
CS 4104: Data and Algorithm Analysis

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Fall 2010

Copyright c© 2010 by Clifford A. Shaffer

CS 4104: Data and Algorithm
Analysis Fall 2010 1 / 351

CS 4104: Data and Algorithm Analysis

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Fall 2010

Copyright c© 2010 by Clifford A. Shaffer20
10

-1
1-

30

CS 4104

Title page

CS4014: What You Need to Already
Know

Discrete Math
◮ Proof by contradiction and induction
◮ Summations
◮ Set theory, relations

The basics of Asymptotic Analysis
◮ Big-oh, Big-Ω, Θ

Most of what was covered in CS2606
◮ Basic data structures
◮ Algorithms for searching and sorting

CS 4104: Data and Algorithm
Analysis Fall 2010 2 / 351

CS4014: What You Need to Already
Know

Discrete Math
◮ Proof by contradiction and induction
◮ Summations
◮ Set theory, relations

The basics of Asymptotic Analysis
◮ Big-oh, Big-Ω, Θ

Most of what was covered in CS2606
◮ Basic data structures
◮ Algorithms for searching and sorting

20
10

-1
1-

30

CS 4104

CS4014: What You Need to Already Know

Basic data structures: Lists, search trees, heaps, graphs

Basic sort algorithms; search techniques such as binary
search, hashing

CS4104: What We Will Do

Finally understand upper/lower bounds

Lower bounds proofs
Analysis techniques (no hand waving!)

◮ Recurrance Relations

Reductions, NP-completeness theory, and a little
computability theory

Process:

Weekly homework sets (they are hard!)

Work in pairs

CS 4104: Data and Algorithm
Analysis Fall 2010 3 / 351

CS4104: What We Will Do

Finally understand upper/lower bounds

Lower bounds proofs
Analysis techniques (no hand waving!)

◮ Recurrance Relations

Reductions, NP-completeness theory, and a little
computability theory

Process:

Weekly homework sets (they are hard!)

Work in pairs20
10

-1
1-

30

CS 4104

CS4104: What We Will Do

The first homework has been posted. You should get your
partner decided ASAP and get started.

Introduction to Problem Solving (1)

Principle of Intimate Engagement

This is the most important consideration

Actively engaging the problem, getting involved

Need to build up “mental muscles” for problem solving

CS 4104: Data and Algorithm
Analysis Fall 2010 4 / 351

Introduction to Problem Solving (1)

Principle of Intimate Engagement

This is the most important consideration

Actively engaging the problem, getting involved

Need to build up “mental muscles” for problem solving

20
10

-1
1-

30

CS 4104

Introduction to Problem Solving (1)

For more details, see the “PSintro.pdf” notes posted at the
website.

Introduction to Problem Solving (2)

Effective vs. Ineffective problem solvers (Engagers vs.
Dismissers)

Engagers have a history of success

Dismissers have a history of failure

You probably engage some problems and dismiss
others

You could solve more problems if you overcame the
mental hurdles that lead to dismissing

Transfer successful problem solving in some parts of
your life to other areas.

CS 4104: Data and Algorithm
Analysis Fall 2010 5 / 351

Introduction to Problem Solving (2)

Effective vs. Ineffective problem solvers (Engagers vs.
Dismissers)

Engagers have a history of success

Dismissers have a history of failure

You probably engage some problems and dismiss
others

You could solve more problems if you overcame the
mental hurdles that lead to dismissing

Transfer successful problem solving in some parts of
your life to other areas.

20
10

-1
1-

30

CS 4104

Introduction to Problem Solving (2)

Mental hurdles: That is, you have the knowledge and ability
necessary to solve the problem, if you had sufficient motivation.

Introduction to Problem Solving (2)

Getting your hands dirty
Example: Repairing a wobbly table

◮ Get underneath and look

Example: Repairing a dryer
◮ Open up back panel and look

CS 4104: Data and Algorithm
Analysis Fall 2010 6 / 351

Introduction to Problem Solving (2)

Getting your hands dirty
Example: Repairing a wobbly table

◮ Get underneath and look

Example: Repairing a dryer
◮ Open up back panel and look

20
10

-1
1-

30

CS 4104

Introduction to Problem Solving (2)

We will see examples of this concept, initially with doing
summations

Investigation and Argument

Problem solving has two parts: the investigation and the
argument.

