relates f(n) to something without recursive subcalls.

CS 4104 Analysis of Fibr (cont)

LAnaIysis of Fibr (cont.)

We get this by muliplying and rearranging:

f(n) f(n-1)
f(n—2)f(n—1)

As n gets big, the two ratios go to x.

The growth rate is exponential. f(n) ~ (1.618)".

n |1 2 3 4 5 6 7
fn) |1 2 3 5 8 13 21
162" |1.62 262 424 69 11.09 17.94 29.03

Note that the value is always in the right range, even if the scale
is off a bit.

CS 4104

LOrder Notation

Peihaps..bu perhaps beter anlysis i show st
4 o) whde 5 - Oogn)

no notes

CS 4104

n Order Notation

equirements g
o requrements.

LLimitations on Order Notation

Notation: log n?(= 2logn) vs. log? n(= (logn)?) vs. loglogn.
log 162 = 2log 16 = 8. log® 16 = 42 = 16.
loglog 16 = log4 = 2.

If n is 101?(~ 20) then log?® n ~ 1600, n'/1° = 16 even though
n/10 grows faster than log® n.

n must be enormous (like 2159) for n1/19 to be bigger than
log? n.

“Practical” here means that the constants might become too
much higher when we shave off the minor asymptotic growth.

Practicality Window

In general:
@ We have limited time to solve a problem.
@ We have a limited input size.

Fortunately, algorithm growth rates are USUALLY well
behaved, so that Order Notation gives practical indications.

Searching

Assumptions for search problems:
@ Target is well defined.
@ Target is fixed.
@ Search domain is finite.

@ We (can) remember all information gathered during
search.

We search for a record with a key .

A Search Model (1)

Problem :
Given:

@ Alist L, of n elements
@ A search key X

Solve: Identify one element in L which has key value X, if
any exist.

Model:
@ The key values for elements in L are unique.
@ One comparison determines <, =, >.
@ Comparison is our only way to find ordering information.
@ Every comparison costs the same.

A Search Model (2)

Goal: Solve the problem using the minimum number of
comparisons.

@ Cost model: Number of comparisons.

@ (Implication) Access to every item in L costs the same
(array).

Is this a reasonable model and goal?

2010-11-30

2010-11-30

2010-11-30

2010-11-30

CS 4104

Practicality Window

L practicality Window

Input can only get so big before the computer chokes.

“Practical” is the keyword. We use asymptotics because they
provide a simple model that usually mirrors reality. This is
useful to simplify our thinking.

CS 4104

Searching

nprotlems:
e

LSearching

normaton ganered durg

W sesich for & record i ey.

Well defined: We recognize a hit or miss.
Fixed: The target doesn’t move during the life of the search.

We often choose not to remember information. For example,
sequential search does not remember the values seen already.

CS 4104 A Search Model (1)

LA Search Model (1)

What if the key values are not unique? Probably the cost goes
down, not up. This is an assumption for analysis, not for
implementation.

We would have a slightly different model (though no asymptotic
change in cost) if our only comparison test was <. We would
have a very different model if our only comparison was = / #.

A comparison-based model.

String data might require comparisons with very different costs.

CS 4104

A Search Model (2)

LA search Model (2)

e We are assuming that the # of comparisons is proportional to
runtime.

e Might not always share an array (assumption that all
accesses are equal). For example, linked lists.

e We assume there is no relationship between value X and its
position.

CS 4104

L Linear Search

Linear Search

2010-11-30

W eation represents he werst case cost

General algorithm strategy: Reduce the problem.

@ Compare X to the first element. Warning: We are using this simple, familiar algorithm as an

illustration of how to do full, formal analysis. This includes some
@ If not done, then solve the problem for n — 1 elements. recurrence solving techniques, and attention to lower bounds.

Position |inear_search(L, |ower, upper, X) {))
if L[lower] = X then Cost given on next slide.
return | ower;
else if |ower = upper then
return -1;
el se
return |inear_search(L, |ower+1, upper, X);

}

What equation represents the worst case cost?
Fall 2010 73/351

CS 4104 Worst Cost Upper Bound

Worst Cost Upper Bound

LWorst Cost Upper Bound

2010-11-30

f(n) = { : n=> no notes
fn-1)+1 n>1
Reasonable to guess that f(n) = n.
Prove by induction:
Basis step : f(1) =1, so f(n) =nwhenn = 1.
Induction hypothesis : For k < n, f(k) = k.
Induction step : From recurrence,

fn) = f(n—-1)+1
= (n—-1)+1
=n
Thus, the worst case cost for n elements is linear.

Induction is great for verifying a hypothesis.
Fall 2010 741351

CS 4104 Approach #2

Approach #2

LApproach #2

2010-11-30

@ What if we couldn’t guess a solution?

@ Try: Substitute and Guess. Replace i with n — 1.

» |terate a few steps of the recurrence, and look for a
summation.

f(n) = f(n-1)+1
{f(n-2)+1} +1
{{f(n-3)+1} +1} +1}
@ Now what? Guess f(n) =f(n —i) +1i.
@ When do we stop? When we reach a value for f that we
know.

fn)=f(h—-(n-1)+n—-1=f(1)+n—-1=n
@ Now, go back and test the guess using induction.
Fall 2010 75/351

Alternative: Recognize f(n) = f(1y Y1, 1.

CS 4104

Approach #3

LApproach #3

2010-11-30

Guess and Test : Guess the form of the solution, then solve

the resulting equations. Often, f(0) is easier. Or maybe f(2).

Guess: f(n) is linear.

f(n) =rn +s for somer,s. By definition, f(n) =f(n—1)+1,sor xn=r x (n—1) + 1.
7 Sorn+s=rmn-r+s+1.
What do we know? s=s—-r+1
of(l)=rxl+s=r+s=1 r-1=0

@ f(nN)=rxn+s=rx(n—-1)+s+1.
Since f(n) =f(n—1) + 1.
Solving these two simultaneous equations, r =1, s = 0.
Why is this a guess and not a proof? Because all we did is
show that our model passes through two points that the “real”
curve also passes through. If the curve really is linear, 2 points
is all that we need. But, we need to prove that it is linear.

Final form of guess: f(n) = n.

Now, prove using induction.

CS 4104 Lower Bound on Problem

LLower Bound on Problem

Lower Bound on Problem

2010-11-30

Theorem : Lower bound (in the worst case) for the problem

is n comparisons. Be careful about assumptions on how an algorithm might
(must) behave.

Proof : By contradiction. After all, where do new, clever algorithms come from? From

@ Assume an algorithm A exists that requires only n — 1 different behavior than was previously assumed!

(or less) comparisons of X with elements of L.

@ Since there are n elements of L, A must have avoided
comparing X with L[i] for some value i.

@ We can feed the algorithm an input with X in position i.

@ Such an input is legal in our model, so the algorithm is
incorrect.

Is this proof correct?

CS 4104 Fosing the Proc (1)

R
L Fixing the Proof (1) i

» I possibehat X s i posion| a tht tme.

Fixing the Proof (1)

2010-11-30

no notes

Error #1: An algorithm need not consistently skip position i.
Fix:
@ On any given run of the algorithm, some element i gets
skipped.
@ Itis possible that X is in position i at that time.

CS 4104 Fsing the Proc 2)

L Fixing the Proof (2)

2010-11-30

Fixing the Proof (2)

Error #2: Must allow comparisons between elements of L. no notes
Fix:

@ Include the ability to “preprocess” L.

@ View L as initially consisting of n “pieces.”

@ A comparison can join two pieces (without involving X).

@ The total of these comparisons is k.

@ We must have at least n — k pieces.

@ A comparison of X against a piece can reject the whole
piece.

@ This requires n — k comparisons.

@ The total is still at least n comparisons.

CS 4104 Average Cost

How many comparisons does near search doon aerags?

W must ko th prbabily ofoccurancefor each
possie npul.

Onsxbo L)
anore everyingexcepthe posion o X n L. Why?
hatare e + 1 evnts?

LAverage Cost

Average Cost

2010-11-30

POCEL) -1 3P0 - L)

How many comparisons does linear search do on average?
No, X might not be in L! What is this probability?

We must know the probability of occurrence for each
possible input. The actual values of other elements is irrelevent to the search

routine.
(Must X be in L?)

L[1],L[2], ..., L[n] and not found.
Ignore everything except the position of X in L. Why?

L T Y i e Assume that array bounds are 1..n.

PX¢L)=1-— iP(X = L[i]).

i=1

o CS 4104 Average Cost Equation
° i i
— Lot
Average Cost Equation 3 L Average Cost Equation :
o =
Let ki = i be the number of comparisons when X = L][i]. o e
Let ko = n be the number of comparisons when X ¢ L. no notes
Let p; be the probability that X = L[i].
Let po be the probability that X ¢ L[i] for any i.
n
f(n) = koPo+) kiP
i=1
n
= npo+ Y ip;
i=1
What happens to the equation if we assume all p;’s are
equal (except po)?
Fall 2010 81/351
o CS 4104 Computation
C‘? a
. =] S
Computat|0n ‘C_I>' L computation
&
n
f(n) = pon+ Y ip 1 po
i=1 p= n
n
_ N : .
Polt P ;I Show a graph of pg vs. cost for 0 < pg < 1, with y axis going
from O to n.
= Pon+ Pw
- 1—pon(n+1)
= Pt 2
_ n+1+py(n—1)
- 2
Depending on the value of po, ”;r—l <f(n) <n.
Fall 2010 82/351
CS 4104

Problems with Average Cost

LProbIems with Average Cost

2010-11-30

Problems with Average Cost

Example: Quicksort variance is rather low. For this linear
search, the variances is higher (normal curve).

@ Average cost is usually harder to determine than worst
cost.

@ We really need also to know the variance around the
average.

@ Our computation is only as good as our knowledge
(guess) on distribution.

Fall2010 83/351
o CS 4104
@
]
Sorted L|St ‘c_'>. LSorted List

o
N

Change the model: Assume that the elements are in

ascending order. We have more information a priori.

Is linear search still optimal? Why not? :
Can quit early.

What is best, worst, average cost? 1, n, n/2, respectively.

Optimization: Use linear search, but test if the element is Effectively eliminates case of x not on list.

greater than X. Why?

If we find that x is smaller, we only rule out one element.

Cost is 1 either way, but we don’t get much information in worst
case.

Small probability for big information, but big probability for small
information.

Observation: If we look at L[5] and find that X is bigger, then
we rule out L[1] to L[4] as well.

More is Better: If we look at L[n] and find that X is bigger,
then we know in one test that X is not in L. Great!
@ What is wrong here?

D ey

CS 4104

LJump Search

Jump Search

2010-11-30

Algorithm: no notes

@ From the beginning of the array, start making jumps of
size k, checking L[k] then L[2k], and so on.

@ So long as X is greater, keep jumping by k.

@ If X is less, then use linear search on the last sublist of
k elements.

This is called Jump Search.
What is the right amount to jump?

CS 4104

LAnaIysis of Jump Search

Analysis of Jump Search

2010-11-30

@ If mk < n < (m+ 1)k, then the total cost is at most

m + k — 1 3-way comparisons. m is number of big steps, k is size of big step.

f(n,k)=m+k71={g

@ What should k be?

min {FJ +k—1}
1<k<n ULk

@ Take the derivative and solve for f’(x) = 0 to find the

minimum.
@ This is a minimum when k = /n.
@ What is the worst case cost?
» Roughly 2¢/n.
Fall 2010 86/351

CS 4104

L Lessons

Lessons

2010-11-30

We want to balance the work done while selecting a sublist

with the work done while searching a sublist. This takes us to binary search.

In general, make subproblems of equal effort.

This is an example of divide and conquer

What if we extend this to three levels?

@ We'd jump to get a sublist, then jump to get a
sub-sublist, then do sequential search

@ While it might make sense to do a two-level algorithm
(like jump search), it almost never makes sense to do a
three-level algorithm

@ Instead, we resort to recursion

Fall 2010 87/351

CS 4104

L Binary Search

Binary Search

2010-11-30

no notes

int binary(int K intx array, int left, int right) {
/1 Return position of elenent (if any) with value K

int | =left-1;
int r = right+1; // 1 and r beyond array bounds
while (I+1 !'=7r) { // Stop when | and r neet
int i = (l+r)/2; [/ Mddle of renaining subarray
if (K<array[i]l) r =1i; /1 In left half
if (K==array[i]) returni; // Found it
if (K>array[i]) | =1i; // In right half

}
return UNSUCCESSFUL; // Search value not in array
}

Jump Search

Analysis of Jump Search

Mk << (m - 3, o e ot costis at most
m k-1 Sy comparsons.

fnk =m k1= 2] k-

J +k —1. Rawlins has a discussion about some technicalities related to
how to take derivative since k is an integer. Essentially, the
real-valued equivalent cannot be off by more than 1.

Lessons

Ve vt 1 lancethe werk cone whie selecing a sublst
i o work cone whie Seaching 8 et

1 genea make subprtiemsof el efor.

Binary Search

Worst Case for Binary Search (1)

(n) = 1 n=1
L f(ln/2])+1 n>1
Since n/2 > |n/2], and since f(n) is assumed to be
non-decreasing (why?), we can use
f(n) =f(n/2) + 1.

Alternatively, assume n is a power of 2.
Expand the recurrence:

f(n) = f(n/2)+1
= {f(n/4)+1}+1
= {{f(n/8)+1}+1}+1
2T DY

Worst Case for Binary Search (2)

Collapse to
f(n) =f(n/2") +i=f(1) +logn =logn + 1

Now, prove it with induction.

f(n/2)+1 = (log(n/2)+1)+1
= (logn—1+1)+1
= logn+1=f(n).
Fall2010 90/351

Lower Bound (for Problem Worst Case)
How does n compare to v/n compare to log n?
Can we do better?

Model an algorithm for the problem using a decision tree.
@ Consider only comparisons with X.
@ Branch depending on the result of comparing X with
L[i].
@ There must be at least n leaf nodes in the tree. (Why?)
@ Some path must be at least log n deep. (Why?)

Thus, binary search has optimal worst cost under this
model.

Average Cost of Binary Search (1)

An estimate given these assumptions:
@ XisinL.
@ X is equally likely to be in any position.
@ n = 2 for some non-negative integer k.

Cost?

@ One chance to hit in one probe.
@ Two chances to hit in two probes.
@ 2-'to hitin i probes.

o i<k.

What is the equation?

2010-11-30

2010-11-30

2010-11-30

2010-11-30

CS 4104 Worst Case for Binary Search (1)

LWorst Case for Binary Search (1)

We get rid of at least [n/2] elements.

Adding more elements won't decrease the work.

CS 4104

Worst Case for Binary Search (2)

LWorst Case for Binary Search (2)

By the IH,
f(n/2) =log(n/2) + 1.

CS 4104

Lower Bound (for Problem Worst Case)

o doos n compar o i compar o g2

LLower Bound (for Problem Worst Case)

search s opal

Assumption: A deterministic algorithm: For a given input, the
algorithm always does the same comparisons.

Since L is sorted, we already know the outcome of any
comparisons between elements in L, so such comparisons are
useless.

There must be some point in the algorithm, for each position in
the array, where only that position remains as the possible
outcome. Each such place corresponds to a (leaf) node.

Because a tree of n nodes requires at least this depth.Show
decision tree illustration.

CS 4104 Average Cost of Binary Search (1)

LAverage Cost of Binary Search (1)

no notes

o CS 4104 Average Cost 2
D? .
—
Average Cost (2) 3 L Average Gost (2)
2
1x1+2x2+3x4+..+logn2oon-t 1"’295@71 2loan-1 _ /2.
n n &
From the second line, and through the next slide, works on
solving the summation in its own right. We’ll come back to
ko k-1 k=l kel solving the original equation after we have the summation.
doi2tt = Y (i+12=)i2'+> 2
i=1 i=0 i=0 i=0 Change variables: i — i + 1.
k—1
= 2) i2"t42x-1
; * Oth term contributed nothing. Take out the kth term.
K
= 2 Z i2i-1 _ g2k 4ok _ 1 Now we have f(n) = 2f(n) — stuff so f(n) = stuff.
i=1
Falzn 5331 Form: x = 2x —y sox =y.
o CS 4104 AverageCost (3
®
3 S
Average COSt (3) g Average Cost (3) o T
N
ko ko
dligrt =232t k2K 42k~ 1
P i=1 i=1
Now what? Subtract from the original! So ' '
K k
igi—1 _ ook K _ k '
doigt =k -2 41 =(k-1)2 + 1. Si2t = kK o2k g1
i=1 i=1
= (k—1)2¢+1
[Aass " I RO A
o CS 4104 Result (1)
%
A [
Result (1) = resut®
N
Now we come back to solving the original equation. Since we
have a closed-form solution for the summation in hand, we can
- restate the equation with the appropriate variable substitutions.
Eﬁimplz (logn — 1)2°9" 41
N L 2logn — p,
~ n(logn—-1)+1
n
~ logn—1

So the average cost is only about one or two comparisons
less than the worst cost.

o CS 4104 Result (2)
%
S
Result (2) g e
Identify each of the components of this equation.
If we want to relax the assumption that n = 2%, we get: Left branch (X < L[i])
L(i) == X (no cost, 1/n chance)
0 n=0 Right branch (X > L[i])
1 n=1
= -1
f(n) Bl - 1)+ 2o+

L

NE]

f(12))+1 n>1

n

CS 4104

Average Cost Lower Bound

LAverage Cost Lower Bound

Average Cost Lower Bound

2010-11-30

. . (In worst case.)
@ Use decision trees again.

@ Total Path Length : Sum of the level for each node.

@ The cost of an outcome is the level of the corresponding
node plus 1.

@ The average cost of the algorithm is the average cost of
the outcomes (total path length/n).

@ What is the tree with the least average depth?

@ This is equivalent to the tree that corresponds to binary
search.

@ Thus, binary search is optimal.

Fill in tree row by row, left to right. So node i is at depth |logi |.

CS 4104

Changing the Model

LChanging the Model

Changing the Model

2010-11-30

Or otherwise know more about the data.

What are factors that might make binary search either

unusable or not optimal? Do more preprocessing than sorting?

@ We know something about the distribution.

Linked list.
@ Data are not sorted. (Preprocessing?)
© Data sorted, but probes not all the same cost (not an Could order data to optimize the total series of requests (e.g.,
array). by frequency).
@ Data are static, know all search requests in advance.
Fall2010 98/351
CS 4104

leerpolation Search

Interpolation Search

2010-11-30

That is, readjust for new array bounds.

(Also known as Dictionary Search)
Note that p is a fraction, so |pn| is an index position between 0

Search L at a position that is appropriate to the value of X. andn —1.
X -]
P - L]
Repeat as necessary to recalculate p for future searches.
Fall 2010 99/351
CS 4104

LQuadratic Binary Search

Quadratic Binary Search

2010-11-30

This is easier to analyze:
@ Compute p and examine L[[pn]]. We will come back and examine this assumption.
9 If X < L[[pn]] then sequentially probe

. . How many times can we take the square root of n?
L[fpn —ivn]],i=1,2,3,.. Keep dividing the exponent by 2 until we reach 1 — that is, take
until we reach a value less than or equal to X. the log of the exponent.
@ Similar for X > L[[pn]]. What is the exponent? It is logn.
@ We are now within /n positions of X. loglog n is the number of times that we can take the square

@ ASSUME (for now) that this takes a constant number of root
comparisons.
@ Now we have a sublist of size v/n.
@ Repeat the process recursively.
@ What is the cost?
Fall2010 100/351

8 CS 4104 QBS Probe Count (1)
Z S
QBS Probe Count (1) S L—qBs Probe count (1)
o
N
Cost is ©(loglogn) IF the number of probes on jump search
is constant. no notes
Number of comparisons needed is:
Vi
> " iP(need exactly i probes)
i=1
=1P; + 2P, + 3Pz + -+ + VNP 5
This is equal to:
Vi
P(need at least i probes)
i=1
Fall 2010 101/351
8 CS 4104 QBS Probe Count (2)
:": L iwwmmwmx
QBS Probe Count (2) g QBS Probe Count @)
no notes
Vi
> P(need at least i probes)
i=1
= 1+(1-P)+(1-P.—P)+---+Ps
= (Pr+..+P g+ (P2+..+P i)+
(Pz+ .. +Pm)+---
= 1P; + 2P, +3P3+---+ VNP 4
Fall 2010 102/351
8 CS 4104 QBS Probe Count (3)
- T
QBS Probe Count (3) S L QBs Probe Count (3)
o
N

We require at least two probes to set the bounds, so cost is:

S 1 <1l/4
2+ P(need at least i probes) p(1-p)<1/4
i=3

Original C's Inequality < the result of recognizing that

Important assumption!