Students are used to seeing only the argument in their
textbooks and lectures.
To be successful in school and in life, one needs to be
good at both
To solve the problem, you must investigate successfully.
Then, to give the answer to your client, you need to be
able to make the argument in a way that gets the
solution across clearly and succinctly.
Writing skills. Proof Skills
Methods of argument: Deduction (direct proof),
contradiction, induction

CS 4104: Data and Algorithm
Analysis Fall 2010 7 / 351

Investigation and Argument

Problem solving has two parts: the investigation and the
argument.

Students are used to seeing only the argument in their
textbooks and lectures.
To be successful in school and in life, one needs to be
good at both
To solve the problem, you must investigate successfully.
Then, to give the answer to your client, you need to be
able to make the argument in a way that gets the
solution across clearly and succinctly.
Writing skills. Proof Skills
Methods of argument: Deduction (direct proof),
contradiction, induction

20
10

-1
1-

30

CS 4104

Investigation and Argument

Unfortunately, while seeing lots of examples of argument
(proof), too many students don’t recognize the importance of
being good at doing it.

Heuristics for Problem Solving (1)

These heuristics most appropriate for problem solving “in the
small.”

Puzzles
Math and CS test or homework problems

A list of standard Heuristics:
1 Externalize: write it down

◮ After motivation and mental attitude, the most important
limitation on your ability to solve problems is biological

◮ For active manipulation, you can only store 7 ± 2 pieces
of information

◮ Take advantage of your environment to get around this
◮ Write things down
◮ Manipulate problem (good representation)

CS 4104: Data and Algorithm
Analysis Fall 2010 8 / 351

Heuristics for Problem Solving (1)

These heuristics most appropriate for problem solving “in the
small.”

Puzzles
Math and CS test or homework problems

A list of standard Heuristics:
1 Externalize: write it down

◮ After motivation and mental attitude, the most important
limitation on your ability to solve problems is biological

◮ For active manipulation, you can only store 7 ± 2 pieces
of information

◮ Take advantage of your environment to get around this
◮ Write things down
◮ Manipulate problem (good representation)

20
10

-1
1-

30

CS 4104

Heuristics for Problem Solving (1)

no notes

Heuristics for Problem Solving (2)

2 Get your hands dirty
◮ “Play around” with the problem to get some initial insight.

3 Look for special features
◮ Example: Cryptogram addition problems.

A D
+ D I
D I D

4 Go to the extremes
◮ Study problem boundary conditions

5 Simplify
◮ This might give a partial solution that can be extended to

the original problem.
CS 4104: Data and Algorithm

Analysis Fall 2010 9 / 351

Heuristics for Problem Solving (2)

2 Get your hands dirty
◮ “Play around” with the problem to get some initial insight.

3 Look for special features
◮ Example: Cryptogram addition problems.

A D
+ D I
D I D

4 Go to the extremes
◮ Study problem boundary conditions

5 Simplify
◮ This might give a partial solution that can be extended to

the original problem.

20
10

-1
1-

30

CS 4104

Heuristics for Problem Solving (2)

Extremes: We will use this often

Heuristics for Problem Solving (3)

6 Penultimate step
◮ What precondition must take place before the final

solution step is possible?
◮ Solving the penultimate step might be easier than the

original problem.
7 Lateral thinking

◮ Don’t be lead into a blind alley.
◮ Using an inappropriate problem solving strategy might

blind you to the solution.
8 Wishful thinking

◮ A version of simplifying the problem
◮ Transform problem into something easy; take start

position to something that you “wish” was the solution
◮ That might be a smaller step to the actual solution

CS 4104: Data and Algorithm
Analysis Fall 2010 10 / 351

Heuristics for Problem Solving (3)

6 Penultimate step
◮ What precondition must take place before the final

solution step is possible?
◮ Solving the penultimate step might be easier than the

original problem.
7 Lateral thinking

◮ Don’t be lead into a blind alley.
◮ Using an inappropriate problem solving strategy might

blind you to the solution.
8 Wishful thinking

◮ A version of simplifying the problem
◮ Transform problem into something easy; take start

position to something that you “wish” was the solution
◮ That might be a smaller step to the actual solution