Useful fact (Ceby3ev's Inequality):
The probability that we need probe i times (P;) is:

P(L—p)n 1
(i—2pn = 4(i-2p

Pi <
since p(1—p) <1/4.

This assumes uniformly distributed data.
Fall 2010 103/351

CS 4104 QBS Probe Count (4)

LQBS Probe Count (4)

QBS Probe Count (4)

2010-11-30

The assumption of uniform distribution (resulting in constant
number of probes on average) is much stronger than the

Final resuft assumptions used by the lower bounds proof.

Is this better than binary search?

What happened to our proof that binary search is optimal?

D Y

Comparison (1)

Let's compare loglogn to log n.
n logn loglogn Diff

16 4 2 2
256 8 3 2.7
64K 16 4 4
2% 32 5 6.4

Now look at the actual comparisons used.
@ Binary search ~ logn — 1
@ Interpolation search ~ 2.4loglogn

n logn —1 2.4loglogn Diff

16 & 4.8 worse
256 7 7.2 ~ same
64K 15 9.6 1.6

2 il 12 2.6

Comparison (2)

Not done yet! This is only a count of comparisons!

@ Which is more expensive: calculating the midpoint or
calculating the interpolation point?

Which algorithm is dependent on good behavior by the
input?

Hashing

Assume we can preprocess the data.
@ How should we do it to minimize search?

Put record with key value X in L[X].
If the range is too big, then use hashing.
How much can we get from this?
Simplifying assumptions:
@ We hash to each slot with equal probability

@ We probe to each (new) slot with equal probability
@ This is called uniform hashing

Hashing Insertion Analysis (1)

Define a = N /M (Records stored/Table size)

Insertion cost: sum of costs times probabilities for looking at
1,2,..,N+1slots

@ Probability of collision on insertion? a = N/M
@ Probability of initial collision and another collision when

probing? a?
i=N i=N
N M-N
2 I(ﬁ) M i§=0 io'(1— o)

2010-11-30

2010-11-30

2010-11-30

2010-11-30

CS 4104 Comparison (1)

LComparison 1)

no notes

CS 4104

Comparison (2)

o don yet Tis s oy count o comparsons
» W pensie: caiclaing the midpoint o
rooaion pot?

LComparison)

Wich agort s dependen o good behavr by he
npu?

Taking an interpolation point.

QBS

CS 4104

LHashing

form hasng

This is the theoritical “ideal” for hashing. True hash functions
and probe functions can’t do quite this well.

Perfect hashing is an even more extreme case. In perfect
hashing, we must know all records in advance (no dynamic
update of the database). We then construct a hash function for
that set of records. Constructing the hash function takes time
roughly equivalent to sorting. After that, the search cost is
constant.

CS 4104

Hashing Insertion Analysis (1)

LHashing Insertion Analysis (1)

o st nm
o s olsion nd ancihercosion v

M

CCEUIE ST

no notes

CS 4104 Hashing Insertion Analysis (2)

‘Sinplr formuaton: Aays ook at eastonce, ook i least
uic i probaiy . Jook i e e mes Wi
probabat -, ec

LHashing Insertion Analysis (2)

Hashing Insertion Analysis (2)

or—

2010-11-30

Similar to analysis of QBS.

Simpler formulation: Always look at least once, look at least
twice with probability «, look at least three times with
probability o?, etc.

This grows super-linearly on «.

Need to show graph of alpha vs. cost.

= 1

Za' =l+ta+ad® - =

: 11—«

i=0

How does this grow?
Fall 2010 109/351
8' CS 4104 Searching Linked Lists.
= 5 e
H H H o Searching Linked Lists oo
Searching Linked Lists - =

Same. Is this a good model? No.

Assume the list is sorted, but is stored in a linked list. Much higher since we must move around a lot (without
comparisons) to get to the same position.

Can we use binary search?

@ Comparisons? Might get to desired position faster.
@ “Work?”

What if we add additional pointers?

T Analysis Fall 2010 110/351
CS 4104 o
8 fgganAnes
— -
L S Leperecr kil EEITRECED
.. Perfect” Skip List = FvisEs S T IR i
& fe28808g
N EEEEE R E R '
o I T e e B e 4 What is the access time? logn.
@ We can insert/delete in log n time as well.
head
R EEEEEE
ol 1 1 s 1 e s s e
1
®
h_eLad
[25] [51] [58] [60 |
°_**E”_* sy
1
T L] || L]
(©)
T Analysis Fall 2010 111/351
g oo .
< T ke
BU|Id|ng a Sklp L|St g Building a Skip List
N

Pick the node size at random (from a suitable probability
distribution).

no notes

Fall 2010 112/351

8 CS 4104 Skip List Analysis (1)
? e
Sklp List AnalySIS (1) ;_3: L Skip List Analysis (1)
o
N
What distribution do we want for the node depths?
Exponential decay. 1 link half of the time, 2 links one quarter, 3
int randonievel (void) { // Exponential distrib links one eighth, and so on.
for (int level =0; Randonm(2) == 0; |evel ++);
return |evel; logn.
}
Close to logn.
What is the worst cost to search in the “perfect” Skip List?
. . A logn.
What is the average cost to search in the “perfect” Skip List? 9
What is the cost to insert? logn.
What is the average cost in the “typical” Skip List?
Fall2010 113/351
8 CS 4104 Skip List Analysis (2)
= S
Skip List Analysis (2) g St s s (@) P RN
About the same.
e Rl (S T e 2 BT On average, about the same if data are well distributed.
@ Simpler or more complex?
2 - ,F: BST relies on data distribution, while skiplist merely relies on
@ More or less efficient? chance.
@ Which relies on data distribution, which on basic laws of
probability?
Fall2010 1147351
o CS 4104 Other Types of Search
%
g L
Other Types of Search g SRR

Use a minor variant on binary search.

. . . This is what we have been talking about.

@ Nearest neighbor (if X notin L). This really changes the rules, need to think about amortization.
@ Exact Match Query. Example: 2D or 3D points.

@ Range query. What if L can change (how much?) after each comparison?

@ Multi-dimensional search.

@ Is L static? Lots of cases:

o Linked list
Is linear search on a sorted list ever better than binary e Small list
search?) -
e High probability of search key near front
Fall2010 115/351
o CS 4104 Selection
%
— How can we find the ith largest value
~ L gl
. - 5
Selection = election
S ———

Constant — go to position i.

How can we find the ith largest value
@ in a sorted list?
@ in an unsorted list?

Sorting costs nlogn time.

Can we do better with an unsorted list than to sort it?

Assumption: Elements can be ranked .

Properties of Relationships (1)

Partial Order: Given a set S and a binary operator R, R
defines a partial order on S if R is:
@ Antisymmetric: Whenever aRb and bRa, then a = b, for
alla,b € S.
@ Transitive: Whenever aRb and bRc, then aRc, for all
a,b,ceS.

Think of a relationship as a set of tuples.
@ Atuple is in the set (in the relation) iff the relation holds
on that tuple.

Example: S is Integers, R is <.

Example: S is the power set of {1, 2,3}, R is subset.

Properties of Relationships (2)

A partial order is also called a poset .

If every pair of elements in S is relatable by R, then we have
a linear order .

General Model

For all of our problems on Selection and Sorting:
@ The poset has a linear ordering. (Usually natural
numbers and a relationship of <.)

@ Cost measure is the number of 3-way element-element
comparisons.

Selection problems:
@ Find the max or min.
@ Find the second largest.
@ Find the median.
@ Find the ith largest.
@ Find several ranks simultaneously.

Finding the Maximum

int Find_max(int *L, int low, int high) {
max = | ow
for(i=lowtl; i<= high; i++)
if(L[i] > L[max])
mx = i;
return max;

}

What is the cost?

Is this optimal?

2010-11-30

2010-11-30

2010-11-30

2010-11-30

CS 4104 Properties of Relationships (1)

LProperties of Relationships (1)

Exampe: S s negers, R s <
Exampe: S i thepower et f (1,2,3), R s subset.

It is “anti” symmetric because it says that if aRb then it is NOT
bRa unless a = b. Consider for example < relation.

Not all authors use the same definitions.

< is vacuously antisymmetric.

CS 4104

Properties of Relationships (2)

A prtl g sl clled a oset.

LProperties of Relationships (2)

I overypai ofement S i rltaie by R, then we v
e orgr

We cannot relate {1, 2} with {1,3}. Which is “bigger? Neither!

Why are we interested in partial orders? Can we find the ith
biggest in a partial order? Maybe, but often not.

However, posets are useful to represent current knowledge,
and also weaker relationships such as max.

CS 4104 General Model

LGeneraI Model

no notes

CS 4104

Finding the Maximum

i

LFinding the Maximum

n — 1 = ©(n) comparisons.

What is the lower bound for this problem?

CS 4104 Proof of Lower Bound (1)

ompare agast all e clements, s0

LProof of Lower Bound (1) e

Proof of Lower Bound (1)

n enerates a most) one (new)

2010-11-30

foser
« Thrclore, tere must b - 1 comparsons.

Try #1: Try #1 is flawed: There is no reason why the winner needs to
directly compare against each other element. (Note that it does

@ The winner must compare against all other elements, so) .
not in our algorithm!)

there must be n — 1 comparisons.

Try #2:
@ Only the winner does not lose.
@ There are n — 1 losers.

@ A single comparison generates (at most) one (new)
loser.

@ Therefore, there must be n — 1 comparisons.

CS 4104 Proof of Lower Bound (2)

LProof of Lower Bound (2)

2010-11-30

Proof of Lower Bound (2)

This proof is not simpler than try #2! But it is a model for proofs

) that will be useful later.
Alternative proof:

@ To find the max, we must build a poset having one max
and n — 1 losers, starting from a poset of n singletons.

@ We wish to connect the elements of the poset with the
minimum number of links.

@ This requires at least n — 1 links.
@ A comparison provides at most one new link.

CS 4104 Average Cost

LAverage Cost

Average Cost

2010-11-30

Warning: For the next few problems, we are not going to be
looking at asymptotic growth rate as we usually do. Instead, we
will look at the exact number of operations of interest
(comparisons, or whatever), and try to minimize the number.

@ What is the average cost for Fi nd_max?

» Since it always does the same number of comparisons,
clearly n — 1 comparisons.

@ How many assignments to max does it do?

@ Ignoring the actual values in L, there are n! If all values are unique.
permutations for the input.

° Fi, nq_nax .does an aSSignm,em on the ith iteration iff Wrong! As i grows, the probability that the next element is
L[i] is the biggest of the first i elements. bigger than any of those already seen reduces.

@ Since this event does happen, or does not happen:
» Given no information about distribution, the probability of
an assignment after each comparison is 50%.

8 CS 4104 Average Number of Assignments
= [TP ——
o - e e o
1 o Average Number of Assignments
Average Number of Assignments -

i) o o S, 1 is the probability, and 1 is the cost.
Fi nd_nax does an assignment on the ith iteration iff L[i] is

the biggest of the first i elements.

Assuming all permutations are equally likely, the probability
of this being true is 1/i.

n n
1+;%x1:;%.
1= =

This sum generates the nth harmonic number : H,,.

Technique (1)

Since i < 291, 1/i > 1/2M9il,

Thus, if n = 2%

sz

Using similar logic, Ha« < K + 5.

i\

vyl 2
28" 72
(R U -
2 4 4 8 8 8 8
1
ot o

2 4 8 2
k

1+ .

T2

Fall 2010

Technique (2)

Thus, H, = ©(logn).

More exactly, H, is close to Inn.

Fall 2010

Variance (1)

How “reliable” is the average?

@ How much will a given run of the program deviate from
the average?

Variance : For runs of the program, average square of

differences.

Standard deviation : Square root of variance.

From Ceby3ev's Inequality, 75% of the observations fall
within 2 standard deviations of the average.

For Fi nd_max, the variance is

Fall 2010

Variance (2)

The standard deviation is thus about v/Inn.

@ So, 75% of the observations are between Inn — 2v/Inn
and Inn + 2vInn.

@ Is this a narrow spread or a wide spread?

Fall 2010

125/351

126 /351

127/351

128/351

2010-11-30

2010-11-30

2010-11-30

2010-11-30

CS 4104

LTechnique (1)

no notes

CS 4104

LTechnique 2)

k =logn

In means natural log of n (log, n).

Technique (1)
sncai <2, 171> 1721

Technique (2)

Using g, M <+ £ Thus, Ko = llg.

Moraexacy s close ol

Conclusion: The number of assignments is about logn in the

average case.

CS 4104

LVariance 1)

o -rlble s he veroge?
b notn

Variance (1)

From Gy Inegualty, 75% o e obsenvatons all
wage.

i 2 i dowaions of e e

For i na_ma, the varince s

Ceby3ev's Inequality applies to a normal distribution.

CS 4104

LVariance)

A wide spread. Example:

en=16.INnn~4,+2/4 =4,s04+4.

e Nn=064k. Inn~ 16,+2v/16 = 8, s0 16 + 8.

e
[

Variance (2)

T sandard deviion s s about I
S, 759% o th obsenvatons ar between nn - 20T
andinn + 201R.

> isan

o sx€ad o wide spread?

CS 4104

Finding the Second Best

LFinding the Second Best

Finding the Second Best

2010-11-30

As we discuss this problem, we consider exact counts, not
In a single-elimination tournament, is the second best the asymptotics.

one who loses in the finals? Simple algorithm:
Not necessarily — the best 2 could compete in the first round!

@ Find the best. Note that we ignore variations in performance, the outcome
between two players will always be the same.

@ Discard it.
@ Now, find the second best of the n — 1 remaining on_3
elements. '
) } To know, need a lower bound on the problem.
Cost? s this optimal? Naive: ~ n might work. Clearly not optimal here! But, tighten
lower bound.
CS 4104

Lower Bound for Second (1)

LLower Bound for Second (1)

Lower Bound for Second (1)

2010-11-30

What is wrong with this argument?
Lower bound:

@ Anyone who lost to anyone who is not the max cannot
be second.

@ So, the only candidates are those who lost to max.
@ Fi nd_nax might compare max to n — 1 others.
@ Thus, we might need n — 2 additional comparisons to

find second.
@ Wrong!
8 CS 4104 Lower Bound for Second (2)
-
Lower Bound for Second (2) 3 L cwer Bounefor Second(@)
o
N - =
The previous argument exhibits the necessity fallacy : Rt e
° Our_algorithm does something, therefore all algorithms In particular, it is not necessary that the max element compare
solving the problem must do the same. with n — 1 others, even in the worst case.
[n/2] -1+ [n/2]-1..4+1=n—-1
Alternative: Divide and conquer Worst case: [n/2] — 1 elements, since winner need not
@ Break the list into two halves. compete again.
@ Run Fi nd_max on each half. +1.
@ Compare the winners. Cost of [3n/2] — 2 just closed half of the gap between our old
@ Run Fi nd max on the winner’s half for second. lower bound and our old algorithm — pretty good progress!

4: about 5/4.

8:n—-1+[n/8] -1=[9n/8] — 2.

What if we do this recursively?

f(n) = 2f(n/2) + 2;f(1) = 0 which is 3n/2 — 2, which is no
better than halves. So recursive divide & conquer (in a naive
way) does not work! Quarters would be better!

@ Compare that second to second winner.

Cost: [3n/2] — 2.
Is this optimal?
What if we break the list into four pieces? Eight?
Fall 2010 131/351

CS 4104

Binomial Trees (1)

LBinomial Trees (1)

Binomial Trees (1)

2010-11-30

@ Pushing this idea to its extreme, we want each
comparison to be between winners of equal numbers of but, we want as few of these as possible.
comparisons.
@ The only candidates for second are losers to the
eventual winner.
@ A binomial tree of height m has 2™ nodes organized
as:
» asingle node, if m =0, or
» two height m — 1 binomial trees with one tree’s root
becoming a child of the other.

iii%*f@gﬁ*ﬁ

T Analysis Fall2010 132/351

Binomial Trees (2)

Algorithm:
@ Build the tree.
@ Compare the [logn] children of the root for second.

Cost?

Binomial Tree Representation

@ We could store the binomial tree as an explicit tree
structure.
@ Can also store binomial tree implicitly: In array.
@ Assume two trees, each with 2¢ nodes, are in array as:
» First tree in positions 1 to 2X.
» Second tree in positions 2K + 1 to 21,
» The root of a subtree is in the final array position for that
subtree.
@ To join:
» Compare the roots of the subtrees.
» If necessary, swap subtrees so larger root element is
second subtree.

@ Trades space for time.
Fall 2010 1341351

Adversarial Lower Bounds Proof (1)

Many lower bounds proofs use the concept of an adversary .

The adversary’s job is to make an algorithm’s cost as high as
possible.

The algorithm asks the adversary for information about the
input.

The adversary may never lie.
Adversarial Lower Bounds Proof (2)

Imagine that the adversary keeps a list of all possible inputs.

@ When the algorithm asks a question, the adversary
answers, and crosses out all remaining inputs
inconsistent with that answer.

@ The adversary is permitted to give any answer that is
consistent with at least one remaining input.

Examples:

@ Hangman.
@ Search an unordered list.

CS 4104

LBinomiaI Trees (2)

2010-11-30

n+ [logn] — 2.

CS 4104

LBinomiaI Tree Representation

2010-11-30

Need more time to swap the trees, but less space.

Binomial Trees (2)

> Buld e vee
= Compare e [log] ehiro of e oot o second.

costr

Binomial Tree Representation

But all the swaps add up to a total of ©(n logn) time in the

worst case.

Not really practical to add ©(nlogn) swaps to the cost.

CS 4104

LAdversariaI Lower Bounds Proof (1)

2010-11-30

no notes

CS 4104

LAdversarial Lower Bounds Proof (2)

2010-11-30

Adversarial Lower Bounds Proof (1)

Many loworbounds proots us e concepofan adersary

Theadversary's o is 0 make an gt costas High .
possise

Th agoritm asks e adarsary o nformation abot the
nput

e acversary may never e

Adversarial Lower Bounds Proof (2)

mag it the acversary koeps 5 of possbl puts
« Wher sary

conssent i

Exampes:
Hang

2 Scarh an unordered .

Adversary maintains dictionary, and can give any answer that

conforms with at least one entry in the dictionary.

Adversary always says “not found” until last element.

o CS 4104
@
=
! L
Lower Bound for Second Best - oner Boundlorsecand Best
At least n — 1 values must lose at least once. What does your intuition tell you as a lower bound for k? Q(n)?

@ Atleast n — 1 compares. Q(logn)? Q(c)?

In addition, at least k — 1 values must lose to the second
best.

@ |.e., k direct losers to the winner must be compared.

There must be at least n + k — 2 comparisons.

How low can we make k?

o CS 4104
0
]
. : L :
Adversarial Lower Bound g Adversattal boner Botind
Call the strength of element L[i] the number of elements L]i] Th‘:IWi’t‘”e' has now proved stronger than a + b+ the one who
just lost.

is (known to be) bigger than.

Yes. The adversary cannot “fix” the fight to give contradictory

If L[i] has strength a, and L[j] has strength b, then the winner : i) i
answers. But, it can give answers consistent with some Iegal

has strength a + b + 1.

input.
What should the adversary do?
@ Minimize the rate at which any element improves.
@ Do this by making the stronger element always win.
@ [s this legal?
Fall2010 138/351
CS 4104 Lower B (Cone)

L Lower Bound (Cont.)

2010-11-30

Lower Bound (Cont.)

Need to get the final strength up ton — 1.

What should the algorithm do?
9 These k losers are candidates for 2nd place.

If a > b, then 2a > a + b.

@ From the algorithm’s point of view, the best outcome is
that an element doubles in strength.

@ This happens when a = b.

@ All strengths begin at zero, so the winner must make at
least k comparisons for 241 < n < 2,

Thus, there must be at least n + [logn| — 2 comparisons.

CS 4104 Find Min and Max (1)

L Find Min and Max (1)

Find Min and Max (1)

2010-11-30

A slightly different problem.

Question: Which is the tougher problem? Find first and
second? Or find first and last?

The intuition is not obvious.

On the one hand, it seems that in the process of finding the
maximum, you will learn more about the second than you will
Should be able to do better(?) about the min.

On the other hand, a given comparison tells you something
about a candidate for max, and a candidate for min.

Find them independantly: 2n — 2.
@ Can easily modify to get 2n — 3.

Try divide and conquer.

Find Min and Max (2)

Fi nd_Max_M n(ELEM =L, int |ower, int upper) {
if (upper == lower) return |ower, lower; // n=1
if (upper == | ower+1) /Il n=2
return max(L[upper], L[lower]),

m n(L[upper], L[lower]); // 1 conpare
md = (lower + upper)/2; /1 n>2
max1l, mnl = Find_Max_Mn(L, |ower, nid);
max2, mn2 = Find_Max_M n(L, m d+1, upper);
return max(L[max1], L[nmax2]),

mn(L[mnl], L[mn2]);

}
Recurrence:
[2f(n/2)+2 n>2
WS { 1 n=2
Fall 2010

Solving the Recurrence (1)

Assume n = 2K,
Let’s expand the recurrence a bit.

f(n) = 2f(n/2)+2
= 2[2f(n/4)+2]+2
= 4f(n/4)+4+2
= 4[2f(n/8)+ 2] +4+2
= 8f(n/8)+8+4+2

= 2'f(n/2") + lezi
j=1

Far oo

Solving the Recurrence (2)

k—1
2t (n/2) + > 2

f(n) =
fi=i
k—1)
= 2'(2)+) 2
j=1
k-1 }
= 214)"0
j=1
= n/2+2¢-2
= 3n/2-2
Fai2010

Looking Closer (1)

But its not always true that n = 2K,
The true cost recurrence is:
0 n=1
f(ny)=¢ 1 n=2
f(ln/2])+f([n/2])+2 n>2

Here is what really happens:

n ‘ 2 3 4 5 6 7 8 9 10 11
f(n) 1 2 4 6 8 9 10 12 14 16
3n/2—-2|1 25 4 55 7 85 10 115 13 145

The true cost for f(n) ranges between 3n/2 — 2 and
5n/3 — 2.
@ For what sort of input does the algorithm work best?
Fall 2010

CS 4104

L Find Min and Max (2)

2010-11-30

no notes

141/351
CS 4104

LSoIving the Recurrence (1)

2010-11-30

no notes

142/351
CS 4104

LSoIving the Recurrence (2)

2010-11-30

no notes

143/351
CS 4104

= Looking Closer (1)

2010-11-30

no notes

144351

Find Min and Max (2)

Solving the Recurrence (1)

Solving the Recurrence (2)

o CS 4104
®
=
Finding a Better Algorithm g '—Finding a Better Algortm
N
What is the cost with six values? g
What if we divide into a group of 4 and a group of 2?
Only need 7.
With divide and conquer, we seek to minimize the work, not)
necessarily balance the input sizes. When each part is a power of 2.
When does the algorithm do its best? 8vs. 4. 16 vs. 8.
What about 12? 24?
Lesson: For divide and conquer, pay attention to what
happens for small n.
Fall 2010 145/351
8 CS 4104 Algorithms from Recurrences (1)
Z T
Algorithms from Recurrences (1) S —Aigorithms from Recurrences (1)
o
N
What does this model?
0 n=1 no notes
fln)=¢ 1 n=2
mini<x<n—1{f(k) +f(n—k)} +2 n>2
nf|1 2 3 4 5 6 7 8
313 3
4|5 4 5
5|7 6 6 7
6|9 7 8 7 9
7111 9 9 9 9 11
8|13 10 11 10 11 10 13
9|15 12 12 12 12 12 12 15
k = 2 looks promising.
Fall 2010 146/351
o CS 4104 Algorithms from Rec
%
=
Algorithms from Recurrences (2) g Algoriims from Recurrences (2) LSS
f(n)=3/2n-2.
0 n=1
f(n)=< 1 n=2
f2Q)+f(n—2)+2 n>2
Cost: What is the corresponding algorithm?
Fall 2010 1471351
8 CS 4104 The Lower Bound (1)
:‘ 5 s fan2] -2 opumarr
The Lower Bound (1) g fhe tover Bound (1)
Is [3n/2] — 2 optimal? no notes

Consider all states that a successful algorithm must go
through: The state space lower bound.

At any given instant, track the following four categories:
@ Novices: not tested.
@ Winners: Won at least once, never lost.
@ Losers: Lost at least once, never won.
@ Moderates: Both won and lost at least once.

CS 4104 The Lower Bound (2)

o can gt gnore?

LThe Lower Bound (2) [NTT—

it e il sae?

2010-11-30

The Lower Bound (2)

[rrep—

Moderates — Can’t be min or max.

Who can get ignored? Initial: (n, 0, 0, 0).

What is the initial state? Final: (0, 1, 1, n-2).

What is the final state? We must go from the initial state to the final state to solve the

problem.

How is this relevant? So, we can analyze how this gets done.
8 CS 4104 Lower Bound (3)
:I [

Lower Bound (3) - Lower Bound (9

That gets rid of 4 types of comparisons.
Every algorithm must go from (n,0,0,0) to (0,1,1,n — 2).
There are 10 types of comparison.

Comparing with a moderate cannot be more efficient than
other comparisons, so ignore them.

Fall2010 150/351
8 CS 4104 Lower Bound (3)
7L
Lower Bound (3) g L
no notes
If we are in state (i,], k,1) and we have a comparison, then:
N:N (i—-2, j+1, k+1, I)
W W (i, j—1, k, I+ 1)
L:L (i, i, k-1, 1+1)
L:N (i—-1, j+1, k, D]
or (i—1, j, k, | +1)
W:N (-1, j, k+1, 1)
or (i—1, j, k, I +1)
LV O (N R S)
or (i, i—-1, k=1, 1+2)
Fall2010 151/351
o CS 4104 Adversarial Argument
5
—
Adversa”al Argument ;_3: LAdversarial Argument
o
N
What should an adversary do?
@ Comparing a winner to a loser is of no value. Minimize information gained.
Only the following five transitions are of interest: Adversary will just make the winner win — No new information is
N:N (i—-2 j+1, k+1, 1) provided.
L:N (i—-1, j+1, k, D]
w \’;lv (! -4 J.’ 1 E +14, :) 1 This provides an algorithm. Think about it and you will see
: (!7 I=4 K +1) “MinMax” program.
L:L (i, i, k—1, 1+1)

Only the last two types increase the number of moderates,
so there must be n — 2 of these.

The number of novices must go to 0, and the first is the most
efficient way to do this: [n/2] are required.

o CS4104 Finding . hBest
o
& - S
. 0 . S Finding the ith Best
Finding the ith Best - -
@ We need to find the following poset: Hopefully, since less information is required.
No — the ith element could be any of the inputs.
This is probably the hardest.
@ We don’t care about the relative order within the upper
and lower groups.
@ Can we do better than sorting? (©(nlogn))
@ Can we tighten the lower bound beyond n?
@ What if we want to find the median element?
o CS 4104 Splitting a List
6P P a—
o . = i
Splitting a List 3 —spliting a List
g 1 the pivot position s ith best.
Given an arbitrary element, partition the list into those .
elements less and those elements greater. no notes
/1 Initially, I and r are one position to left and
/1 right of the subarray, respectively
int partition(ElemA[], int |, int r, Elempivot) {
do { /1 Move bounds inward to neet
while (Al ++l] < pivot); // Mve | right and
while ((I <r) & (Al--r] > pivot)); // r left
swap(A |, r); Il Swap val ues
} while (I <r); /1 Stop when they cross
return |; /1 Return first position on right
}
If the pivot position is ith best, we are done.
If not, solve the subproblem recursively.
Fal2ot0 1541351
o CS4104 conty
5
=
Cost (1) S L—cost (1)
o
N
What is the worst case cost of this algorithm?
Under what circumstances? ©(n?) for bad pivots.
We will find average case cost by summing all the costs for all
What is average case cost if we pick pivots at random? the cases, and divide by number of cases.
@ Letf(n,i) be average time to find ith best of n elements.
@ Array bounds go from 1 to n First part is partion cost, next is when i < j, then wheni =j,
@ Call j the position of the pivot and finally, the case when i > j.
f(n,i) = (n 1)+1 if(' 1 i)+10
) - n. . J bl n
j=i+1
=
— f(n—j,i—j).
2 S =l U= 1)
j=1
o CS 4104 Cost (2)
5
= L S
Cost (2) = cost@
N
no notes

Let f(n) be the cost averaged over all i.

f(n):%Zf(nJ).

Note: Even if we just want to analyze for median-finding, still
need to be able to solve for arbitrary i on recursive calls.

CS 4104

LTechnique (1)

Technique (1)

2010-11-30

Factor n> — n out of f(n, i) since there are n of them.

n . .
nf(n) — Zf(n,i) Swap columns for rows in the two inner sums, they are the
— same.
1 n n
2 1 A aF
=n n+n2 .Zf(j 1,i)+
i=1 j=i+1
i—1
PBLGEINES)
j=1

It turns out that the two double sums are the same (just
going from different directions).

o CS 4104 Technique (2)
5
: o
TeChnlque (2) S L Technique (2)
&
Y= The inner sum on the first line is the same as the two inner
nf(n) = n*>—n+= Z Z f(j,i) sums on the previous page... the diagonals are the first one’s
n j=1 i=1 columns.
2 n—1 Note:
- n2—n+ﬁij(j) 0
=1 f(n) = 1/n) f(n,i)
i=1
j
Therefore, fG) = 1/ 1.0
n-1 i=1
n’f(n) = n® —n®+2) jf(j).
=1 Sojf(i) = XI_, 1(.0)-
This is an example of a full history recurrence. Cancel out 1/n.
o CS 4104 Solving the Recurrence (1)
@ O SO =T
= =
Solving the Recurrence (1) 3 L Solving the Recurrence (1)
o
N

)~ (1M 1) 3052

If we subtract the appropriate form of f(n — 1), most of the

terms will cancel out. The two sums add up to 2(n — 1)f(n — 1).
n?f(n) — (n — 1)%f(n — 1) Now add back (n — 1)?f(n — 1) to get next line
n-1
_ 312 e Gather up f(n — 1) terms on both sides:
- men +2§lf0) n?-2n4+1+2n-2=n?-1.

-1+ (- 12 -2 5G)
j=1

3n% —5n+2+2(n— 1)f(n — 1)
=n%f(n) = (n®*-1)f(n—1)+3n?>—5n+2.

Fall 2010 1591351
8 CS 4104 Solving the Recurrence (2)
=
Solving the Recurrence (2) g —Solving the Recumence (2
Estimate: No, we are just computing the average.
n’f(n) = (n*-1)f(n—1)+3n®>-5n+2
< n%*(n—1)+3n?
=f(n) < f(n—-1)+3
=f(n) < 3n

Therefore, f(n) is in O(n).

Does this mean that the worst case is linear?

CS 4104 Improving the Worst Case

leproving the Worst Case

Improving the Worst Case

2010-11-30

Want worst case linear algorithm.
no notes

Goal: Pick a pivot that guarentees discarding a fixed
proportion of the elements.

Can't just choose a pivot at random.
Median would be ideal — too expensive.

Choose a constant c, pick the median of a sample of size
n/c elements.

Will discard at least n/2c elements.
Fall 2010 161/351

CS 4104

Selecting an Approximate Median

LSeIecting an Approximate Median

Selecting an Approximate Median

2010-11-30

Algorithm:
@ Choose the n/5 medians for groups of 5 elements of L.
@ Recursively, select the median of the n/5 elements.

@ Use partiti on to partition the list into large and small
elements around the “median.”

Can find median of 5 values in 6 compares.

@ For 5, discard at least 2

@ For 15, discard at least 5

@ For 25, discard at least 8

9 In general, discard at least (3n +5)/10

T Analysis Fall 2010 162/351
o CS 4104
%
]
0 0 . [] g
Constructlve |nduct|0n (l) g Constructive Induction (1)
N
Is the following recurrence linear? Parts:
f(n) < f([n/5]) +f([(7n —5)/10]) +6[n/5] +n — 1. ’
e Median of sample
To answer this, assume it is true for some constant r such . . — .
that f(n) < rn for all n greater than some bound e Largest possible fraction to find in recursive call — due to
- 7n—5 n ’ “select median of medians” process.
f(n) < f(Ig)+f([—5=N+6[g]+n-1 o _
N 7n_5 N e Find median of 5 elements in 6 passes.
< - +1 1)+6(=+1 -1
- r(5+ }+r(10 0+ (5+ }+n e Partition
< (L+E+E)n+§+5
- 5 10 5 2
- or + 22n I 3r +10 . Apply hypothesis
- 10 2 -
8 CS 4104 Constructive Induction (2)
E
a . | L X X k4
Constructlve Ind uctlon (2) g Constructive Induction (2) .
N
no notes

Tryr = 1: 3.1n + 7.5 < n which doesn’t work.
Try r = 23: Get 22.9n + 39.5 < 23n.
This is true for n > 395.

Thus, we can use induction to prove that,

Vn > 395, f(n) < 23n.

This algorithm is not practical. Better to rely on “luck.”

D YR

CS 4104 Changing the Model (1)

LChanging the Model (1)

Changing the Model (1)

2010-11-30

What if we settle for the “approximate best?”
no notes

Types of guarentees, given that the algorithm produces X
and the bestis Y:

© X =Y. [Deterministic algorithm]
@ X’srank is “close to” Y's rank: [Approximation]

rank (X) < rank(Y)+ “small”.
@ X is “usually” Y. [Probabilistic]
P(X =Y) > “large”.

© X’s rank is “usually” “close” to Y's rank. [Heuristic]

CS 4104 Changing the Model (2)

LChanging the Model (2)

Changing the Model (2)

2010-11-30

This is good if we can re-run with equal, independent
probability of getting the correct answer.

We can also sacrifice reliability for speed:
© We find the best, “usually” fast.

© We find the best fast, or we don’t get an answer at all
(but fast).

CS 4104 Examples for Findmax

= Examples for Findmax

2010-11-30

Examples for Findmax

An approximation algorithm.

“Rank” meaning average best rank.
Choose m elements at random, and pick the best. For n = 1000, that is 10/11n (top 100).

@ For large n, if m = log n, the answer is pretty good. For n = 1,000, 000, that is 20/21n (top 50Kk).
@ Costism — 1.

i mn
@ Rankis 7.

CS 4104 Probabilistic Algorithms.

LProbabilistic Algorithms

Probabilistic Algorithms

2010-11-30

Probabilistic algorithms include steps that are affected by no notes

random events.

Problem: Pick one number in the upper half of the values in
a set.

© Pick maximum: n — 1 comparisons.

© Pick maximum from just over 1/2 of the elements: n/2
comparisons.

Can we do better? Not if we want a guarantee .

Probabilistic Algorithm
Pick 2 numbers and choose the greater.
This will be in the upper half with probability 3/4.

Not good enough? Pick more numbers!

For k numbers, greatest is in upper half with probability

il =27,

Monte Carlo Algorithm: Good running time, result not

guaranteed.

Las Vegas Algorithm: Result guaranteed, but not running

time.

Sorting

Initial model:
@ Sort key has a linear order (comparable).
@ We have an array of elements.
@ We wish to sort the elements in the array.

Fall 2010

169 /351

@ We get information about elements only by comparison

of two elements.

@ We can preserve order information only by swapping a

pair of elements.
To simplify analysis:
@ Assume all elements are unique.

@ For analysis purposes, consider the input to be a

permutation of the values 1 to n.

What if the ALGORITHM could make this assumption?

Swap Sorts (1)

Fall 2010

170/351

Repeatedly scan input, swapping any out-of-order elements.

Bubble sort: O(n?) in worst case.

Inversions of an element: the number of smaller elements

to the right of the element.

The sum of inversions for all elements is the number of

swaps required by bubblesort.

ANY algorithm that removes one inversion per swap requires

at least this many swaps.

Swap Sorts (2)

Worst number of inversions:
Best number of inversions:

Average number of inversions:

Fall 2010

@ Note that the sum of the total inversions for any

permutation and its reverse is ")
n(n—1)

@ Alternative view: every one of the === possible
inversions occurs in a given permutation or its reverse.

Fall 2010

171/351

1721351

2010-11-30

2010-11-30

2010-11-30

2010-11-30

CS 4104 Probabilstc Algorithm

Pick2 numbersand choose the reer,
i W e 1 theuppes all i proabiy 34.
ot g0 enough? ik mre rumberst

LProbabiIistic Algorithm Fork s, g e ety
[————
s

Las Vs AGoifn: Resu quaraneed, b ot g
e

Pick k large enough, and the chance for failure becomes less
than the chance that the machine will crash (e.g., probability
that determinisitic algorithm will give no answer).

Think that you would rather have no answer than the wrong
answer? If k is big enough, the probability of a wrong answer is
less than that of any calamity (with non-zero probability) that
you can think of — with this probability independent of n, and
independent of the data.

An example would be finding a value in an array by guessing a
position.

CS 4104

LSorting

With this assumption, the algorithm could just be simple
binsort. The goal is to simplify our analysis, not our problem.

CS 4104 Swap sors 1)

[n—

LSwap Sorts (1)

no notes

CS 4104 Swap sors 2

LSwap Sorts (2)

Worst # inversions:

Best # inversions: 0

So, n(n — 1)/4 on average.

o CS 4104 Heap Sort (1)
6P T ULV
& e i
Heap SOI’t (1) ‘C_'>' LHeapSon @)
o
N
Heap: complete binary tree with the value of any node at
least as large as its two children. no notes
Algorithm:
@ Build the heap.
@ Repeat n times:
» Remove the root.
» Repair the heap.
This gives us list in reverse sorted order.
Since the heap is a complete binary tree, it can be stored in
an array.
Fall 2010 173/351
o CS 4104 Heap Sort (2)
0
3 —
Heap Sort (2) g Heap Sort (2) : e
no notes
To delete max element:
@ Swap the last element in the heap with the first (root).
@ Repeatedly swap the placeholder with larger of its two
children until done.
Fall 2010 1741351
o CS 4104 Building the heap
%
Building the heap 3 | Buiding the heap
o
N
To build a heap, first heapify the two subheaps, then push
down the root to its proper position. Distance from bottom x # of nodes at that distance.
@ Cost: f(n) < 2f(n/2) + 2logn.
Alternatively: Start at first internal node and, moving up the This is an example where exponential growth works in your
array, siftdown each element. favor. A lot of the elements are at the bottom, where they do not
@ Cost: have much work to do.
logn
i) = >(-D5
i=1
B logn—1 i n ;
2 2i 2 ’
i=1
Fall 2010 175/351
o CS 4104
@
g L
Quicksort = Quicksort
N
Algorithm: n?

@ Pick a pivot value.

@ Split the array into elements less than the pivot and
elements greater than the pivot.

@ Recursively sort the sublists.

Worst case:

Pick the pivot at random, so that no particular input has bad
performance.

o CS 4104 Quicksort Average Cost (1)
D:J o et
—
. -
QUICkSOI’t Average COSt (1) ‘C_I>' L Quicksort Average Cost (1)
8
f(n) = { v A . nE L Why multiply by n? Because otherwise (when we subtract later)
n—14+:35(f@)+f(n-i-1)) n>1 you get
2 n—1 2 n—-2
Since the two halves of the summation are identical, fn)—f(n-1)=Mn-1)—-(n—-2)+ = Zf(i) - 1 Zf(i)
0 n<1 i n-1=
f(n) = { n—1+2Y"2(@) n>1 which is no improvement!
Multiplying both sides by n yields
n—-1
nf(n) =n(n—1)+2> f(i).
i=0
o CS 4104 Average Cost (2)
% gt by i on
&
Average Cost (2) 3 —Average Cost (2)
g
N
Get rid of the full history by subtracting nf(n) from
(n+1)f(n+1) no notes
n—1
nf(n) = n(n—1)+2) (i)
i=1
n
(n+Df(n+1) = (n+1n+2) (i)
i=1
(n+1)f(n+1) —nf(n) = 2n+ 2f(n)
(n+1)f(n+1) = 2n+(n+2)f(n)
2n n+2
fln+1) = n+1+n+1f(n)'
o CS 4104 Average Cost (3)
O? e < 2forn 1 S verene v
: o < 2
Average Cost (3) ‘C_I>' L Average Cost (3)
o
N
Note that nz—fl < 2 for n > 1. Expanding the recurrence, we
get no notes
n+2
f(n+1) < 2+ e 1f(n)
n+2 n+1
= 2+ (2+ n f(n—1)>
n+2 n+1 n
= 2+ e <2+ n <2+ n_lf(n72)>)
n+2 4 3
= 2+ e <2+-~-+§(2+§f(1))>
o CS4104 erage cost)
5
i L
Average Cost (3) g Sy
‘Hn is the Harmonic series.
B 2<1+n+2 n+2n+1
N n+1 n+1 n This actually just tells us O(nlogn), but

n+1 n 2

- 2<1+(n+2) <ﬁ11+%++%>>

= 24+2(n+2)(Hny1— 1)

n+2n+1. 3) n
Hn =Y _1/i =©(logn).
i=1

= ©(nlogn).