20
10

-1
1-

30

CS 4104

Heuristics for Problem Solving (3)

Rush Hour is an excellent example. We will see another
example next week: TOH

Heuristics for Problem Solving (4)

9 Sleep on it
10 Symmetry & Invariants

◮ Symmetries in the problem might give clues to the
solution

CS 4104: Data and Algorithm
Analysis Fall 2010 11 / 351

Heuristics for Problem Solving (4)

9 Sleep on it
10 Symmetry & Invariants

◮ Symmetries in the problem might give clues to the
solution

20
10

-1
1-

30

CS 4104

Heuristics for Problem Solving (4)

no notes

Pairs Problem Solving

An effective way to work in pairs to solve problems:

Partner roles: problem solver and listener

Responsibilities of the problem solver

Constant vocalization

Spell out all the assumptions

Carefully detail all steps taken

Responsibilities of the listener

Continually check for accuracy

Demand constant vocalization
CS 4104: Data and Algorithm

Analysis Fall 2010 12 / 351

Pairs Problem Solving

An effective way to work in pairs to solve problems:

Partner roles: problem solver and listener

Responsibilities of the problem solver

Constant vocalization

Spell out all the assumptions

Carefully detail all steps taken

Responsibilities of the listener

Continually check for accuracy

Demand constant vocalization

20
10

-1
1-

30

CS 4104

Pairs Problem Solving

See paper on pairs programming.

Errors in Reasoning

Getting the wrong answer on a test or homework usually
results from a “breakdown” in problem solving. Typical
breakdowns:

Failing to observe and use all relevant facts of a
problem.

Failing to approach the problem in a systematic manner.
Instead, making leaps in logic without checking steps.

Failing to spell out relationships fully.

Being sloppy and inaccurate in collecting information
and carrying out mental activities.

CS 4104: Data and Algorithm
Analysis Fall 2010 13 / 351

Errors in Reasoning

Getting the wrong answer on a test or homework usually
results from a “breakdown” in problem solving. Typical
breakdowns:

Failing to observe and use all relevant facts of a
problem.

Failing to approach the problem in a systematic manner.
Instead, making leaps in logic without checking steps.

Failing to spell out relationships fully.

Being sloppy and inaccurate in collecting information
and carrying out mental activities.

20
10

-1
1-

30

CS 4104

Errors in Reasoning

In pairs problem solving (such as the homework in this class)
there had to be a serious breakdown if the answer is wrong
since the partner (the listener) should never have let it happen.

Program Efficiency

Our primary concern is EFFICIENCY.

We want efficient programs. How do we measure the
efficiency of a program? (Assume we are concerned
primarily with time.)

On what input?

How do we speed it up?

When do we stop speeding it up?

Should we bother with writing the program in the first
place?

CS 4104: Data and Algorithm
Analysis Fall 2010 14 / 351

Program Efficiency

Our primary concern is EFFICIENCY.

We want efficient programs. How do we measure the
efficiency of a program? (Assume we are concerned
primarily with time.)

On what input?

How do we speed it up?

When do we stop speeding it up?

Should we bother with writing the program in the first
place?

20
10

-1
1-

30

CS 4104

Program Efficiency

no notes

Algorithm Efficiency (1)

Since we don’t want to write worthless programs, we will
focus on algorithm efficiency.

We need a yardstick.

It should measure something we care about.

It should by quantitative, allowing comparisons.

It should be easy to compute (the measure, not the
program).

It should be a good predictor.

CS 4104: Data and Algorithm
Analysis Fall 2010 15 / 351

Algorithm Efficiency (1)

Since we don’t want to write worthless programs, we will
focus on algorithm efficiency.

We need a yardstick.

It should measure something we care about.

It should by quantitative, allowing comparisons.

It should be easy to compute (the measure, not the
program).

It should be a good predictor.20
10

-1
1-

30

CS 4104

Algorithm Efficiency (1)

Remember that we are discussing an analytic model. We do
not want to do performance analysis on a real program.

Algorithm Efficiency (2)

We need:

A measure for problem size.

A measure for solution effort.

Use key operations as a measure of solution effort.

Total cost is a function of problem size and key
operations.

CS 4104: Data and Algorithm
Analysis Fall 2010 16 / 351

Algorithm Efficiency (2)

We need:

A measure for problem size.

A measure for solution effort.

Use key operations as a measure of solution effort.

Total cost is a function of problem size and key
operations.

20
10

-1
1-

30

CS 4104

Algorithm Efficiency (2)

no notes

Cost Model (1)

To get a measurement, we need a model.

Example:
Assigning to a variable takes fixed time.
All other operations take no time.

sum = n*n;

One assignment was made, so the cost is 1.

sum = 0;
for (i=1; i<=n; i++)
sum = sum + n;

Assignments made are 1 +
∑n

i=1 1 = n + 1. (Depending on
how you want to deal with loop variables, you might want to
say it is 2n + 1.)

CS 4104: Data and Algorithm
Analysis Fall 2010 17 / 351

Cost Model (1)

To get a measurement, we need a model.

Example:
Assigning to a variable takes fixed time.
All other operations take no time.

sum = n*n;

One assignment was made, so the cost is 1.

sum = 0;
for (i=1; i<=n; i++)

sum = sum + n;

Assignments made are 1 +
∑n

i=1 1 = n + 1. (Depending on
how you want to deal with loop variables, you might want to
say it is 2n + 1.)

20
10

-1
1-

30

CS 4104

Cost Model (1)

Example of a model for cost measure. It might or might not be a
good model.

n + 1 vs 2n + 1: Does it matter?
Not so much. We didn’t know the exact amount of time for an
operation to begin with, so the factor of 2 doesn’t seem to mean
much.
What is important is that the growth rates of these two are the
same.

Cost Model (2)

sum = 0;
for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
sum = sum + 1;

Assignments made are 1 +
∑n

i=1

∑n
j=1 1 = n2 + 1.

What makes a model “good”?

Consider string assignment (done by copying). Is this a
good model?

CS 4104: Data and Algorithm
Analysis Fall 2010 18 / 351

Cost Model (2)

sum = 0;
for (i=1; i<=n; i++)

for (j=1; j<=n; j++)
sum = sum + 1;

Assignments made are 1 +
∑n

i=1

∑n
j=1 1 = n2 + 1.

What makes a model “good”?

Consider string assignment (done by copying). Is this a
good model?20

10
-1

1-
30

CS 4104

Cost Model (2)

In our example with for loops, n + 1 and 2n + 1 are both linear,
so they are both equally predictive of growth rate.

Big Issues

How do we create an efficient algorithm?

Q: How do we recognize a “good” algorithm?
A: By the relationship of its performance to the intrinsic
difficulty of the problem.

How “hard” is a problem?

CS 4104: Data and Algorithm
Analysis Fall 2010 19 / 351

Big Issues

How do we create an efficient algorithm?

Q: How do we recognize a “good” algorithm?
A: By the relationship of its performance to the intrinsic
difficulty of the problem.

How “hard” is a problem?20
10

-1
1-

30

CS 4104

Big Issues

Problem solving and algorithm design. We will see some
standard algorithm design techniques. Example: Dynamic
programming.

A key issue, because we don’t know whether to stop with trying
to create a “good” algorithm unless we can recognize one. This

is where lower bounds come in.

Big Issues (2)

General Plan:
Define a PROBLEM.
Build MODEL to measure cost of solution to problem.
Design an ALGORITHM to solve the problem.
ANALYZE both the problem and the algorithm under the
model.

◮ Analyze an algorithm to get an UPPER BOUND.
◮ Analyze a problem to get a LOWER BOUND.

COMPARE the bounds to see if our solution is “good
enough”.

◮ Redesign the algorithm.
◮ Tighten the lower bound.
◮ Change the model.
◮ Change the problem.

CS 4104: Data and Algorithm
Analysis Fall 2010 20 / 351

Big Issues (2)

General Plan:
Define a PROBLEM.
Build MODEL to measure cost of solution to problem.
Design an ALGORITHM to solve the problem.
ANALYZE both the problem and the algorithm under the
model.

◮ Analyze an algorithm to get an UPPER BOUND.
◮ Analyze a problem to get a LOWER BOUND.

COMPARE the bounds to see if our solution is “good
enough”.

◮ Redesign the algorithm.
◮ Tighten the lower bound.
◮ Change the model.
◮ Change the problem.

20
10

-1
1-

30

CS 4104

Big Issues (2)

If not, here are some options:

Problems (1)

Our problems must be well-defined enough to be solved on
computers.