Lower Bound for Sorting (1)

What is the smallest number of comparisons needed to sort
n values?

Clearly, sorting is as hard as finding the min and max
element: [3n/2] — 2.

@ Why?

Information theory says that, if an algorithm uses only
binary decisions to distinguish between n possibilities, then it
must use at least log n such decisions on average.

How is this relevant?

Lower Bound for Sorting (2)

There are n! permutations to the input array.

So, by information theory, we need at least
logn! = ©(nlogn) comparisons.

Using the decision tree model, what is the average depth of
a node?

This is also ©(logn!).

Linear Insert Sort

Put the element i into a sorted list of the firsti — 1 elements.
Worst case cost:

Best case cost:

Average case cost:

What if we use binary search? (This is called binary insert
sort.)

Optimal Sorting (1)

If we count ONLY comparisons, binary insert sort is pretty
good.

What is the absolute minimum number of comparisons
needed to sort?

For n = 5, how many comparisons do we need for binary
insert sort?

Binary search is best for what values of n?

Binary search is worst for what values of n?

D Y

2010-11-30

2010-11-30

2010-11-30

2010-11-30

CS 4104

Lower Bound for Sorting (1)

Wt s th smallet rumber ofcomparisons needed 0 sor.
ke

L _ e g e i
Lower Bound for Sorting (1) o

Infomaton theory_says that,f an aigorim ues oy
T s between n possiies, hen i
logn such aeage.

Because, if it weren't, we could sort and then get the min and
max elements from the sorted list. This is an example of a
reduction.

Comparisons are binary decisions. There are n! possible
inputs.

CS 4104 Lower Bound for Sorting 2)
e e———
L) P ————
Lower Bound for Sorting (2) I
g hontes st ' e e o
L——
logn— (1 or 2).
CS 4104 Linear nsert Sort
LLinear Insert Sort et case cost:
Aerae csecont

O
©(n?): Each element does i — 1 comparisons.

n (1 comparison each).

n(n—1)
—

Cuts # of comparisons — does not change # of swaps.

CS 4104

Optimal Sorting (1)

11yt o o e

- : T
Reumascrol) PO

BB

o

Binary search s vors for what vaues of 7

Binary insert sort: 1 4+ 2 + 2 + 3 = 8 compares.
Best for 21 — 1

Worst for 21

8 CS 4104 Optimal Sorting (2)
:' mu-w;;-(
. . ' [P . V=g D K
Optimal Sorting (2) g Optimal Sorting (2 :::::m:ﬁj?m
Build the following poset: In two steps
2 compares
A - 0O $> or A
B
Al
2 compare
Now, put in the fifth element (B) into the chain of 3. 7 compares
Now, put in the off-element (A).
Total cost?
T Analysis Fall 2010 185/351
o CS4104
™
Fl' Pair the elements: 5 comparisons.
S L R
Ten Elements g Ten Elements ":"..“:mmwm:.:m
Pair the elements: 5 comparisons. no notes
Sort the winners of the pairings, using the previous
algorithm: 7 comparisons.
Now, all we need to do is to deal with the original losers.
General algorithm:
@ Pair up all the nodes with |5 | comparisons.
@ Recursively sort the winners.
@ Fold in the losers.
Fall 2010 1851351
8 CS 4104 Finishing the Sort (1)
< e
B (E by [R T
Finishing the Sort (1) 2 Finishing the Sort (4 s
no notes
We will use binary insert to place the losers.
However, we are free to choose best ordering for inserting.
Recall that binary search is best for 2k — 1 items.
10
2
8
4
Fall 2010 187351
8 CS 4104 Finishing the Sort (2)
—
L. o [
Finishing the Sort (2) g Finishing the Sort (2) SR
Pick the order of inserts to optimize the binary searches. When we insert one of these numbers into the chain, we are

concerned about everything on the chain below were that

@ 3 (2 compares: size 3) number comes in.

@ 4 (2 compares: size either 2 or 3, depending on where
element 3 ends up)

@ 1 (3 compares: size between 5 and 7)
® 2 (3 compares: size between 5 and 7) Also called the Ford-Johnson sort.

Total cost: 5+ 7 + 10 = 22 compares.

We can form an algorithm: Binary Merge.

This sort is called merge insert sort

CS 4104

LOptimaI Sort Algorithm?

Optimal Sort Algorithm?

2010-11-30

@ Merge insert sort is pretty good, but is it optimal?
@ It does not match the information theoretic lower bound [logn!] =29
forn = 12.
> Merge insert sort gives 30 instead of 29 comparison. Try every possible combination of comparison.
@ BUT, exhaustive search shows the information theoretic
bound is an underestimate for n = 12. 30 is best.
@ Call the optimal worst cost for n elements S(n).
> S(n+1) < S(n) + [log(n + 1)].
Otherwise, we would sort n elements and binary insert
the last.
> Forallnand m, S(n+m) < S(n) + S(m) + M(m, n) for
M(m, n) the best time to merge two sorted lists.
» For n = 47, we can do better by splitting into pieces of
size 5 and 42, then merging.

CS 4104

ATruly Optimal Algorithm

Pick the best et o comparsans for sz 2
Then forsize 3, 4.5,

LA Truly Optimal Algorithm

‘oo them togeher o one program uih b cse.

2010-11-30

A Truly Optimal Algorithm

1o . gt

No. Program size grows with size of n.

. . . Algorith t be of finite (fixed) length.
Pick the best set of comparisons for size 2. gorithms must be of finite (fixed) leng

Note: There is no particular limit to the size of any partiulcar

Tlrel el Sl 2 45 S e program. But, the program lenght must be fixed to something.

Combine them together into one program with a big case
statement.

Is this an algorithm?

CS 4104 Numbers

Exampes of probens

LNumbers

Numbers

2010-11-30

Examples of problems:
@ Raise a number to a power.
@ Find common factors for two numbers.
@ Tell whether a number is prime.
@ Generate a random integer.
@ Multiply two integers.

n? for operations on numbers with n digits.

These operations use all the digits, and cannot use floating
point approximation.

For large numbers, cannot rely on hardware (constant time)
operations.

@ Measure input size by number of binary digits.

@ Multiply, divide become expensive.

CS 4104 Analysis of Number Problems

Analysis ot Cot may dopend on propertes ofhe
umber ohr hn size
N a0 ovon rumbor o prmeness

Consdering cost over all 5 e, cos grows wih .

LAnaIysis of Number Problems

Analysis of Number Problems

2010-11-30

aen

Analysis problem: Cost may depend on properties of the

number other than size. So, we can go back to our normal intuition about cost growing

@ Itis easy to check an even number for primeness. with size (as opposed to special properties of value).
Considering cost over all k-bit inputs, cost grows with k. multiplication is much worse than add, divide is worse still.
Features: Actually, 2¢~1 have length exactly k.

@ Arithmetical operations are not cheap.

@ There is only one instance of value n.

@ There are 2¥ instances of length k or less.

@ The size (length) of value n is log n.

@ The cost may decrease when n increases in value, but
generally increases when n increases in size (length).

CS 4104

LExponentiation 1)

Exponentiation (1)

2010-11-30

s odd e - m ¥ m i

no
How do we compute m"™ Why bother? Because the input size is ©(logn), so naive

algorithm is exponential!
We could multiply n — 1 times.

Can we do better? That is, take same power of a smaller number. 68 = 28 . 38,

Approaches to divide and conquer:
@ Relate m" to k" for k < m.
@ Relate m" to mX for k < n.

That is, take smaller power of some number. 6% = 64 . 6%.

If n is even, then m" = m"/2m"/2,

If nis odd, then m" = mt"/2im("/2/m,
Fal2010 193/351

CS 4104

LExponentiation 2)

Exponentiation (2)

2010-11-30

no notes

int Power(int base, int exp) {
int half, total;
if exp =0 return 1;
hal f = Power (base, exp/2);
total = half * half;
if (odd(exp)) then total = total * base;
return total;

oo 1047351

CS 4104 Analysis of Power

LAnaIysis of Power

Analysis of Power

2010-11-30

f(n) = 0 n=1 n mod 2 is extra cost for odd.
f(ln/2])+1+nmod2 n>1

Solution: f(n) = [logn] + 3(n) — 1 Problem size is logn, so linear.
where (is the number of 1's in binary representation of n.

Best to compute n® - n® - n®. n® takes 3 multiplies, then 2 to

How does this cost compare with the problem size? combine, for 5 total. “Normal” algorithm takes 7 multiplies.

Is this the best possible? What if n = 15? o .
Compute and store the best multiplication ordering.

What if n stays the same but m changes over many runs?
In fact, it is N'P-complete, but I've not defined this term yet.

In general, finding the best set of multiplications is expensive This is O(2") work. Note that the “standard” exponential
(probably exponential). algorithm is (O(log n))(cost to multiply) which is
Fall2010 1057351 (O(logn))(logm)2. So it isn't quite a direct comparison.
%I CS 4104 N LargeleommonFucmv(l)‘ _
= e
LargeSt Common FaCtor (1) ;_3: LLargest Common Factor (1) o
o
N

The largest common factor of two numbers is the largest iem

integer that divides both evenly. Assuming n > m, then n = ak, m = bk, n —m = (a — b)k, for a,
; L L b integers.

Observation: If k divides n and m, then k divides n — m.

So, f(n,m) = f(n —m,n) = f(m,n — m) = f(m,n). For n > m. | is remainder.

Observation: There exists k and | such that From definition of mod.

LCF is of course a factor of n and km, so it is also a factor of I,
since we just remove a multiple of it from n.

Example: n = 35, m = 14. Find 35, 14 = find 14, 7 = 7, 0.
Done.

n=km+I|wherem > 12> 0.

n = [n/m|m+n mod m.

So, f(n,m) = f(m,l) = f(m,n mod m).
Fall 2010 196/351

o CS 4104 Largest Common Factor (2)
%
b L o (i 533
Largest Common Factor (2) g argest Common Factor (2) : s
no notes
n m=0
b)) = { f(m,nmodm) m>0
int LCF(int n, int m {
if (m==0) return n;
return LCF(m n %n;
}
Fall2010 197/351
o CS 4104 Analysis of LCF
% Vorsn
2
Analysis of LCF o el
o
S O e O

o cost:

iai i P
At o1 5 i o) L s 10 Depends in part on how big m is relative to n.

n>m n/m>1 Multiply both sides by m/2.
2|n/m| >n/m
m|{n/m| > n/2 By definition of n mod m.

n—n/2>n-—m[n/m| =nmodm .))
> d Can split in half log n times. So 2logn is upper bound.
n/2>nmodm Note that this is linear on problem size, since problem size is

2logn (2 numbers).

S

The first argument must be halved in no more than 2

iterations.
Reminder: This upper bound is not necessarily tight!
Total cost:
Fall 2010 198351
= CS 4104 Max Mtplcaton
F'| Given: x n marices A and B
] T < Lo o
Matrix Multiplication g Matrix Multiplication e
Given: n x n matrices A and B. Not quite as bad as it first looks, since input size is n?.
Compute: C = A x B. Because we create n? outputs.
n
cj =Y awby.
k=1
Straightforward algorithm:
@ ©(n®) multiplications and additions.
Lower bound for any matrix multiplication algorithm: (n?).
Fall 2010 199351
g Cs4104 P
-
iy L
Another Approach - Another Approach
Compute: m; = (212 —az)(ba + bx) Verify:
my; = (an +a)(bi + bao)
mz = (a1 — az)(b11 + b12) Cu = Mi+ My — Mg+ Mg
ms = (a1 +aw)ba = (a2 —az)(b21 + b22) + (11 + @22)(b11 + b22)
ms = a5 (bip — bg) —(a11 + @12)bzz + azz(b21 — ba1)
Mme = az(bs — bu) = auoho1 +a12h2 — az2b21 — az2b22 +a11b22 + a22b11
M = (a1 +a)bu +a22022 — @11022 — @12b22 + 822021 — Az2b11
= anbu +aphy
Then: Ciu = My+Mp—mMmy+mg
Cip = My+ms
C1 = Meg+mMz
C2 = Mz —M3+Ms—My

7 multiplications and 18 additions/subtractions.

Fall 2010 200/351

Strassen’s Algorithm (1)

(1) Trade more additions/subtractions for fewer
multiplications in 2 x 2 case.

(2) Divide and conquer.

In the straightforward implementation, 2 x 2 case is:

C11 = anbyg + aphy
C12 = anbiy + aphy
Co1 = anbi + axby
Co2 = Az bz + axbz

Requires 8 multiplications and 4 additions.

Strassen’s Algorithm (2)

Divide and conquer step:

Assume n is a power of 2.

Express C = A x B in terms of 5 x 5 matrices.

|: Cll
C21

)|
CZZ

All A12 :| [Bll
BZl

A21 A22

BlZ
BZZ

Strassen’s Algorithm (3)

|

Fall 2010

Fall 2010

By Strassen'’s algorithm, this can be computed with 7

multiplications and 18 additions/subtractions of n/2 x n/2

matrices.

Recurrence:

T(n)

7T(n/2) + 18(n/2)?
T(n) = ©(n°%7) =

Current “fastest” algorithm is ©(n?376)

Open question: Can matrix multiplication be done in O(n?)

time?

e(nZ.Sl)‘

Fall 2010

Divide and Conquer Recurrences (1)

These have the form:

aT (n/b) + cnX
©

... where a, b, c, k are constants.

A problem of size n is divided into a subproblems of size
n/b, while cn* is the amount of work needed to combine the

solutions.

Fall 2010

201/351

202 /351

203 /351

204/351

2010-11-30

2010-11-30

2010-11-30

2010-11-30

CS 4104

LStrassen‘s Algorithm (1)

no notes

CS 4104

LStrassen‘s Algorithm (2)

no notes

CS 4104
LStrassen‘s Algorithm (3)
From recurrence Master Theorem.

due to the additions.

But is impractical due to overhead.

CS 4104

LDivide and Conquer Recurrences (1)

no notes

Strassen's Algorithm (1)

) Tade mve addonssubtacions o over
mutplcatons n2 <2 case.

Fequies 8 muplcaions and 4 adaons.

Strassen's Algorithm (2)

Oiideand conque st
Assomen s power o1 2

Express C — A< B interms

Strassen's Algorithm (3)
By Srassens g, i can e compute i
mupicaions and 18 aOTSSUNOCINS 012 < 1/2
Recurence:

To) = TT(2) 28(2F

T0) - o)~ et
uent st gt s 977

(Open quesion: Can marix mlipicaton b done i O(r)
e

But this has a high constant

Divide and Conquer Recurrences (1)
These have th orn:
Ty = aie) et
T - o
where b, ar constas.

A problom o sze s vided o subproblns of sizo
/.l ' i he amountof work needed 0 coriie he
Sotons

CS 4104

Divide and Conquer Recurrences (2)

LDivide and Conquer Recurrences (2)

Divide and Conquer Recurrences (2)

2010-11-30

Expand the sum; assume n = b™. Set a = b'°% 2, Switch order of logs, giving

T(n) = a(aT(n/b?) +c(n/b)<) + onk L

a"T (1) +a™ c(n/bM-1)k + ... + ac(n/b)X + cnk

call f:(bk/a)i

i=0

am — aIc:gbn — n'ogs @
The summation is a geometric series whose sum depends

on the ratio
r=b"/a
There are 3 cases.
Fall2010 205/351
o CS 4104 D & C Recurrences. @
™
:'1' U S
D & C Recurrences (3) S L b & c Recurrences (3) . T
8 R
@)r<1
m o T(n)=2T(n/2) + 1.
d r'<1/(1-r), aconstant. r=20/2-1/2
i=0 @(I’]IOQZZ) =n
T(n) = 6(aM) = ©(n'°%3).
Since r = b*/a, a = b¥, k = log, a.
_ T(n) =nlogn = logn.
@r=1 . T(n) = 2T(n/2) + n.
r'=m+1=logyn+1 r=242=1
i—0 T(n) =ntlogn =nlogn.
T(n) = ©(n°%»?logn) = ©(n* log n)
Fall2010 206/351
o CS 4104
%
7 L
=} D & C Recurrences (4)
D & C Recurrences (4) -
@R)r>1 T(n) =3T(n/4) +n.
mo m1 r=41/3.S0T(n) =n!=0(n).
r 1
dor=——==0(M
‘ r—1
i=0 T(n) =T(n/2) +n2
So, from T(n) = ca™ >_r', r=22/1.So T(n) = ©(n?).
T(n) = ©@"r™m) Strassen’s Algorithm: T(n) = 7T (n/2) + n2.
= ©(a"(b*/a)") r=22/7,s0r <1.T(n) = O(n'%7),
= O(bM)
= o(n")
Fall2010 207/351
o CS 4104
@
7 L
=} Summary
Summary -
Theorem 3.4 : no notes
O(n°%?3) jfa > bk
T(n)=< ©(n“logn) ifa= b
o(nk) ifa < b*
Apply the theorem:

T(n) = 3T(n/5) + 8n.
a=3b=5c=8k=2.
bk /a = 25/3.

Case (3) holds: T (n) = O(n?).
Fall 2010 208/351

Prime Numbers

How do we tell if a number is prime?
One approach is the prime sieve: Test all prime up to [/n].

This requires up to |\/n| — 1 divisions.
@ How does this compare to the input size?

Note that it is easy to check the number of times 2 divides n
for the binary representation

@ What about 3?
@ What if n is represented in trinary?
Is there a polynomial time algorithm?

Facts about Primes

Some useful theorems from Number Theory:

@ Prime Number Theorem : The number of primes less
than n is (approximately)

Inn
» The average distance between primes is Inn.

@ Prime Factors Distribution Theorem : For large n, on
average, n has about InIn n different prime factors with a
standard deviation of v/InInn.

To prove that a number is composite, need only one factor.
What does it take to prove that a number is prime?
Do we need to check all v/n candidates?

Probablistic Algorithms

Some probablistic algorithms:
@ Prime(n) = FALSE.
@ With probability 1/Inn, Prime(n) = TRUE.
@ Pick a number m between 2 and /n. Say n is prime iff
m does not divide n.
Using number theory, can create cheap test that determines
a number to be composite (if it is) 50% of the time.
Prime(n) {
for(i=0; i<COVFORT; i++)
i f 1| CHEAPTEST(n)
return FALSE;
return TRUE;
}

Of course, this does nothing to help you find the factors!

Random Numbers

Which sequences are random?
®1,1,1,1,1,1,1,1,1, ...
91,23,4,5/6,7,8,9, ...

92,718,28,1,8,2,..

Meanings of “random”:
@ Cannot predict the next item: unpredictable .
@ Series cannot be described more briefly than to
reproduce it: equidistribution
There is no such thing as a random number sequence, only
“random enough” sequences.

A sequence is pseudorandom if no future term can be
predicted in polynomial time, given all past terms.

2010-11-30

2010-11-30

2010-11-30

2010-11-30

CS 4104

LPrime Numbers

Exponential, since problem size is logn.
Not easy.
Now easy to check for 3.

We don’t know of one. What if we are willing to settle for a
probabilistic algorithm?

CS 4104

= Facts about Primes

This is quite small. For 232, loglogn = 5.Much harder than
proving it is composite!

Depends on how safe you want to be. (Actually, only need to
check primes < /n)

CS 4104 Probablistic Algorithms

LProbainstic Algorithms

Works, except 1/logn times on average.
No improvement.
Not much help. Probably did not pick a factor!

One nice side effect: We actually use large primes for
cryptography. The numbers used don't actually need to be
prime. They only need to be hard to factor! And those numbers
that continually pass the cheap 50/50 test tend to be hard to
factor. So, even if a non-prime is used, it will still probably
succeed in its intended use!

CS 4104

L Random Numbers

Which series of 9 digits is “most likely”? Answer: Every one is
equally likely!

Most people are notoriously bad at “inventing” random
sequences, or recognizing them. It stems from the fact that (a)
most people don’t have a gut-level understanding of probability,
and (b) people expect that the global properties of randomness
of the series will also apply locally. They tend to
under-represent series of repeats.

o CS 4104 A Good Random Number Generator
5%
]
A GOOd Random Number Genel’ator ‘C_I>' LA Good Random Number Generator

o
N

Most computer systems use a deterministic algorithm to

select pseudorandom numbers. Numbers are in the range O to t — 1.