A problem is a function (i.e., a mapping of inputs to outputs).

We have different instances (inputs) for the problem, where
each instance has a size .

To solve a problem, we must provide an algorithm, a coding
of problem instances into inputs for the algorithm, and a
coding for outputs into solutions.

CS 4104: Data and Algorithm
Analysis Fall 2010 21 / 351

Problems (1)

Our problems must be well-defined enough to be solved on
computers.

A problem is a function (i.e., a mapping of inputs to outputs).

We have different instances (inputs) for the problem, where
each instance has a size .

To solve a problem, we must provide an algorithm, a coding
of problem instances into inputs for the algorithm, and a
coding for outputs into solutions.

20
10

-1
1-

30

CS 4104

Problems (1)

Actually, to solve a problem we need more than just a clear
definition. By the end of the semester, we will discuss problems
that are not computable (i.e., cannot be solved) even though
their definition is clear.

Problems (2)

An algorithm executes the mapping.

A proposed algorithm must work for ALL instances (give
the correct mapping to the output for that input
instance).

GOAL: Solve problems with as little computational effort per
instance as possible.

CS 4104: Data and Algorithm
Analysis Fall 2010 22 / 351

Problems (2)

An algorithm executes the mapping.

A proposed algorithm must work for ALL instances (give
the correct mapping to the output for that input
instance).

GOAL: Solve problems with as little computational effort per
instance as possible.20

10
-1

1-
30

CS 4104

Problems (2)

Actually, we will relax this restriction later... Approximation and
Probabilistic algorithms.

We are most often interested in solutions to “large” instances of
the problem (asymptotic Analysis).
Occasionally we are concerned with small instances. Then,
constants matter.

Categories of Hard Problems (1)

A conceptually hard problem.
◮ If we understood the problem, the algorithm might be

easy. [Natural Language Processing]
◮ Artificial Intelligence.

An analytically hard problem.
◮ We have an algorithm, but can’t analyze its cost. [Collatz

sequence]
◮ Complexity Theory.

CS 4104: Data and Algorithm
Analysis Fall 2010 23 / 351

Categories of Hard Problems (1)

A conceptually hard problem.
◮ If we understood the problem, the algorithm might be

easy. [Natural Language Processing]
◮ Artificial Intelligence.

An analytically hard problem.
◮ We have an algorithm, but can’t analyze its cost. [Collatz

sequence]
◮ Complexity Theory.20

10
-1

1-
30

CS 4104

Categories of Hard Problems (1)

Or maybe not, but it still might run fast.Important to realize:
Difficulty of analyzing the cost is a different issue from what the
cost is !

Categories of Hard Problems (2)

A computationally hard problem.
◮ The algorithm is expensive.
◮ Class 1: No inexpensive algorithm is possible. [TOH]
◮ Class 2: We don’t know if an inexpensive algorithm is

possible. [Traveling Salesman]
◮ Complexity Theory

A computationally unsolvable problem. [Halting
problem]

◮ Computability Theory.

CS 4104: Data and Algorithm
Analysis Fall 2010 24 / 351

Categories of Hard Problems (2)

A computationally hard problem.
◮ The algorithm is expensive.
◮ Class 1: No inexpensive algorithm is possible. [TOH]
◮ Class 2: We don’t know if an inexpensive algorithm is

possible. [Traveling Salesman]
◮ Complexity Theory

A computationally unsolvable problem. [Halting
problem]

◮ Computability Theory.20
10

-1
1-

30

CS 4104

Categories of Hard Problems (2)

NP-complete problems.
A major focus for this course: Determining if a problem is
computationally hard.

No such algorithm can possibly exist.

Towers of Hanoi

Given: 3 pegs and n disks of different sizes placed in order
of size on Peg 1.

Problem: Move the disks to Peg 3, given the following
constraints:

A “move” takes the topmost disk from one peg and
places it on another peg (the only action allowed).
A disk may never be on top of a smaller disk.

Model: We will measure the cost of this problem by the
number of moves required.

CS 4104: Data and Algorithm
Analysis Fall 2010 25 / 351

Towers of Hanoi

Given: 3 pegs and n disks of different sizes placed in order
of size on Peg 1.