Linear congruential method
@ Pick a seed r(1). Then,

r(i)=(r(i — 1) x b) mod t.

Thenr(i + 1) =r(j + 1) and we get a repeating cycle.

Resulting numbers must be in what range?
What happensifr(i) =r(j)?

Must pick good values for b and t.
@ t should be prime.

CS 4104

Random Number examples

L Random Number examples

2010-11-30

r(i)="6r(i —1) mod 13 =
. 1,6,10,8,9,2,12,7,3,5,4,11, 1, ... no notes

r(i)="7r(i —1) mod 13 =
.. 1,7,10,5,9,11,12,6,3,8,4,2,1, ...

r(i)=>5r(i — 1) mod 13 =
.. 1,512,8,1, ...
.»2,10,11, 3,2, ...
w0 4,7,9,6,4, ...
. 0,0, ..

Suggested generator: r(i) = 16807r(i — 1) mod 2% — 1.
Fall2010 214/351

CS 4104 Introduction to the Siideruie

‘Compare o adaion, usipicaion s har.
10 theprysicalvord, aiion s merly coneaenating o

leroduction to the Sliderule o

Introduction to the Sliderule =

2010-11-30

Wi kg logs and g vere sy

Compared to addition, multiplication is hard.

no notes
In the physical world, addition is merely concatenating two
lengths.

Observation:
lognm = logn -+ logm.

Therefore,
nm = antilog(logn + log m).

What if taking logs and antilogs were easy?

CS 4104 Introduction to the Sliderue (2)

leroduction to the Sliderule (2)

2010-11-30

Introduction to the Sliderule (2)

This is an example of a transform. We do transforms to convert

The sliderule d v this! a hard problem into a (relatively) easy problem.
e sliderule does exactly this!

@ It is essentially two rulers in log scale.

@ Slide the scales to add the lengths of the two numbers
(in log form).

@ The third scale shows the value for the total length.

o CS 4104
%
]
0 o . [.)
Representing Polynomials = R
N
A vector a of n values can uniquely represent a polynomial That is, a polynomial can be represented by it coefficients.
of degreen — 1
n-1
Pa(x) = Zaix‘.
i=0
Alternatively, a degree n — 1 polynomial can be uniquely
represented by a list of its values at n distinct points.
@ Finding the value for a polynomial at a given point is
called evaluation .
@ Finding the coefficients for the polynomial given the
values at n points is called interpolation .
Fall 2010 2171351
8' CS 4104 Muliplication of Polynomials
= Lo _
Multiplication of Polynomials = R U R
N
To multiply two n — 1-degree polynomials A and B normally no notes
takes ©(n?) coefficient multiplications.
However, if we evaluate both polynomials, we can simply
multiply the corresponding pairs of values to get the values
of polynomial AB.
Process:
@ Evaluate polynomials A and B at enough points.
@ Pairwise multiplications of resulting values.
@ Interpolation of resulting values.
Fall 2010 2181351
o CS 4104
%
]
Multiplication of Polynomials (2) = e
N
This can be faster than ©(n?) IF a fast way can be found to no notes
do evaluation/interpolation of 2n — 1 points (normally this
takes ©(n?) time).
Note that evaluating a polynomial at O is easy, and that if we
evaluate at 1 and -1, we can share a lot of the work between
the two evaluations.
Can we find enough such points to make the process
cheap?
Fall 2010 219/351
o CS 4104 An Example
@
i L
An Example = i
N

Polynomial A: x? + 1.

Polynomial B: 2x2 — x + 1. -1 0 1
Polynomial AB: 2x* — x3 4 3x? — x + 1. A 2 12
B 4 1 2
Notice: AB 8 1 4
AB(-1) = (2)(4)=28
AB(0) = (1)(1)=1
AB(1) = (2)(2)=4

But: We need 5 points to nail down Polynomial AB. And, we
also need to interpolate the 5 values to get the coefficients

Fall 2010 220/351

CS 4104 Nth Root of Uity

Th ke 0 fst pbyromial mutpicaton i i e
s o exshtoinerl ess

L Nth Root of Unity

Nth Root of Unity

2010-11-30

The key to fast polynomial multiplication is finding the right
points to use for evaluation/interpolation to make the process
efficient.

For the first circle, n = 4, w = i.

For the second circle, n = 8,w = /.

Complex number w is a primitive nth root of unity if
O v"=1and
Q Wk #£1for0<k<n.

W0, wh, ..., w"t are the nth roots of unity .

Example:
@ Forn=4,w=io0rw=—i.
8 CS 4104 Nih Root of Unity (cont)
:. @ &
o : L)
Nth ROOt Of Un|ty (Cont) g Nth Root of Unity (cont) o = =
no notes
n=4,w=1.
n=_8,w=vi.
o CS 4104
5
- - i}
DISCI’ete FOUI‘IeI‘ TranSfOI‘m ;_';: LDiscrete Fourier Transform
o
Define an n x n matrix V (w) with row i and column j as o
V(w) = (') In the array, indexing begins with 0.
Example: n =4, w =i:
1 1 1 1 Example:
1 0 -1 1+ 2x + 3x? + 4x3
V(w) = 1 -1 1 -1 Values to evaluate at: 1,i,—1, —i.
1 -i -1 i
Leta = [ap, a4, ..., an_1]" be a vector.
The Discrete Fourier Transform (DFT) of a is:
F.=V(w)a=V.
This is equivalent to evaluating the polynomial at the nth
roots of unity.
o CS 4104
5
3L
Array example g Artay example
Forn=8,w=i, V()= The key thing to note here is the symmetries in the array. This
is what permits the fast algorithm to emerge. With suitable
1 1 1 1 1 1 1 1 minor changes (like switching signs), we can easily share parts
1 Vi i ivi -1 Vi —-i —iVi of the work through the recursion process.
1 i -1 —i 1 i -1 —i
1 i - Vi-1 =iV i Vi
abe s R B
1 i i -ivi -1 Vi - iV
1 —i -1 i1 —i -1 i
1 -ivi - =vi -1 Vi i Vi

Inverse Fourier Transform

The inverse Fourier Transform to recover a from v is:

Fol=a=[V(w]* Vv

w

1.1

=il __ - -

V@)™ = 2V(E).

This is equivalent to interpolating the polynomial at the nth
roots of unity.

An efficient divide and conquer algorithm can perform both
the DFT and its inverse in ©(nlgn) time.

pa 210

Fast Polynomial Multiplication

Polynomial multiplication of A and B:

@ Represent an n — 1-degree polynomial as 2n — 1
coefficients:
[a07 a17 ceey aI'171> O> weey 0]

@ Perform DFT on representations for A and B.

@ Pairwise multiply results to get 2n — 1 values.

@ Perform inverse DFT on result to get 2n — 1 degree
polynomial AB.

pat 2010

FFT Algorithm

FFT(n, a0, al, ..., an-1, onega, var V);
Qutput: V[O..n-1] of output el enents.
begi n
if n=1 then V[0] = a0;
el se
FFT(n/2, a0, a2, ... an-2, onega’2,
FFT(n/2, al, a3, ... an-1, onega"2,
for j=0 to n/2-1 do
Mijl = Uj] + onega®j Wjl;
Mj+n/2] = Uj] - onega®j Wjl;

sc

end

Fa 2010

Fibonacci Revisited (1)

225/351

226 /351

227351

Consider again the recursive function for computing the nth

Fibonacci number.
int Fibr(int n) {
if (n <=1) return 1; /| Base case

return Fibr(n-1) + Fibr(n-2); // Recursive call
}

Cost is Exponential. Why?

BT

228351

2010-11-30

2010-11-30

2010-11-30

2010-11-30

CS 4104

Llnverse Fourier Transform

Just replace each w with 1/w

After substituting 1/w for w.

Observe the sharable parts in the matrix.

CS 4104

= Fast Polynomial Multiplication

O(nlogn)
o(n)
O(nlogn)

Total time: ©(nlogn).

CS 4104

L—FFT Algorithm

no notes

CS 4104

LFibonacci Revisited (1)

Lots of recomputation.

Fast Polynomial Multplication

FFT Algorithm

Fibonacei Revisited (1)

e agin e recasive fcton orcomputing th i

(Cosis Exponental Wy

CS 4104 Fibonacci Revisited (2)

[rp— costs rety redueed.

LFibonacci Revisited (2)

Fibonacci Revisited (2)

2010-11-30

costr
Ve don ned e, ony st 2 vlues.
 Key s vorking boton up

If we could eliminate redundancy, cost is greatly reduced.

@ Keep a table Cost is only linear.

:))) Of course, we can also do this iteratively.
int Fibrt(int n, intx Values) { Y

/'l Assune Val ues has at least n slots, and all
/] slots are initialized to O
if (n <=1) return 1; /| Base case
if (Values[n] == 0) /1 Conpute and store
Val ues[n] = Fibrt(n-1, Val ues)
+ Fibrt(n-2, Values);
return Val ues[n];

}

Cost?

We don’t need table, only last 2 values.
@ Key is working bottom up.

CS 4104 Dynamic Programming (1)

LDynamic Programming (1)

Dynamic Programming (1)

2010-11-30

This approach is called ynamic Programming
< Ham

@ comes rom e 61 fdyramic convlsysems
= Thoe, hoactof string precomputed values s oerred
1025 pogramming’

The issue of avoiding recomputation of subproblems comes

up frequently. no notes
@ General solution: Store a table to avoid recomputation.
@ Can work bottom up (fill table from smallest to largest)
@ Can work top down (recursively), remembering any
subproblems that happen to be solved (check table
first).
This approach is called Dynamic Programming
@ Name comes from the field of dynamic control systems
@ There, the act of storing precomputed values is referred
to as “programming”.
Fall2010 230/351
8 CS 4104 O)
S
DynamIC Programmlng (2) g Dynamic Programming (2) N
no notes
Dynamic Programming is an alternative to Divide and
Conquer
@ D&C: Split problem into subproblems, solve
independently, and recombine.
@ DP: Pay bookkeeping costs to remember solutions to
shared subproblems.
Fall2010 231/351
o CS 4104 A Knapsack Problem
%
—
A KnapsaCk PrOblem ;_3: LA Knapsack Problem
o
Problem: Given an integer capacity K and n items such that -
item i has integer size k;, find a subset of the n items whose 9,27, 54, 73.
sizes exactly sum to K, if possible.
Formally: Find S ¢ {1,2,...,n} such that 9, 54,101.
Z k — K The problem is that there is no necessary relationship between
g ' ’ the answer for n and n + 1.
Example: -
@ K =163

@ 10 items of sizes 4, 9, 15, 19, 27, 44, 54, 68, 73, 101.
@ What if K is 1647
Instead of parameterizing problem just by n, parameterize
with n and K.
@ P(n,K) is the problem with n items and capacity K.

Solving the Knapsack Problem
Think about divide and conquer (alternatively, induction).

What if we know how to solve P(n — 1,K)?
@ If P(n — 1,K) has a solution, then it is a solution for
P(n,K).
@ Otherwise, P(n,K) has a solution < P(n — 1, K — k)
has a solution.
What if we know how to solve P(n — 1,k) for 0 < k < K?

Cost: T(n)=2T(n—1)+c.

T(n) = ©(2").
BUT... there are only n(K + 1) subproblems to solve!
Fall 2010
Solution

Clearly, there are many subproblems being solved
repeatedly.

Store a n x K + 1 matrix to contain the solutions for all
P(i, k).

Fill in the rows from i = 0 to n, left to right.
If P(n — 1,K) hasa solution,
Then P(n,K) hasa solution
ElseIf P(n — 1,K — kj,) hasa solution
Then P(n,K) hasa solution
Else P(n, K) has no solution.
Cost: ©(nK).
Fall 2010

Knapsack Example (1)

K =10.

Five items: 9, 2, 7, 4, 1.

\012345678910
R=R|@ = = = = = = = =] =
=20 = [= = = = = = @ =
ks=7|0 — O — — — — | — 1/0 —
kh=4/0 -0 -1 -1 O - O -
ks=1|/O I O 1 O 1 O1/O I O |

Fat 2010
Knapsack Example (2)
Key:

-: No solution for P (i, k).

O: Solution(s) for P(i, k) with i omitted.

I: Solution(s) for P(i, k) with i included.

1/0: Solutionsfor P (i, k) with i included AND omitted.

233/351

234351

235/351

Example: M(3,9) contains O because P(2,9) has a solution.

It contains | because P(2,2) = P(2,9 — 7) has a solution.

How can we find a solution to P (5, 10)?
How can we find ALL solutions to P(5, 10)?

BT

236/351

2010-11-30

2010-11-30

2010-11-30

2010-11-30

CS 4104

g the Knapsack Problem

LSoIving the Knapsack Problem

There are two choices:
The nth item is in the solution OR
The nth item is not in the solution.

What does this mean? Drop the nth item.

Then we can solve P(n — 1,K — kp).
Of course, we don’t know if the nth item is in the solution or not,
S0...

=2(2T(n—=2)4+c)+c=2(2(2T(n—3)+c)+c) +c, etc.

CS 4104 Solution

ar may subproes boog sovwd

L Solution

Cost: o{nK).

no notes

CS 4104

Knapsack Example (1)

= Knapsack Example (1)

no notes

CS 4104

Knapsack Example (2)

L Knapsack Example (2)

no notes

All Pairs Shortest Paths (1)

For every vertex u,v € V, calculate d(u, v).
Define a k-path from u to v to be any path whose
intermediate vertices all have indices less than k.

T Analysis Fall 2010 237/351

All Pairs Shortest Paths (3)

void Fl oyd(G aph& G { /1 All-pairs shortest paths
int DGn()][Gn()]; /1 Store distances
for (int i=0; i<Gn(); i++) // Initialize D
for (int j=0; j<Gn(); j++)
Dli][j] = Gweight(i, j);
for (int k=0; k<G n(); k++) // Conpute all k paths
for (int i=0; i<G n(); i++)
for (int j=0; j<Gn(); j++)
if (DLiJ[j] > (Dii][k] + DIkI[j1))
DIil[j] = D[i][k] + DKI[jl:

Reductions

A reduction is a transformation of one problem to another.

Purposes: To compare the difficulty of two problems.
@ Use one algorithm to solve another problem (upper
bound).
@ Compare the relative difficulty of two problems (lower
bound).

Notation: A problem is a mapping of inputs to outputs.
Format looks as follows:
SORTING:
@ Input: A sequence of integers Xo, Xy, ..., Xn_1-
@ Output: A permutation Yo, Ys, ..., Yn_1 Of the sequence
such that y; <y; wheneveri < j.

PAIRING
PAIRING:

@ Input: Two sequences of integers X = (Xg, X1, .., Xn—1)
and Y = (Yo, Y1, -, Yn-1)-

@ Output: A pairing of the elements in the two sequences
such that the least value in X is paired with the least
value in Y, and so on.

How can we solve this?

One algorithm:

@ Sort X.

@ SortY.

@ Now, pair x; with y; for 0 <i < n.
Terminology: We say that PAIRING is reduced to
SORTING, since SORTING is used to solve PAIRING.

2010-11-30

2010-11-30

2010-11-30

2010-11-30

CS 4104

Al Pairs Shortest Paths (1)

L All Pairs Shortest Paths (1)

First, calculate all direct paths.

Then, calculate all 0 paths: For every i, j, look to see if i,0 + 0,
is less than i,j in the table.

Then, calculate all 1 paths: For every i, j, look to see if i,1 + 1,j
is less than i,j in the table. And so on.

CS 4104

Al Pairs Shortest Paths (3)

L All Pairs Shortest Paths (3)

no notes

CS 4104 Reductions.

L Reductions

Its a particular type of transformation, done for a particular
purpose.

“Code reuse.” Remember our transformation for FFT.

Reduction

CS 4104 PAIRING

LF’AIRING

e e say tht PARING s reuced 10
SORTING, Since SORTING & sed 1 S5V& PRIRING.

Reduce to the one being used.
Be careful: Most confusion comes with wich direction is meant
on the reduction.

PAIRING Reduction Process

The reduction of PAIRING to SORTING requires 3 steps:

@ Convert an instance of PAIRING to two instances of
SORTING.

@ Run SORTING (twice).

@ CONVERT the output for the two instances of SORTING
to an output for the original PAIRING instance.

What do we require about the transformations to make them
useful?

What is the cost of this algorithm?

PAIRING Lower Bound (1)

We have an upper bound for PAIRING equal to that of
SORTING.

What is the lower bound for PAIRING?

Pretend that there is a O(n) time algorithm for PAIRING.
Consider this algorithm for SORTING:
@ Transform SORTING to PAIRING with X being the input
sequence for SORTING, and Y a sequence containing
the values 0 through n — 1
@ Run the O(n) time PAIRING algorithm.
@ Take the pairs output by PAIRING and use a simple
binsort to order them by the second value of the pair.
The first items of the pair will be the sorted list.

PAIRING Lower Bound (2)

What is the cost of this algorithm?

What does this say about the existence of an O(n) time
algorithm for PAIRING?

Reduction Process

Consider any two problems for which a suitable reduction
from one to the other can be found.

The first problem P1 takes input instance | and transforms
that to solution S.

The second problem P2 takes input instance I" and
transforms that to solution S'.

A reduction is the following three-step process:
@ Transform an arbitrary instance | of problem P1 and
transform it to a (possibly special) instance I' of P2.
@ Apply an algorithm for P2 to I, yielding S'.
@ Transform S' to a solution for P1 (S). Note that S MUST
BE THE CORRECT SOLUTION for I!

D B

2010-11-30

2010-11-30

2010-11-30

2010-11-30

CS 4104

LPAIRING Reduction Process

Transformation must be “fast.”

©(nlogn).
The transformations are linear, so the cost is dominated by
sorting.

CS 4104 PAIRING Lower Bound (1)

mator

L PAIRING Lower Bound (1)

Recall that lower bounds proofs are difficult.

Beware the “necessary fallacy:” There is no reason why a
pairing algorithm must explicitly sort, nor that the resulting list
be sorted.

CS 4104 PAIRING Lower Bound (2)

L PAIRING Lower Bound (2)

o(n)
It can’t possibly exist, due to our known lower bound on sorting.

This is a proof by contradiction.
The only flaw in the process leading to the contradiction is the
assumption of an O(n) algorithm for PAIRING.

CS 4104

LReduction Process

It is important that the first transformation take an arbitrary
instance of I. We don't need to be able to produce every
possible isntance of I'. But we DO need to be able to handle
every possible instance of I.

Reduction Process (Cont.)

Note that reduction is NOT an algorithm for either problem.

It does mean, given “cheap” transformations, that:
@ The upper bound for P1 is at most the upper bound for

P2.
@ The lower bound for P2 is at least the lower bound for
P1.
Fall2010 245/351

General Black Box Diagram

Problem A: ‘ ‘I

Transform 1

Problem H

Transform 2

U SLN

Notation Summary

Problem A has input I, solution SLN

Problem B has input I’, solution SLN’

Problem A is reduced to Problem B

Problem A is solved by reducing to Problem B (which
has known upper bound)

We prove a lower bound on B by a reduction from
Problem A (which has known lower bound)

Transformations 1 and 2 must be “cheap”

We must be able to accept the full range of inputs | to
Problem A.

However, I' may be a restricted subset of all possible
inputs to B.

PAIRING Reduction Black Box

sorTING: | |!

PAIRING

Transform 2

U SLN

CS 4104

LReduction Process (Cont.)

2010-11-30

no notes

CS 4104

LGeneraI Black Box Diagram

2010-11-30

no notes

CS 4104

LNotation Summary

2010-11-30

no notes

CS 4104

LPAIRING Reduction Black Box

2010-11-30

no notes

Reduction Process (Cont)

Noe thatreduton s NOT an algorihm o cther probie,
1doasmean,gen “cheap? vastormatons, that
> The upper bound o 1 1 st e uppe bound or
Pz
« The s boundfor P2 i t eas e wer bound or
PL

General Black Box Diagram

Notation Summary

PAIRING Reduction Black Box

GliEHIS]

CS 4104

L PAIRING Notation

PAIRING Notation

2010-11-30

@ Transform 1 takes input | and produces output I'.

| is a sequence S.

@ |'is two sequences: S and the set of numbers from 0 to
n—1.

@ Transform 1 takes a sequence as input, and produces
the two sequences as output.

@ Transform 2 takes SLN’ as input and produces output
SLN.

@ SLN’is a pairing.