Problem: Move the disks to Peg 3, given the following
constraints:

A “move” takes the topmost disk from one peg and
places it on another peg (the only action allowed).
A disk may never be on top of a smaller disk.

Model: We will measure the cost of this problem by the
number of moves required.

20
10

-1
1-

30

CS 4104

Towers of Hanoi

no notes

TOH Algorithm

(This is an exercise in the process of problem solving.
Pretend that you have never seen this problem before, and
that you are approaching it for the first time.)

Start by trying to solve the problem for small instances.
0 disks, 1 disk, 2 disks...
When we get to 3 disks, it starts to get harder.
Can we generalize the insight from solving for 3 disks?
4 disks?

Observation: The largest disk has no effect on the
movements of the other disks. Why?

CS 4104: Data and Algorithm
Analysis Fall 2010 26 / 351

TOH Algorithm

(This is an exercise in the process of problem solving.
Pretend that you have never seen this problem before, and
that you are approaching it for the first time.)

Start by trying to solve the problem for small instances.
0 disks, 1 disk, 2 disks...
When we get to 3 disks, it starts to get harder.
Can we generalize the insight from solving for 3 disks?
4 disks?

Observation: The largest disk has no effect on the
movements of the other disks. Why?

20
10

-1
1-

30

CS 4104

TOH Algorithm

Think about all the possible choices for a 3-disk series of
moves.

Because it is always below the other disks, so they can move
around as though it did not exist.

Problem solving often relies on a “key insight” that lets you
“crack” the problem.

Similarly, analysis of the problem might rely on a “key insight”
on how to view the analysis. Often a simplification for the
“states” or progess of the algorithm, or a recognition of the key
input classes for the problem.

Recursive Solutions (1)

When we generalize the TOH problem to more disks, we end
up with something like:

Move all but the bottom disk to Peg 2.
Move the bottom disk from Peg 1 to Peg 3.
Move the remaining disks from Peg 2 to Peg 3.

Problem-solving heuristics used:
Get our hands dirty: Try playing with some simple
examples
Go to the extremes: Check the small cases first
Penultimate step: Key insight is that we can’t solve the
problem until we move the bottom disk.

How do we deal with the n − 1 disks (twice)?
CS 4104: Data and Algorithm

Analysis Fall 2010 27 / 351

Recursive Solutions (1)

When we generalize the TOH problem to more disks, we end
up with something like:

Move all but the bottom disk to Peg 2.
Move the bottom disk from Peg 1 to Peg 3.
Move the remaining disks from Peg 2 to Peg 3.

Problem-solving heuristics used:
Get our hands dirty: Try playing with some simple
examples
Go to the extremes: Check the small cases first
Penultimate step: Key insight is that we can’t solve the
problem until we move the bottom disk.

How do we deal with the n − 1 disks (twice)?

20
10

-1
1-

30

CS 4104

Recursive Solutions (1)

Use recursion.

Recursive Solutions (2)

Forward-backward strategy: Solve simple special cases and
generalize their solution, then test the generalization on
other special cases.

void TOH(int n, POLE start, POLE goal, POLE temp) {
if (n == 0) return; // Base case
TOH(n-1, start, temp, goal); // Recurse: n-1 rings
move(start, goal); // Move one disk
TOH(n-1, temp, goal, start); // Recurse: n-1 rings

}

CS 4104: Data and Algorithm
Analysis Fall 2010 28 / 351

Recursive Solutions (2)

Forward-backward strategy: Solve simple special cases and
generalize their solution, then test the generalization on
other special cases.

void TOH(int n, POLE start, POLE goal, POLE temp) {
if (n == 0) return; // Base case
TOH(n-1, start, temp, goal); // Recurse: n-1 rings
move(start, goal); // Move one disk
TOH(n-1, temp, goal, start); // Recurse: n-1 rings

}20
10

-1
1-

30

CS 4104

Recursive Solutions (2)

no notes

Algorithm Upper Bounds (1)

Worst case cost (for size n): Maximum cost for the
algorithm over all problem instances of size n.

Best case cost (for size n): Minimum cost for the algorithm
over all problem instances of size n.

A: The algorithm.
In: The set of all possible inputs to A of size n.
fA: Function expressing the resource cost of A.
I is an input in In.

worst cost(A) = max
I∈In

fA(I).

best cost(A) = min
I∈In

fA(I).