SLN is a sorted sequence

@ Transform 2 takes the pairing and runs a binsort on it to
generate the sorted sequence.

no notes

CS 4104

Another Reduction Example

LAnother Reduction Example

2010-11-30

How much does it cost to multiply two n-digit numbers?
@ Naive algorithm requires ©(n?) single-digit
multiplications.
@ Faster (but more complicated) algorithms are known,
but none so fast as to be O(n).

no notes

Is it faster to square an n-digit number than it is to multiply
two n-digit numbers?
@ This is a special case, so might go faster.
@ Answer: No, because
(X+Y)?2—(X=-Y)>
2 .
If a fast algorithm can be found for squaring, then it could be
used to make a fast algorithm for multiplying.
Fall 2010 250/351

X xY =

CS 4104 Matrix Multplication

Matrix Multiplication

= Matrix Multiplication

2010-11-30

Standard matrix multiplication for two n x n matrices
requires ©(n®) multiplications. no notes

Faster algorithms are known, but none so fast as to be
0o(n?).

A symmetric matrix is one in which M; = M;.

Can we multiply symmetric matrices faster than regular
matrices?

0 AJ[0B"] [AB O
AT 0 B 0 | 0 ATBT |-

CS 4104

LSome Puzzles

Some Puzzles

2010-11-30

1. A hiker leaves at 8:00 AM and hikes over the mountain.

The next- day, ghe again leaves at 8:00 AM and returns tc_) Pretend that she is walking both ways on the same day. She
her starting point along the same path. Prove that there is a must meet her self at some point (which means that she at the
point on the path such that she was at that point at the same same place at the same time).

time on both days.

No. We lost two squares of the same color. A domino covers a
square of each color. So it can only work when there are an
equal number of squares of each color.

2. Take a chessboard and cover it with dominos (a domino
covers two adjacent squares of the board). Now, remove the
upper left and lower right corners of the board. Now, can it
still be covered with dominos?))) :
If | give you two factors, its easy to check. BUT if | claim the

These puzzles have the quality that, while their answers may number is prime, how do you check? How do | prove to you that
be hard to FIND, they are easy to CHECK its prime? You have to do as much work verifying as | did

' ' solving.
3. Is 667 composite or prime? 9

CS 4104

Complexity and Computabilty (1)

per—
 Howcheaply can s be compued?
« Howtardis s o compute?

Complexity and Computability (1) Loy e S A) e

2010-11-30

Upper bound, best algorithm.

Complexity:
@ How cheaply can this be computed?
@ How hard is this to compute?

Lower bound.
That is, what special cases or preconditions?

Computability: Some things are impossible.
@ When can this be computed?

@ Can this be computed at all?

CS 4104

Complexity and Computabilty (2)

Typesof

LCompIexity and Computability (2)

Complexity and Computability (2)

2010-11-30

no notes
Types of “hard” problems:

@ Hard to understand (or specify) the problem
» Software Engineering
@ Hard to design a solution
» Artificial Intelligence
@ Hard to compute in reasonable time
» Complexity Theory
@ Hard (impossible) to do at all
» Computability Theory

oo 254/

CS 4104 Hard Problems (1)

W sa hat a ol is computatonally Tar I the

i e of e bt known aigorth i exponental on
he'siz ol s .

Hard Problems (1)

LHard Problems (1)

2010-11-30

We say that a problem is computationally “hard” if the

running time of the best known algorithm is exponential on Conversely, polynomial-time algorithms are (relatively) “easy.”
the size of its input.

Support:
@ Polynomials are closed under composition and addition.
» Doing polynomial time operations in series is polynomial.
@ All computers today are polynomially related.
» If it takes polynomial time on one computer, it will take
polynomial time on any other computer.
@ Polynomial time is (generally) feasible, while exponential
time is (generally) infeasible.
> An empirical observation: For most polynomial-time
algorithms, the polynomial is of low degree.

CS 4104

Hard Problems (2)

LHard Problems (2)

Hard Problems (2)

2010-11-30

no notes

Note that for a faster machine, the size of problem that can
be run in a fixed amount of time

@ grows by a multiplicative factor for a polynomial-time
algorithm.

@ grows by an additive factor for an exponential-time
algorithm.

Nondeterminism

@ Imagine a computer that works by guessing the correct
solution from among all possible solutions to a problem.

@ Alternative: Super parallel machine that tests all
possible solutions simultaneously.

@ It might solve some problems more quickly than a
regular computer.

@ Consider a problem which, when given a proposed
solution, we can check in polynomial time if the solution
is correct.

@ Even if the number of guesses is exponential, checking
(in this case) is polynomial.

@ Conversely: if you can’'t guess an answer and check in
polynomial time, there can be no polynomial time
algorithm!

Nondeterministic Algorithm

An algorithm is nondeterministic if it works by guessing the
right answer from among a finite number of choices.

Alternatively, imagine a tree of choices, polynomial levels
deep.
@ A super parallel machine follows all branches of the tree
in parallel.
@ If any single branch reaches a solution, the problem is
solved.

A problem that can be solved in polynomial time by a
nondeterministic machine is said to be “in NP

Is Towers of Hanoi in N'/P?

Traveling Salesman Problem

TRAVELING SALESMAN (1):

@ Input: A complete, directed graph G with distances
assigned to each edge in the graph.

@ Output: Shortest simple cycle that includes every vertex.
Problem: How to tell if a proposed solution is shortest?

T Analysis Fall 2010 259/351

Traveling Salesman (Cont.)

Decision problem : A problem with a YES or NO answer.

TRAVELING SALESMAN (2):
@ Input: A complete, directed graph G with distances
assigned to each edge in the graph, and an integer K.
@ Output: YES if there is a simple cycle with total distance
< K containing every vertex in G, and NO otherwise.

In NP: We can guess a cycle, and quickly check if it meets
the requirements.

2010-11-30

2010-11-30

2010-11-30

2010-11-30

CS 4104 Nondeterminism

LNondeterminism

o
ot

This might appear to be irrelevent, but it turns out to be a
practical classification tool!

This turns out to be a key question — one which we still don’t
know the answer to!

CS 4104 Nondeterministic Algorithm

ot s pondeterministc_ 4ok by guessing e
i answer o 3m0RG R TATE Tumber o hoies

L Nondeterministic Algorithm

« iy singe branc reaches a soluton, the proiem
ey

A proble st can besohed n poyramal e by &
nondetarminisicmachine s 524 10 be n X

18 Towers of Hana i V7

Finite, but possibly large.
Nondeterministic Polynomial
No. Its too hard — can't verify answer in polynomial time.

Problems solvable in polynomial time by a “normal” computer
are said to be in P.

CS 4104 Traveling Salesman Problem

LTraveIing Salesman Problem

You can’t. You can verify that a proposed solution is a tour, and
is of claimed cost. But, that's not necessarily shortest.

CS 4104 Traveling Salesman (Cont)

Deision prolom : A proom witha YES o O answer.

TRAVELING SALESHAN @)
« it

LTraveIing Salesman (Cont.)

no notes

CS 4104

LN ‘P-complete Problems (1)

NP-complete Problems (1)

2010-11-30

Many problems are like traveling salesman:
@ They are in N'P.
@ Nobody knows a polynomial time algorithm.

algorithm.

But also cannot prove that there is no polynomial-time

@ Is there any relationship between them? Note that X can be outside (harder than) AP. But that’s not

useful.
A problem X is said to be N'P-hard if ANY problem in A'P
can be reduced to X in polynomial time.

@ X is AS HARD AS any problem in N'P.

A problem X is said to be A"P-complete if
Q Itisin NP.
Q Itis AV'P-hard.
Fall 2010 261/351

CS 4104

LN ‘P-complete Problems (2)

NP-complete Problems (2)

2010-11-30

no notes

To start the process we need to prove just one problem H is
NP-complete.

@ To show that X is A'P-hard, just reduce H to X.
@ DON'T GET IT BACKWARDS!

CS 4104

LWhy Care about A'P-Completeness?

Why Care about NP-Completeness?

2010-11-30

Your boss asks you to write a fast program for TRAVELING

SALESMAN. no notes
@ Its obviously an easy problem to understand.
@ She can easily see some algorithm to solve the problem.
@ |t must be easy to speed up!

If you can’t do the job, what do you tell her?

@ | can’'tdo it.

@ | can't find evidence that anyone can do it.

@ Nobody has been able to do it, despite the fact that
many people have tried. Furthermore, if anyone solved
any of this long list of problems, then they would be able
to do this problem too.

Fall2010 263/351
o CS 4104
P
:'i
Satisfiabil |ty S L satisfiabilty

&

Let E be a Boolean expression over variables Xy, Xa, ..., Xp in

Conjunctive Normal form: no notes

E = (X5 + X7 + Xg + X10) - (X2 + X3) - (X1 + X3 + Xs).
SATISFIABILITY (SAT):
@ INPUT: A Boolean expression E over variables Xy, X, ...
in Conjunctive Normal Form.
@ OUTPUT: YES if there is an assignment to the variables
that makes E true, NO otherwise.

This is the “grand-daddy” N'P-complete problem.

Cook’s Theorem: SAT is N'P-complete.
Fall 2010 264 /351

N'P-complete Problems (2)

Why Care about A‘P-Completeness?
ou

o it afast program o TRAVELING

Satisfiability

CS 4104

LNP-completeness Proof Model

NP-completeness Proof Model

2010-11-30

Implication: If a polynomial time algorithm can be found for

ANY problem that is N'P-complete, then by a chain of no notes
polynomial time reductions, ALL A/P-complete problems can

be solved in polynomial time.

To show that a decision problem X is A/P-complete:
© Show that X is in N'P.
» Give a polynomial-time, nondeterministic algorithm.
@ Show that X is N'P-hard.
» Choose a known N'P-complete problem, A.
» Describe a polynomial-time transformation that takes an
ARBITRARY instance | of A to an instance I’ of X.
» Describe a polynomial-time transformation from S’ to S
such that S is the solution for .

CS 4104

Cook’s Proof Outline

LCook’s Proof Outline

2010-11-30

@ Any decision problem can be recast as a language
acceptance problem: F(I) = YES < L(I") = ACCEPT.

. ! : h no notes
@ Turing machines are a simple model of computation for
writing programs that are language acceptors.
© There is a “universal” Turing machine that can take as
input a description for a Turing machine, and an input
string, and return the result of the execution of that
machine on that string.
© This in turn can be cast as a boolean expression such
that the expression is satisfiable if and only if the Turing
machine yields ACCEPT for that string.
@ Thus, any decision problem that is performable by the
Turing machine is transformable to SAT: This is
NP-hard.
Fall 2010 2661351
o CS 4104
%
]
0 0 : L _—
The World Of Exponentlal_tlme(f)) g The World of Exponential-time(?) Problems
Problems
no notes
Exponential time problems
TOH
NP problems
N'P-complete problems
TRAVELING SALESMAN
‘P problems
SORTING
Question: Does P = N'P?
Fall 2010 2671351
o CS 4104
@
—
-
3-SATISFIABILITY (3 SAT) 3 L 3.SATISFIABILITY (3 SAT)
o
N

Input : Boolean expression E in CNF such that each clause
contains exactly 3 literals. 2-SAT is polynomial.
Output : YES if expression can be satisfied, NO otherwise.

A special case of SAT.
@ |s 3 SAT easier than SAT?

Theorem : 3 SAT is A'P-complete.
Proof :
@ 3 SATisin NP.
» Guess (nondeterministically) values for the variables.
» The correctness of the guess can be verified in
polynomial time.
@ 3 SAT is N'P-hard, by a reduction from SAT to 3 SAT.

\P-completeness Proof Model

Cook's Proof Outline

“The World of Exponential-time(?)

3-SATISFIABILITY (3 SAT)
0put: Botean expresion € n N such hateach luse

A speialcase of SAT.

heare p-complete.

3 SATis AP hard, b a reducton fom SAT 103 SAT.

CS 4104 3SATis \'P-hard

Finda polnomial tme reductonfom SAT 103 SAT

L . I —
3 SAT IS N/Ij-hard ‘Strategy: Replace any C, that does not have exactly
e T

3 SAT is N'P-hard

2010-11-30

no notes
Find a polynomial time reduction from SAT to 3 SAT.

LetE = C; - C; - ... - Cx by any instance of SAT.

Strategy: Replace any clause C; that does not have exactly
3 literals with two or more clauses having exactly 3 literals.

Let Ci = X1 + Xp + ... + X; Where Xy, ..., x; are literals.

CS 4104 Replacement (1)

L Replacement (1)

Replacement (1)

2010-11-30

@ | = 1,s0C; = x;. Replace C; with
_ _ _ no notes
(X +V+W) (X +V+W) (X +V+W) (X +V+W)
where v and w are new variables.
© j =2,50C; = (X1 + X2). Replace C; with
(X1 +X2+2) - (X1 + X2+ Z)
where z is a new variable.
© j > 3. Replace C; with
(Xa+x2+21) - (xs+Z1+22)- (Xa +2Z2+23) - ...
K2+Za+25) (K-1+% +Z3)
where z,, ..., z;_3 are new variables.

CS 4104

Replacement (2)

e appropriatereplacements have been made foreach G,
8 Boolean expresson fesus ha s nsianc f 3 SAT

= Replacement (2) Cachrepacament s s v

Gause - ssstable

Replacement (2)

e tedetonis cearly poynomal e

2010-11-30

no notes

After appropriate replacements have been made for each C;,
a Boolean expression results that is an instance of 3 SAT.

Each replacement is satisfiable if and only if the original
clause is satisfiable.

The reduction is clearly polynomial time.

CS 4104

Third Case

If E is satisfiable, then E’ is satisfiable:
@ Assume Xp, is assigned true.
@ Assign z;,t <m — 2 as true and zx,t > m — 1 as false.
@ Then all clauses in Case (3) are satisfied.
If E’ is satisfiable, then E is satisfiable:
@ Proof by contradiction.
@ If xq, %y, ..., X are all false, then z;, 75, ..., z;_3 are all true.
® Butthen (x;_1 + Xj_» + Zj_3) is false, a contradiction.
(Not necessary for proof, but may help insight.)
Conversely, if E is not satisfiable, then E’ is not satisfiable.
@ E not satisfiable means all x; are false.
@ This leaves E’ as

(21) (Zi+22) - .- (o2 + Zi-3) - ()
which is NOT satisfiable.
Fall 2010 272/351

L—Third case

2010-11-30

no notes

CS 4104 Two Problems (1)

LTwo Problems (1)

2010-11-30

Two Problems (1)

no notes
VERTEX COVER:

Input : An undirected graph G and an integer k.

Output : YES if there is a subset of vertices in G of size k or
less such that every edge in the graph has at least one of its
ends in the subset; NO otherwise.

K-CLIQUE:

Input : An undirected graph G and an integer k.

Output : YES if there is a subset of the vertices of size k or
greater that is a complete graph (a clique).

CS 4104 Two Problems (2)

e aer by swiching 6

LTwo Problems (2)

Two Problems (2)

2010-11-30

Given a VC in G of size k, there is an (n — k)-sized clique in G’
using the vertices not in the original vertex cover (and vice

versa).
We can reduce either problem to the other by switching G to [The vertices not in the match cannot be connected, otherwise
its inverse G'. their connector edge would not be covered. So, the inverse

e Ifedge (i,j)isin G, itis NOT in G'. graph must be a clique on those vertices.]

@ If edge (i,j) isNOTin G, itISin G'.

CS 4104

K CLIQUE is A"P-Complete (1)

K CLIQUE is N'P-Complete (1)

procedure nd-CLI QJE(Graph G int K) {
VertexSet S = EMPTY; int size = 0;
for (vin GYV)

LK CLIQUE is A"P-Complete (1)

2010-11-30

Guess a group of vertices and check that they form a complete

. . graph.
if (nd-choice(YES, NO == YES) then {
S = union(S, Vv);
size = size + 1;
}
if (size < K then
REJECT; /1 Sis too small
for (uin 9
for (vinyS)
if ((u<>v) & ((u, v) not in E))
REJECT; // S is missing an edge
ACCEPT;
}
Fall2010 275/351

CS 4104 K CLIQUE is AP-Complete (2)
e

K CLIQUE is N'P-Complete (2)

Now show that K CLIQUE is N'P-hard.

LK CLIQUE is A"P-Complete (2)

2010-11-30

A vertex for every literal in every clause.
Reduce SAT to K CLIQUE.

An instance of SAT is a Boolean expression
B=C;-Cy-..-Cp

where
Ci=y[i, 1 +yli,2] + .. + y[i, k.

Transform this to an instance of K CLIQUE as follows.
V={v[i,jjl<i<m1<j<k}

8 CS 4104 K CLIQUE is A’P-Complete (3)
-
. : L)
K CLIQUE is N'P-Complete (3) g K CLIQUEIs V'P-Complete (3)
no notes
All vertices Vi, j1] and v(iz, j2] have an edge between them
UNLESS they are two literals within the same clause (i, = i)
OR they are opposite values for the same variable.
Setk =m.
Fall 2010 277351
o CS 4104 Example
O? S0 BT)
=
Exam ple ‘C_I>' LExampIe
o
N

B =(y1+VY2) (V1i+Y2+VYa)
Need graph here

B is satisfiable if and only if G has a clique of size > k.
@ B satisfiable implies there is a truth assignment such
that y[i, ji] is true for each i.
@ But then, v[i,j;] must be in a clique of size k = m.
@ If G has clique of size > k, then clique must have size
exactly k with one vertex v[i, ji] in clique for each i.
@ There is a truth assignment making each y/i, ji] true.
That truth assignment satisfies B.
Conclude that K CLIQUE is N'P-hard, therefore

NP-complete.
Fall2010 278/351

Q Cs4104 o
—

oY L con:

o Co-NP

Co-NP = ¢
N

Co-N"Pmight be a bigger (“harder”) class that includes N'P.
@ Note the asymmetry in the definition of N'P.
» The non-determinism can identify a clique, and you can
verify it.
» But what if the correct answer is “NO”? How do you
verify that?
@ Co-N'P: The complements of problems in N'P.
» |Is a boolean expression always false?
» Is there no clique of size k?

@ It seems unlikely that A’P= co-N"P.

CS 4104 Is Everything in AP Either P or
N'P-complete?

Lls Everything in AP Either P or N"P-complete?

Is Everything in NP Either P or
NP-complete?

2010-11-30

These problems seem easier than typical A"P-complete
problems, but are still probably harder than . They are
obviously in NP, but don’t appear to be “hard” enough to solve

The following problems are not known to be in P or any N'P-complete problem.
NP-complete, but seem to be of a type that makes them
unlikely to be in \'P-complete. Subgraph Isomorphism (is a graph A isomorphic to some
@ GRAPH ISOMORPHISM: Are two graphs isomorphic? subgraph in graph B) is NP-complete. But it is understandable
@ COMPOSITE NUMBERS: For positive integer K, are how this might be a harder problem (there are so many
there integers m,n > 1 such that K = mn? subgraphs to choose from).

@ LINEAR PROGRAMMING

CS 4104 Coping vith A'P-Completeness

LCoping with A"P-Completeness

Coping with AP-Completeness

2010-11-30

© Organize to reduce costs.
» Dynamic programming.
» Backtracking.
» Branch and Bounds. Discussed later.
© Find subproblems of the original problem that have
polynomial-time solutions.
» Significant special cases that are useful to answer.
© Approximation algorithms.
© Randomized algorithms.
© Use heuristics.
» Greedy algorithms.
» Simulated Annealing.
» Genetic Algorithms.

See next slide.

CS 4104 Knapsack Analysis Revisited
.

L Knapsack Analysis Revisited

Knapsack Analysis Revisited

2010-11-30

Fact: Knapsack is N'P-complete.
@ But we have a ©(nK) algorithm!! > 2" is quite possible.
Question: How big is K?
@ Input size is typically O(nlog K) since the item sizes are
smaller than K.
@ Thus, ©(nK) is exponential on input size.

This algorithm is tractable if the numbers are “reasonable.”
@ nK can be thousands.
@ This is different from TRAVELING SALESMAN which
cannot handle n = 100.
Such an algorithm is called a pseudo-polynomial time
algorithm.
Fall 2010 282351

CS 4104

LSubprobIems and Special Cases

2010-11-30

Subproblems and Special Cases

Example: Vertex cover on a bipartite graph. Best to pick the
Some restricted cases of A'P-complete problems are useful, side with the greater number of vertices.
and not A'P-complete.
@ VERTEX COVER and K CLIQUE have polynomial time
algorithms for bipartite graphs.
@ 2-SATISFIABILITY has a polynomial time solution.

@ Several geometric problems are polynomial-time in two
dimensions, but not in three or more.

@ KNAPSACK is polynomial if the numbers are “small.”

Fall 2010 2831351
o CS 4104
%
. . .]
ApprOX|mat|0n A|gOI‘I'[h mS ‘c_'>. LApproximation Algorithms

o
N

Seek algorithms for optimization problems with a guaranteed

bound on quality of the solution. And, M is a vertex cover since no edge is free.

For VERTEX COVER:
@ Let M be a maximal (not necessarily maximum)
matching in G.
» A matching pairs vertices (with connecting edges) so
that no vertex is paired with more than one match.
» Maximal means pick as many pairs as possible.
@ If OPT is the size of a minimum vertex cover, then

M| <2-OPT

because at least one endpoint of every matched edge
must be in ANY vertex cover.
Fall2010 2847351

CS 4104

L_BIN PACKING

2010-11-30

BIN PACKING

INPUT: Numbers Xy, X2, ..., X, between 0 and 1, and an
unlimited supply of bins of size 1.

OUTPUT: An assignment of numbers to bins that requires
the fewest possible number of bins (no bin can hold numbers
whose sum exceeds 1).

This problem is A"P-complete.
Example: Numbers 3/4, 1/3, 1/2, 1/8, 2/3, 1/2, 1/4.
Optimal solution: [3/4, 1/8], [1/2, 1/3], [1/2, 1/4], [2/3].
Fall 2010 285/351

CS 4104

L First Fit Algorithm

First Fit Algorithm

2010-11-30

Place x; into the first bin.

BIN PACKING.

Oand .angan

weur:
i
oureuT:
prgind

Opimal souto: (34, 8], (12, 13, (12, 1) (23,

Optimal in that the sum is 3 1/8, and we packed into 4 bins.
There is another optimal solution with the first 3 bins packed,
but this is more than we need to solve the problem.

First Fit Algorithm

Piace , i th st b that il codan

heretor, s 11 0
ofbs

Otherwise, the items in the second half-full bin would be put

Foreachi,2 <i < n, place x; in the first bin that will contain into the first!
it.

No more than 1 bin can be left less than half full.
The number of bins used is no more than twice the sum of
the numbers.

The sum of the numbers is a lower bound on the number of
bins in the optimal solution.

Therefore, first fit is no more than twice the optimal number

of bins.
o CS 4104
™
: : =
First Fit Does Poorly o LFirst Fit Does Poorly
(=}
N

Let e be very small, e.g., e = .00001.

Numbers (in this order): no notes
@ 60f (1/7 + ¢).
@ 60f (1/3 +¢).
@ 60f(1/2 +¢).

First fit returns:
@ 1 bin of [6 of 1/7 + €]
@ 3 binsof [20f 1/3 + €]
@ 6 bins of [1/2 + €]

Optimal solution is 6 bins of [1/7 +¢,1/3 +¢€,1/2 + ¢].

First fit is 5/3 larger than optimal.

CS 4104

LDecreasing First Fit

2010-11-30

Decreasing First Fit

It can be proved that the worst-case performance of first-fit is no notes
17/10 times optimal.

Use the following heuristic:
@ Sort the numbers in decreasing order.
@ Apply first fit.
@ This is called decreasing first fit

The worst case performance of decreasing first fit is close to
11/9 times optimal.

First Fit Does Poorly

Decreasing First Fit

11can b proved ha h worst<ase prformance of st s
7110 imes opmal

Summary

The theory of A"P-completeness gives a technique for

separating tractable from (probably) untractable problems.

When faced with a new problem, we might alternate

between:
@ Check if it is tractable (find a fast solution).

@ Check if it is intractable (prove the problem is

NP-complete).

If the problem is in N"P-complete, then use one of the

“coping” strategies.

Fall 2010

Countable vs. Uncountably Infinite

Sets

Two sets have the same cardinality if there is a bijection

between them.
Notation: |A| = |B].

This concept can also be applied to infinite sets

Example: Let Odd and Even be the sets of odd and even

natural numbers, respectively.

289 /351

Then, |Odd = |Even] because the function f : |Odd — Ever

defined by f(x) = x — 1 is a bijection.

How about |[Evenj = |N|?

Counting Infinite Sets

A set C is countable if it is finite or if |C| = |N|.

If a set is not countable, then it is uncountable .

If A is a finite alphabet, then A* is countably infinite.

Proof: Arrange the strings in order by length, and within a

Fall 2010

290/351

given length by alphabetical order. This provides a bijection.

As a corollary, the set of all computer programs is countable.

More Functions than Programs

Fall 2010

@ Consider set of functions f(x) =y for x,y natural

numbers.
@ The set of such functions is uncountable.
@ Diagonalization argument

@ Not all functions on natural numbers are computable.

1 2 8 4 5
X ‘fl(x) x |fa(x)| x |fy(x)| x |fu(x) 52 [thel(59)
1 @ 111 1! 7 11|15 12
201 2 @ 21 g 2! 1 2 3
3|1 | 33| 3|@—3++ 312
411 4| 4 41 13| 4|3 4914
5(1 | 5/5 | 5(15| 5|2 O—1—5+
6|1 6| 6 6|17 6| 7 6

Fall 2010

291/351

292/351

2010-11-30

2010-11-30

2010-11-30

2010-11-30

CS 4104

LSummary

no notes

CS 4104

LCountabIe vs. Uncountably Infinite Sets

no notes

CS 4104

L(:ounting Infinite Sets

Summary

The heory of 7-completeness gies a ehriaue o
Separatng actaiefom (pobaby) unvaciaepobens.

Wihenfacedvih aiw problo, e mightakamate
between:

Countable vs. Uncountably Infinite
Sets

T s e th same ity there . iecton
between them.

Ntaton: A - 8|
i concep can o b appled 0 e ses.

Exampe: Let 0 and Even bethe st of odd and even
et rambers, respect

Then, (0 - (Ever becaus the unction (064~ Ever
defnd by 1) - x - 15.3 becton.

o about Ever - 17

Counting Infinite Sets

A setC s counatie it e o C| - .

Praot Aange thesiings narer by length,and wit o
gven fngih by el ardr This povies 8 biecion.

52 corotar,he se of all computerprograms i counatie

Basically, any set that you can “put into an order” is countable.

CS 4104

LMore Functions than Programs

More Functions than Programs

We are taking the ith value from function i and changing it to
create our new function. Which means that our new function is
not the same as function i. And since we do this to every
function, our new function is not any of the other functions.

CS 4104

Halting Problem for Programs

LHaIting Problem for Programs

Halting Problem for Programs

2010-11-30

Does the following terminate?
It is interesting “in theory” that not all functions can have

while (n > 1) programs. But does this limit anything of interest in practice?

if (oDD(n))) ’ !
He@e @ i After all, we are only interested in functions that we can
el se somehow “describe”, not functions with effectively no
n=n/ 2 meaningful relationship between input and output.

Can a C++ program be written to solve the following
problem?

Halting Problem :
@ Input: A program P and input X.
@ Output: “Halts” if P halts when run with X as input.
“Does not Halt” otherwise.
Fall 2010 2931351

CS 4104 Halting Problem Proof

Thearem: There o program o scve the Halig Probie.
Proo o convadicron)

LHaIting Problem Proof

Halting Problem Proof

2010-11-30

Theorem : There is no program to solve the Halting Problem.
no notes
Proof : (by contradiction).

Assumption: There is a C++ program that solves the Halting
Problem.

bool hal t(char* prog, charx* input)
{
Code to solve halting problem
if (prog does halt on input) then
return(TRUE) ;
el se
return(FALSE);
}

oo 204/

CS 4104 Two More Procedures

LTwo More Procedures

Two More Procedures

2010-11-30

bool sel fhalt(char *prog) {)
/1 Return TRUE if program halts Clearly these are real functions (because here they are!).
/1 when given itself as input.
if (halt(prog, prog))
return(TRUE);
el se
ret urn(FALSE) ;

}

voi d contrary(char *prog) {
if (selfhalt(prog))
while(TRUE); // Go into an infinite | oop

Fall2010 2951351
8 CS 4104 The Punchline
-
. F L '
The Punchline g The Punchine
N
@ What happens when function cont r ar y is run on itself? no notes

@ Case 1: sel f hal t returns TRUE.

» contrary will go into an infinite loop.
» This contradicts the result from sel f hal t .

@ sel f hal t returns FALSE.

» contrary will halt.
» This contradicts the result from sel f hal t .

@ Either result is impossible.

@ The only flaw in this argument is the assumption that
hal t exists.

@ Therefore, hal t cannot exist.

Computability Reduction Proof
Given arbitrary program M, does it halt on the EMPTY input?

This is uncomputable. Proof:

@ Suppose that program Mg determines if M halts on the
EMPTY input.

@ Given arbitrary program M and string w, we can create
a new program M,, that operates as follows on empty
input:

» Write w into a static variable.
» Simulate the execution of M.

@ So, we can take arbitrary program M and string w,
create M,,, and invoke Mg on M, (with empty input) to
solve the original halting problem.

@ Thus, Mg must not exist.

Another Reduction Proof

Does there exist SOME input for which an arbitrary program
halts?
Proof that this is uncomputable:

@ Suppose that program Mg could decide if arbitrary
program M halts on SOME input.

@ We can take an arbitrary program M and string w, and
modify it so that it ignores its input before proceeding.

@ Thus, arbitrary program M is modified to be M’ that
effectively is M operating on the empty input.

@ Thus, we can take arbitrary program M and string w,
modify it to become M’ and feed that to My to solve the
problem of deciding if M halts on the empty input.

@ We already know that is undecidable.

@ Thus, Mg cannot exist.

Other Noncomputable Functions

© Does a program halt on EVERY input?
© Do two programs compute the SAME function?
© Does a particular line in a program get executed?

@ Does a program compute a particular function?
pause

© Does a program contain a “computer virus”?

Parallel Algorithms

@ Running time : T(n,p) where n is the problem size, p is
number of processors.

@ Speedup: S(p) =T(n,1)/T(n,p).

» A comparison of the time for a (good) sequential
algorithm vs. the parallel algorithm in question.

@ Problem: Best sequential algorithm may not be the
same as the best algorithm for p processors, which may
not be the best for co processors.

@ Efficiency: E(n,p) = S(p)/p = T(n,1)/(pT (n,p)).

@ Ratio of the time taken for 1 processor vs. the total time
required for p processors.

» Measure of how much the p processors are used (not
wasted).
» Optimal efficiency = 1 = speedup by factor of p.

2010-11-30

2010-11-30

2010-11-30

2010-11-30

CS 4104 Computability Reduction Proof
T e BT
LComputabiIity Reduction Proof
no notes
CS 4104
LAnother Reduction Proof
no notes
CS 4104 Other Noncomputatle Funciions
LOther Noncomputable Functions
1. EVERY: If | knew it always halted, then | would be able to
answer if it halted on a specific input (the orginal halting
problem)
2. SAME: Fix one program to perform the function “infinite loop”
3. Lines: Fix one program to loop on the selected line.
4. Functions: Fix the function to be “halts”.
5. Virus: This is essentially a complex behavior, an even vaguer
problem than determining if a particular function is performed.
CS 4104 Parallel Algorithms
LParaIIeI Algorithms

As opposed to T (n) for sequential algorithms.
Question: What algorithms should be compared?

pT(n,p) is total amount of “processor power” put into the
problem.

If E(n,p) > 1 then the sequential form of the parallel algorithm
would be faster than the sequential algorithm being compared
against — very suspicious!

So there are differing goals possible: Absolute fastest speedup
vs. efficiency.

o CS 4104 Parallel Algorithm Design
%
]
a . : L))
Parallel Algorithm Design g FlalecaR el
Approach (1): Pick p and write best algorithm. no notes
@ Would need a new algorithm for every p!
Approach (2): Pick best algorithm for p = oo, then convert to
run on p processors.
Hopefully, if T(n,p) = X, then T(n,p/k) = kX for k > 1.
Using one processor to emulate k processors is called the
parallelism folding principle
Fall2010 301/351
8 CS 4104 Parallel Algorithm Design (2)
:l ps::::;:mn:lﬂl’"/wﬂdmi\lvqlmmvm
. a . [))
Parallel Algorithm Design (2) g e R AT
Some algorithms are only good for a large number of Good in terms of speedup.
processors.
1024/256, assuming one processor emulates 4 in 4 times the
T(n,1) = n time.
T(n,n) = logn E(1024,256) = 1024/(256 * 40) = 1/10.
S(n) = n/logn
E(n,n) = 1/logn But note that efficiency goes down as the problem size grows.

For p = 256, n = 1024.

T (1024,256) = 4log 1024 = 40.

For p = 16, running time = (1024/16) % log 1024 = 640.
Speedup < 2, efficiency = 1024 /(16 * 640) = 1/10.

CS 4104

Amdahl's Law

Think of an algorithm as having a parallelizable section and
a serial section.

LAmdahI’s Law

2010-11-30

See John L. Gustafson “Reevaluating Amdahl’s Law,” CACM

Example: 100 operations. 5/88 and follow-up technical correspondance in CACM 8/89.
@ 80 can be done in parallel, 20 must be done in
sequence. Speedup is Serial / Parallel.
Draw graph, speed up is Y axis, Sequential is X axis. You will
Then, the best speedup possible leaves the 20 in sequence, see a nonlinear curve going down.

or a speedup of 100/20 = 5.

Amdahl’s law:
Speedup = (S +P)/(S +P/N)
= 1/(S+P/N)<1/S,
for S = serial fraction, P = parallel fraction, S + P = 1.
Fall 2010 303/351

CS 4104

Amdahl's Law Revisited

However, this version of Amdahl’s law applies to a fixed
problem size.

LAmdahI’s Law Revisited

2010-11-30

How long sequential process would take / How long for N

What happens as the problem size grows? Processors.
Hopefully, S = f(n) with S shrinking as n grows.
SinceS+P =1andP =1-S.
Instead of fixing problem size, fix execution time for
increasing number N processors (and thus, increasing The point is that this equation drops off much less slowly in N:

problem size). Graphing (sequential fraction for fixed N) vs. speedup, you get

a line with slope 1 — N.
Scaled Speedup= (S+P x N)/(S +P)

S+PxN All of this seems to assume the same algorithm for sequential
= S+(1-8)xN and parallel. But that's OK — we want to see how much
= N+(1-N)xS. parallelism is possible for the parallel algorithm.

D EoyE

o CS 4104
o
=
0 . L .
Models of Parallel Computation g A2) CEpETE)
Single Instruction Multiple Data (SIMD) Vector: IBM 3090, Cray
@ All processors operate the same instruction in step.
@ Example: Vector processor. Pipelined: Graphics coprocessor boards

S . MIMD: Modern clusters.
Pipelined Processing: odern clusters

@ Stream of data items, each pushed through the same
sequence of several steps.

Multiple Instruction Multiple Data (MIMD)
@ Processors are independent.

CS 4104 MIMD Communications (1)

LMIMD Communications (1)

MIMD Communications (1)

2010-11-30

i no notes
Interconnection network:

@ Each processor is connected to a limited number of
neighbors.

@ Can be modeled as (undirected) graph.

@ Examples: Array, mesh, N-cube.

@ |t is possible for the cost of communications to dominate
the algorithm (and in fact to limit parallelism).

@ Diameter : Maximum over all pairwise distances
between processors.

@ Tradeoff between diameter and number of connections.

CS 4104 MIMD Communications (2)

LmiMD Communications (2)

2010-11-30

MIMD Communications (2)

no notes

Shared memory:

@ Random access to global memory such that any
processor can access any variable with unit cost.

@ In practice, this limits number of processors.

@ Exclusive Read/Exclusive Write (EREW).

@ Concurrent Read/Exclusive Write (CREW).

@ Concurrent Read/Concurrent Write (CRCW).

CS 4104 Addiion

L Addition

Addition

2010-11-30

Problem: Find the sum of two n-bit binary numbers. no notes

Sequential Algorithm:
@ Start at the low end, add two bits.
@ If necessary, carry bit is brought forward.

@ Can't do ith step until i — 1 is complete due to
uncertainty of carry bit (?).

Induction: (Going from n — 1 to n implies a sequential
algorithm)

Parallel Addition

Divide and conquer to the rescue:
@ Do the sum for top and bottom halves.
@ What about the carry bit?

Strengthen induction hypothesis:

@ Find the sum of the two numbers with or without the
carry bit.

After solving for n/2, we have L, L., R, and R;.

Can combine pieces in constant time.

Parallel Addition (2)

The n/2-size problems are independent.
Given enough processors,

T(n,n)=T(n/2,n/2)+ O(1) = O(logn).

We need only the EREW memory model.

Maximum-finding Algorithm: EREW

“Tournament” algorithm:

@ Compare pairs of numbers, the “winner” advances to
the next level.

@ Initially, have n/2 pairs, so need n/2 processors.
@ Running time is O(logn).

That is faster than the sequential algorithm, but what about
efficiency?

E(n,n/2) ~ 1/logn.

Why is the efficiency so low?

More Efficient EREW Algorithm

Divide the input into n/log n groups each with log n items.
Assign a group to each of n/log n processors.

Each processor finds the maximum (sequentially) in logn
steps.

Now we have n/logn “winners”.
Finish tournament algorithm.

T(n,n/logn) = O(logn).
E(n,n/logn) = O(1).

2010-11-30

2010-11-30

2010-11-30

2010-11-30

CS 4104

L Parallel Addition

Two possibilities: carry or not carry.

Also, for each a boolean indicating if it returns a carry.

If right has carry then
Sum = L¢|R

Else
Sum =L|R

If Sum has carry then
Carry = TRUE

For Sumc

Do the same using R since it is computing value having
received carry.

CS 4104 Parallel Additon (2)

Than/2:520 prosems are ndepenct e
Given enoc

processors.

L Parallel Addition (2)

Not 2T (n/2,n/2) because done in parallel!

CS 4104 finding Algorithm: EREW

LMaximum-finding Algorithm: EREW

it ote than e scuentl lgorhm, bt wha bout
efcincy?

En2) = 1/kgn

Wiy i heeficncy solow?

T(n,l) _ n

Since nT(n,n) — nlogn

Lots of idle processors after the first round.

CS 4104

More Efficient EREW Algorithm
Oivide the It i loan roupseach i og s,
A group1o each of g pocessors

L More Efficient EREW Algorithm

Each procesor fnds the maxinum (sequentiaby nogn
seps

In logn time.

CS 4104

More Efficient EREW Algorithm (2)

Bt et coud we do wih more processors?
A paall aigrinn s St 1 he sssgnment of pocessors
o'actons s pedefned

LMore Efficient EREW Algorithm (2)

More Efficient EREW Algorithm (2)

2010-11-30

. Cannot improve time past O(logn).
But what could we do with more processors? P P (logm)

A parallel algorithm is static if the assignment of processors
to actions is predefined.
@ We know in advance, for each step i of the algorithm
and for each processor pj, the operation and operands
p; uses at step i.

Doesn’'t depend on a specific input value.

As an analogy to help understand the concept of static:
Bubblesort and Mergesort are static in this way. We always
know the positions to be copmared next.

In contrast, Insertion Sort is not static.

This maximum-finding algorithm is static.

@ All comparisons are pre-arranged.
Fall 2010 313/351
CS 4104 Brents Lemma.

LBrent’s Lemma

Brent’s Lemma

2010-11-30

Lemma 12.1: If there exists an EREW static algorithm with e
T(n,p) € O(t), such that the total number of steps (over all
processors) is s, then there exists an EREW static algorithm
with T (n,s/t) € O(t).

Note that we are using t as the actual number of steps, as well
as the variable in the big-Oh analysis, which is a bit informal.

Proof:

9 Leta,1 <i <t, be the total number of steps performed
by all processors in step i of the algorithm.

@Y ,a=s.

@ If a; < s/t, then there are enough processors to perform
this step without change.

@ Otherwise, replace step i with [a;/(s/t)] steps, where
the s/t processors emulate the steps taken by the
original p processors.

Fall 2010 314/351

CS 4104

Brents Lemma (2)

T ol numser ofseps

Sats

= Brent's Lemma (2)

2010-11-30

Brent's Lemma (2)

s, the running e s s O(1).

IO You e 0594 e workseps acros he e
Seps somehou hings cant sy bebad

If s is sequential complexity, then the modified algorithm has

@ The total number of steps is now L
0O(1) efficiency.

> Tai/(s/t)] < Z(ait/s +1)

i=1
t
= t+(t/s)) a =2t
i=1
Thus, the running time is still O(t).

Intuition: You have to split the s work steps across the t time
steps somehow; things can’t always be bad!