CS 4104: Data and Algorithm
Analysis Fall 2010 29 / 351

Algorithm Upper Bounds (1)

Worst case cost (for size n): Maximum cost for the
algorithm over all problem instances of size n.

Best case cost (for size n): Minimum cost for the algorithm
over all problem instances of size n.

A: The algorithm.
In: The set of all possible inputs to A of size n.
fA: Function expressing the resource cost of A.
I is an input in In.

worst cost(A) = max
I∈In

fA(I).

best cost(A) = min
I∈In

fA(I).

20
10

-1
1-

30

CS 4104

Algorithm Upper Bounds (1)

It is possible that the {best, worst} case cost changes radically
with n. That is, even n might have a very different cost from odd
n.

This point that we are considering all of the inputs of size n is
crucial. In other words, we don’t pick the n for which the best
(or worst) case occurs. So it is wrong to say something like
“The best case is when n = 1.”

Algorithm Upper Bounds (2)

Examples:

Factorial: One input of size n, one cost

Find: Various models for number of inputs, n different
costs

Findmax: Various models for number of inputs, all cases
have same cost

CS 4104: Data and Algorithm
Analysis Fall 2010 30 / 351

Algorithm Upper Bounds (2)

Examples:

Factorial: One input of size n, one cost

Find: Various models for number of inputs, n different
costs

Findmax: Various models for number of inputs, all cases
have same cost

20
10

-1
1-

30

CS 4104

Algorithm Upper Bounds (2)

The input is just a value, n. Model choices:

• All numbers: Infinite number of inputs.

• Permutation of 1 to n: n! inputs.

• Focus only on position of x : n inputs.

Same model choices as for find.

Show graphs of cost vs In for factorial, find (3rd model) and
findmax (3rd model).

Average Case

We may want the average case cost. For each input of size
n, we need:

Its frequency.
Its cost.

Given this information, we can calculate the weighted
average.

Q: Can the average cost be worse than the worst cost? Or
better than the best cost?

CS 4104: Data and Algorithm
Analysis Fall 2010 31 / 351

Average Case

We may want the average case cost. For each input of size
n, we need:

Its frequency.
Its cost.

Given this information, we can calculate the weighted
average.

Q: Can the average cost be worse than the worst cost? Or
better than the best cost?

20
10

-1
1-

30

CS 4104

Average Case

Frequency can be hard to determine!
Example: Average cost of sequential search is (n + 1)/2, but
only if the frequency of occurence for each case is equal.

∑

I∈In

freq(I) ∗ cost(I)

No, because that would require at least one case with greater
cost than the worst case.
No, for the same reason.

Analysis of TOH

There is only one input instance of size n.

How does this affect the decision to measure worst, best, or
average case cost?

We want to count the number of moves required as a
function of n.

Some facts:
f (1) = 1.
f (2) = 3.
f (3) = 7.
f (n) = f (n − 1) + 1 + f (n − 1) = 2f (n − 1) + 1,∀n ≥ 4.

(Actually, we can simplify our list of facts.)
CS 4104: Data and Algorithm

Analysis Fall 2010 32 / 351

Analysis of TOH

There is only one input instance of size n.

How does this affect the decision to measure worst, best, or
average case cost?

We want to count the number of moves required as a
function of n.

Some facts:
f (1) = 1.
f (2) = 3.
f (3) = 7.
f (n) = f (n − 1) + 1 + f (n − 1) = 2f (n − 1) + 1,∀n ≥ 4.

(Actually, we can simplify our list of facts.)

20
10

-1
1-

30

CS 4104

Analysis of TOH

Worst/best/average cost are the same, so it doesn’t matter
which you do.

We only need f(1) and f(n), facts f(2) and f(3) are redundant
information.

Recurrence Relation

The following is a recurrence relation :

f (n) =

{

1 n = 1
2f (n − 1) + 1 n > 1

How can we find a closed form solution for the recurrence?

It looks like each time we add a disk, we roughly double the
cost – something like 2n.

If we examine some simple cases, we see that they appear
to fit the equation f (n) = 2n − 1.

How do we prove that this ALWAYS works?
CS 4104: Data and Algorithm

Analysis Fall 2010 33 / 351

Recurrence Relation

The following is a recurrence relation :

f (n) =

{

1 n = 1
2f (n − 1) + 1 n > 1

How can we find a closed form solution for the recurrence?