CS 4104 Maximum-finding: CRCW.

LMaximum-finding: CRCW

Maximum-finding: CRCW

2010-11-30

@ Allow concurrent writes to a variable only when each
processor writes the same thing.
@ Associate each element x; with a variable v;, initially “1”.
@ For each of n(n — 1)/2 processors, processor pj;
compares elements i and j.
@ First step: Each processor writes “0” to the v variable of
the smaller element.
» Now, only one v is “1".
@ Second step: Look atall vi,1 <i <n.
» The processor assigned to the max element writes that
value to MAX.

Efficiency of this algorithm is very poor!
@ “Divide and crush.”

Need O(n?)processors
Need only constant time.
Efficiency is 1/n.

CS 4104

ding: CRCW (2)

LMaximum-finding: CRCW (2)

2010-11-30

Maximum-finding: CRCW (2)

n/2 processors

More efficient (but slower) algorithm: n processors, using previous “divide and crush” algorithm.

@ Given: n processors.

@ Find maximum for each of n/2 pairs in constant time.

@ Find max for n/8 groups of 4 elements (using 8
proc/group) each in constant time.

@ Square the group size each time.

This leaves n/8 elements which can be broken into n/128
groups of 16 elements with 128 processors assigned to each
group. And so on.

o Total time: O(log logn). Efficiency is 1/loglog n.
o CS 4104 Parallel Prefix
C‘? .
o
Parallel Prefix g mele
o
N

@ Let - be any associative binary operation.

i L o We don't just want the sum or min of all — we want all the
» Ex: Addition, multiplication, minimum.

partials as well.

@ Problem: Compute X - X2 -...-x¢ forallk,1 <k <n.
@ Define PR(i,j) = Xi - Xi41- ... X We have the lower half done, and the upper half values are
We want to compute PR(1,k) for 1 <k <n. each missing the contribution from the lower half.

@ Sequential alg: Compute each prefix in order
> O(n) time required (using previous prefix)
@ Approach: Divide and Conquer
» |H: We know how to solve for n/2 elements.
© PR(1,k) and PRIn/2+1,n/2+k) for 1 < k < n/2.
© PR(1,m) for n/2 < m < n comes from
PR(1,n/2) - PR(n/2+ 1, m) — from IH.

CS 4104 Paralel Prefix (2)

L parallel prefix (2)

2010-11-30

Parallel Prefix (2)

That is — no processors are “excessively” idle. This is because
we needed to copy PR(1, n/2) into n/2 positions on the last

.) tep.
@ Complexity : (2) requires n/2 processors and CREW for step

parallelism (all read middle position).
@ T(n,n) =0O(logn); E(n,n)=0(1/logn). e__n 1
Brent's lemma no help: O(nlogn) total steps. " n-logn ~ logn

CS 4104 Better Parallel Prefix

= Better Parallel Prefix

Better Parallel Prefix

2010-11-30

@ E is the set of all x;s with i even.
@ If we know PR(1, 2i) for 1 < i < n/2 then Sin(_:leélhetE’s atliﬁadydigclude their left neighbors, all info is
PR(L,2i + 1) = PR(L, 2i) - Xpi.1. available to get the odds.
@ Algorithm:
» Compute in parallel xp; = Xpi 1 - Xpi for 1 <i < n/2.
» Solve for E (by induction).
» Compute in parallel Xzj 11 = Xai - X2i41.
@ Complexity: Need EREW model for Brent's Lemma.
T(n,n) = O(logn).
S(n) =S(n/2) +n —1, so S(n) = O(n) for S(n) the
total number of steps required to process n elements.
@ So, by Brent's Lemma, we can use O(n/log n)
processors for O(1) efficiency.

There is only one recursive call, instead of two in the previous
algorithm.

Routing on a Hypercube

Goal: Each processor P; simultaneously sends a message
to processor P,y such that no processor is the destination
for more than one message.

Problem:
@ In an n-cube, each processor is connected to n other
processors.
@ At the same time, each processor can send (or receive)
only one message per time step on a given connection.
@ So, two messages cannot use the same edge at the
same time — one must wait.

Randomizing Switching Algorithm

It can be shown that any deterministic algorithm is Q(2") for
some a > 0, where 2" is the number of messages.

A node i (and its corresponding message) has binary
representation iyiy - - - ip.

Randomization approach:

(a) Route each message from i to j to a random processor
r (by a randomly selected route).

(b) Continue the message from r to j by the shortest route.

Randomized Switching (2)

Phase (a):
for (each nessage at i)
cobegin
for (k =1 to n)
T[i, k] = RANDOM 0, 1);
for (k =1 to n)
if (TLi, k] = 1)
Transmt i along dinension k;

coend;
Randomized Switching (3)
Phase (b):
for (each nessage i)
cobegin
for (k =1 to n)
Ti, k] =

Current[i, k] EXCLUSIVE OR Dest[i, K];
for (k =1 to n)
if (T[i, k] = 1)
Transmt i along dinension k;
coend;

2010-11-30

2010-11-30

2010-11-30

2010-11-30

CS 4104 Routing on a Hypercube

(Goa: Each processor P simutaneously sends a messago
10 processo P, such that o procesar s e desinaton
oo han 0% message

LRouting on a Hypercube

Need a figure

CS 4104 Randomizing Switching Algorithm

O ———

e R

- o . L e————
Randomizing Switching Algorithm (L T
e

o o cach mesage o 0 0 o prceson

s andomy shactearoney
© Conine e mssage om0 by e shorts .

n-dimensional hypercube has 2" nodes.

Remember that we want parallel algorithms with cost log n, not
cost n@!

The distance from any processor i to another processor j is
only log n steps.

CS 4104 Randomized Switching (2)

LRandomized Switching (2)

no notes

CS 4104 Randomized Switching (3)

LRandomized Switching (3)

no notes

8 CS 4104 Randomized Switching (4)
=
Randomized SWItChIng (4) g Randamized Switehing (4)
no notes
With high probability, each phase completes in O(log n)
time.
@ It is possible to get a really bad random routing, but this
is unlikely (by chance).
@ In contrast, it is very possible for any correlated group of
messages to generate a bottleneck.
Fall 2010 325/351
o CS 4104 Sorting on an array
O? ven:n processors labeled P, P, -, P i processor
.]
SOI’tIng on an al’ray ‘c_'>. L Sorting on an array
o
N)
Given: n processors labeled Py, P, - - - | P, with processor P; e s v v

initially holding input x;. Any algorithm that correctly sorts 1’s and 0’s by comparisons

. will also correctly sort arbitrary numbers.
P; is connected to P;_; and P;., (except for P, and Pp,).

@ Comparisons/exchanges possible only for adjacent
elements.

Al gorithm ArraySort (X, n) {
do in parallel ceil(n/2) times {
Exchange-conmpare(P[2i -1], P[2i]); // Cdd
Exchange-conpare(P[2i], P[2i+1]); // Even

}
}
A simple algorithm, but will it work?
o CS 4104 Parallel Array Sort
5
3 Hn
=) Parallel Array Sort T
Parallel Array Sort g Al
7\j (E T._-’q ! ? ? Manber Figure 12.8.
3 {1 >61§874
I35 (167284
331772648
11227 46568
Le 28 0 L pe
123426 /78
1 234> 6 78
1 23 426 1/78
o CS 4104 Correctness of Odd-Even Transpose
C‘:J r
—
COI’I’eCtneSS Of Odd'Even Transpose ;_3: LCorrectness of Odd-Even Transpose
o
N
Theorem 12.2: When Algorithm ArraySort terminates, the
numbers are sorted. no notes

Proof: By induction on n.

Base Case: 1 or 2 elements are sorted with one
comparison/exchange.

Induction Step:
@ Consider the maximum element, say Xpm.
@ Assume m odd (if even, it just won’t exchange on first
step).
@ This element will move one step to the right each step
until it reaches the rightmost position.

Correctness (2)

@ The position of x,, follows a diagonal in the array of
element positions at each step.

@ Remove this diagonal, moving comparisons in the upper

triangle one step closer.
@ The first row is the nth step; the right column holds the

greatest value; the rest is an n — 1 element sort (by

induction).

Sorting Networks

Fall 2010

329/351

When designing parallel algorithms, need to make the steps

independent.

Ex: Mergesort split step can be done in parallel, but the join
step is nearly serial.

@ To parallelize mergesort, we must parallelize the merge.

Batcher’s Algorithm

For n a power of 2, assume ay, ay, - -

are sorted sequences.

Fall 2010

330/351

©,dn and b1>b2>"' ,bn

Let X1, X2, - - - , X2n be the final merged order.

Need to merge disjoint parts of these sequences in parallel.

@ Split a, b into odd- and even- index elements.

@ Merge aggg With bogg, @even With beyen, Yielding
01,07,--+ ,0p@nd eq, €5, - - - , €, respectively.

Batcher’s Sort Image

x1

X2 e
X3 e—
X4 +—
X5 e—
X6 ¢—

X7 —

n/2
sort

n/2
sort

rr:’l%l‘ &
netv90

n/2
merge
etwq

:

rk

HE AR

rk

.

Fall 2010

Fall 2010

331/351

332/351

2010-11-30

2010-11-30

2010-11-30

2010-11-30

CS 4104

LCorrectness)

Correctness (2)

Map the execution of n to an execution of n — 1 elements.

See Manber Figure 12.9.

CS 4104

LSorting Networks

no notes

CS 4104

L Batcher’s Algorithm

No notes

CS 4104

L Batcher’s Sort Image

No notes

Sorting Networks

inen esiqingparallel g, need 10 ket teps
independent

x v

Spt siop can be o n arael, bt e fon

sep s narysei.
« To parallize mergesot,we st parallzs the merge.

Batchers Algorithm

For 2 power 012, assume s, a1 by b,y
are soted sequences
et

0% 3 b th il merged rder,

Batchers Sort Image

8 CS 4104 Batcher's Algorithm Correctness
z ;
Batcher’s Algorithm Correctness 3 L Batchers Algorithm Correctness
o
N
Theorem 12.3: For alli suchthat1 <i <n — 1, we have
X2i = MiN(0j11, €;) and Xzi 41 = Max(0j11, €;). See Manber Figure 12.11.
Proof :
@ Since ¢ is the ith element in the sorted even sequence,
itis > at least i even elements.
@ For each even element, g; is also > an odd element.
@ So, e > 2i elements, or g; > Xy;.
@ In the same way, 0;; > i + 1 odd elements, > at least
2i elements all together.
@ SO, 0j11 > Xai.
@ By the pigeonhole principle, e; and 0;,; must be X, and
Xzi+1 (in either order).
Fall 2010 333/351
8 CS 4104 Batcher Sort Complexity
2 . .
Batcher Sort Complexity 3 L Batcher Sort Complexity
o
N
@ Total number of comparisons for merge:
Tm(2n) = 2Tw(n) +n—1; Tw(1)=1. O(log n) sort steps, with each associated merge step counting
O(logn).
Total number of comparisons is O(nlogn), but the depth ()
of recursion (parallel steps) is O(logn).
@ Total number of comparisons for the sort is:
Ts(2n) = 2Ts(n) + O(nlogn), Ts(2) = 1.
So, Ts(n) = O(nlog?n).
@ The circuit requires n processors in each column, with
depth O(log? n), for a total of O(nlog® n) processors and
O(log?n) time.
@ The processors only need to do comparisons with two
inputs and two outputs.
Fall 2010 3341351
o CS 4104 Matrix-Vector Multiplication
@ o s oy
: with colurmn vector b of size .
Matrix-Vector Multiplication g bRt
Problem : Find the product x = Ab of an m by n matrix A See Manber Figure 12.17.
with a column vector b of size n.
Systolic solution:
@ Use n processor elements arranged in an array, with
processor P; initially containing element b;.
@ Each processor takes a partial computation from its left
neighbor and a new element of A from above,
generating a partial computation for its right neighbor.
Cost: O(n + m)
Fall 2010 335/351
o CS 4104 A General Model
@
= 5 -
A General Model g A General Model %Z""'“’”"

Want a general model of computation that is as simple as Our key concern now is ability not efficiency.

possible.
@ Wish to be able to reason about the model.
@ “State machines” are simple.

Necessary features:
@ Read
@ Write
@ Compute

CS 4104

LTuring Machines (1)

Turing Machines (1)

2010-11-30

A tape, divided into squares.
Cook used Turing machines to prove that Satisfiability is

“States” NP-complete.

A single 1/0 head: A Turing machine is sufficiently complex that a Turing machine
@ Read current symbol can be built that can take as input a coding for an arbitrary
@ Change current symbol Turing machine, along with an input, and simulate its execution

on that input.

Control Unit Actions:
@ Put the control unit into a new state.
@ Either:

© Write a symbol in current tape square.
© Move I/O head one square left or right.

Fall 2010 337351
8 CS 4104 Turing Machines (2)
3L
Turing Machines (2) g ()
no notes
Tape has a fixed left end, infinite right end.
@ Machine ceases to operate if head moves off left end.
@ By convention, input is placed on left end of tape.
A halt state (h) signals end of computation.
“#” indicates a blank tape square.
Fall 2010 3381351
o CS 4104
%
]
Formal definition of Turing Machine g kSRS
A Turing Machine is a quadruple (K, X, ¢, s) where # is “space.” Note including # in the language is for

convenience only! We want to be able to read our

@ K is a finite set of states (not including h). specifications without being confused

@ Y is an alphabet (containing #, not L or R).
9 s € K is the initial state.
@ ¢ is a function from K x ¥ to (K U {h}) x (ZU{L,R}).

Ifq € K,ae X anddi(qg,a) = (p,b), then when in state q and
scanning a, enter state p and

© Ifb € X then replace a with b.
@ Else (b is L or R): move head.
Fall2010 339/351

CS 4104

Turing Machine Example 1

LTuring Machine Example 1

Turing Machine Example 1

2010-11-30

State (gy, a) cannot happen if the start state is gg. This is

M = (K, X,d,s) where included only for completness (to make § a total function).

o K = {qo, 1},
o T ={a#}, Scan right, changing a’s to #'s. When we hit first #, halt.
9 S = do,
9 o 4(q,0)
Qo a (qu.#)
0= Jo # (hv#)
di a (do,a)
. # (do;R)

CS 4104

Turing Machine Example 2

LTuring Machine Example 2

2010-11-30

Turing Machine Example 2

Scan left to #. Then halt.
M = (K,X,d,s) where

o K = {qo},
9 ¥ = {a, #},
9 S = (o,
q o 949,0)
5= do a (qo,L)
QO # (hv#)
Fall2010 341/351
o CS 4104 Notation
6P
b
. S L Notation
Notation =
N

First symbol after the comma is the leftmost square of the tape.
Configuration: (g, aaba##a) The underscore shows placement of the head. After the last
* symbol is an infinte series of spaces.

Halted configuration : qis h.

Hanging configuration : Move left from leftmost square.

A computation is a sequence of configurations for some
n > 0. Such a computation is of length n.

Fall2010 3421351
o CS 4104
P
. b
Execution o L Execution
Execution on first machine example. &
No notes
(qo,@@@a) Fu (01, #aaa)
Fv (0o, #aaa)
Fw (01, ##aa)
Fwm (o, ##aa)
Py (0o, ###a)
Fv (do, ###a)
Fv o (0o, #HE)
Fv o (Qo, #####)
Fw (0, #EEE)
Fall2010 3431351
o CS 4104 Computations
C‘? s,
i b
Computatlons ‘c_'>. L computations
o
N

9 M is said to halt on input w iff (s, #w#) yields some
halted configuration. These are the conventions.

@ M is said to hang on input w if (s, #w#) yields some
hanging configuration. B

@ Turing machines compute functions from strings to
strings.

@ Formally: Let f be a function from ¥ to X3. Turing
machine M is said to compute f if forany w € X, if
f(w) = u then

Specify input conditions. Behavior is undefined for other initial
conditions.

Either move left from left end or infinite loop.

(s, #W#) iy (h, #u#).
@ f is said to be a Turing-computable function
@ Multiple parameters: f(wy,...,wy) = u,
(s, #WiFHWoA . FwWi #) by (h, #u#).
Fall 2010 344/351

CS 4104

LFunctions on Natural Numbers

Functions on Natural Numbers

2010-11-30

@ Represent numbers in unary notation on symbol | (zero Works OK.
is represented by the empty string).

@ f: N — Nis computed by M if M computes

' {1} — {1}* where f/(I") = '™ for each n € N.
@ Example: f(n) =n+ 1 for each n € N.

q o 4(9,0)

To I (h7 R)

do # (o)
@ In general, (0o, #1"#) Fy (h, #1"14).
@ What about n = 0?

CS 4104 Turing-decidable Languages

LTuring-decidable Languages

Turing-decidable Languages

2010-11-30

Alanguage L C ¥} is Turing-decidable iff function There are many views of computation. One is functions

e T A ee A A mapping input to output (N — N, or strings to strings, for
\iCVLéZZO* - {’ } = UL E) ST, MRS 12T e examples). Another is deciding if a string is in a language.
01
Y| ifwel
xe(w) = {

otherwise

Ex: Let>o = {a}, and let L = {w € X : |w| is even}.

M erases the marks from right to left, with current parity
encode by state. Once blank at left is reached, mark or

as appropriate.

CS 4104 Turing-acceptable Languages

LTuring-acceptable Languages

Turing-acceptable Languages

2010-11-30

0
0

Every Turng deciatieangunge s T aceptate.

M accepts a string w if M halts on input w.
@ M accepts a language iff M halts on w iff w € L.
@ A language is Turing-acceptable if there is some Turing
machine that accepts it.

Is this language Turing decidable? Of course. Instead of just
running left, invoke another state that means “seen an a,” and
print| Y| if we reach # in that state, | N | otherwise.

If we would have printed , then halt.

Ex: Yo ={a,b}, L= {w € X} : w contains at least one a}.
o ={a.b} { 0 } If we would have printed , then hang left.

q o 4(9,0) _ . : : .
g a (h,a) Is every Turing-acceptible language Turing decidable? This is
do b (q; L) the Halting Problem.
Qo # (qo,L)
Of course, if the TA language would halt, we write [Y]. But if the
Every Turing-decidable language is Turing-acceptable. TA lang would hang, can we always replace it with logic to write
Rz 34731 instead? Ex: Collatz function.
o CS4104 Combining Turing Machines
5
]
Combining Turing Machines s Combining Turing Machines
Lemma: If

And if it had moved left, it would have hung.
(02, Wiagus) By (02, WwaasUsy)

for string w and

(G2, Waaauz) Fy (ds, Waasus),

then
(02, Waagus) Fpy (Q37WW3@U3)-

Insight: Since (dz, Woa2Uz) 4 (03, Waagus), this computation
must take place without moving the head left of w,
@ The machine cannot “sense” the left end of the tape

CS 4104

LCombining Turing Machines (Cont)

2010-11-30

Combining Turing Machines (Cont)

no notes

Thus, the head won’t move left of w, even if it is not at the
left end of the tape.

This means that Turing machine computations can be
combined into larger machines:

@ M, prepares string as input to M;.
@ M, passes control to M; with I/O head at end of input.
@ M, retrieves control when M; has completed.

CS 4104 Some Simple Machines.

LSome Simple Machines

Some Simple Machines

2010-11-30

Basic machines:
@ |X| symbol-writing machines (one for each symbol).
@ Head-moving machines R and L move the head
appropriately.
More machines:
@ First do My, then do M, or M3 depending on current
symbol.
9 (For X = {a,b,c}) Move head to the right until a blank is
found.
@ Find first blank square to left: L
@ Copy Machine: Transform #w# into #w#w#.
@ Shift a string left or right.
Fall 2010 350/351

Show shift left machine and copy machine.

We know how to increment. How do we decrement? Add?
Multiply?

CS 4104 Extensions

L Extensions - e

Extensions

2010-11-30
i
i

The following extensions do not increase the power of Turing Show figures for these

Machines.
@ 2-way infinite tape Just bend infinite tape in the middle to get back to one-way
tape, but with two layers. Now, expand the language. The new
. language is ordered pairs of the old language, to encode two
@ Multiple tapes levels of tape.

@ Multiple heads on one tape Again, expanded alphabet collapses multipe symbols to 1.

Encode the heads onto the tape, and simulate moving them
@ Two-dimensional “tape” around.

o Convert to 1D, by diagonals.
@ Non-determinism
Fall 2010 351/351 Simulate nondeterministic behavior in sequence, doing all
length —1 computations, then length —2, etc., until we reach a
halt state for one of the non-deteriministic choices.
Non-determinism gives us speed, not ability.