It looks like each time we add a disk, we roughly double the
cost – something like 2n.

If we examine some simple cases, we see that they appear
to fit the equation f (n) = 2n − 1.

How do we prove that this ALWAYS works?

20
10

-1
1-

30

CS 4104

Recurrence Relation

In practice, this is a common way to start: look for a pattern.
It is so common, it has its own name: Guess and Test.

Proof for Recurrence

Let’s ASSUME that f (n − 1) = 2n−1 − 1, and see what
happens.

From the recurrence,

f (n) = 2f (n − 1) + 1 = 2(2n−1 − 1) + 1 = 2n − 1.

Implication: if there is EVER an n for which f (n) = 2n − 1,
then for all greater values of n, f conforms to this rule.

This is the essence of proof by induction .

CS 4104: Data and Algorithm
Analysis Fall 2010 34 / 351

Proof for Recurrence

Let’s ASSUME that f (n − 1) = 2n−1 − 1, and see what
happens.

From the recurrence,

f (n) = 2f (n − 1) + 1 = 2(2n−1 − 1) + 1 = 2n − 1.

Implication: if there is EVER an n for which f (n) = 2n − 1,
then for all greater values of n, f conforms to this rule.

This is the essence of proof by induction .

20
10

-1
1-

30

CS 4104

Proof for Recurrence

no notes

Proof by Induction

To prove by induction, we need to show two things:
We can get started (base case).
Being true for k implies that it is true also for k + 1.

Here again is the proof for TOH:
For n = 1, f (1) = 1, so f (1) = 21 − 1.
Assume f (k) = 2k − 1, for k < n.

◮ Then, from the recurrence we have

f (n) = 2f (n − 1) + 1

= 2(2n−1 − 1) + 1 = 2n − 1

◮ Thus, being true for k − 1 implies that it is also true for k .
Thus, we conclude that formula is correct for all n ≥ 1.

Is this a good algorithm?
CS 4104: Data and Algorithm

Analysis Fall 2010 35 / 351

Proof by Induction

To prove by induction, we need to show two things:
We can get started (base case).
Being true for k implies that it is true also for k + 1.

Here again is the proof for TOH:
For n = 1, f (1) = 1, so f (1) = 21 − 1.
Assume f (k) = 2k − 1, for k < n.

◮ Then, from the recurrence we have

f (n) = 2f (n − 1) + 1

= 2(2n−1 − 1) + 1 = 2n − 1

◮ Thus, being true for k − 1 implies that it is also true for k .
Thus, we conclude that formula is correct for all n ≥ 1.

Is this a good algorithm?

20
10

-1
1-

30

CS 4104

Proof by Induction

That would depend on what? On the intrinsic difficulty of the
problem!

Lower Bound of a Problem (1)

To decide if the algorithm is good, we need a lower bound on
the cost of the PROBLEM.

We can measure the lower bound (over all possible
algorithms) for the {worst case, best case, or average case}.

Consider a graph of cost for each possible algorithm.

For a given problem size n, the graph shows the costs
for all problem instances of size n.

The worst case lower bound is the LEAST of all the
HIGHEST points on all the graphs.

CS 4104: Data and Algorithm
Analysis Fall 2010 36 / 351

Lower Bound of a Problem (1)

To decide if the algorithm is good, we need a lower bound on
the cost of the PROBLEM.

We can measure the lower bound (over all possible
algorithms) for the {worst case, best case, or average case}.

Consider a graph of cost for each possible algorithm.

For a given problem size n, the graph shows the costs
for all problem instances of size n.

The worst case lower bound is the LEAST of all the
HIGHEST points on all the graphs.

20
10

-1
1-

30

CS 4104

Lower Bound of a Problem (1)

no notes

Lower Bound of a Problem (2)

AM is the set of algorithms within model M that solve the
problem. Lower Bound on Problem P

= min
A∈AM

{max
I∈In

fA(I)}

CS 4104: Data and Algorithm
Analysis Fall 2010 37 / 351

Lower Bound of a Problem (2)

AM is the set of algorithms within model M that solve the
problem. Lower Bound on Problem P

= min
A∈AM

{max
I∈In

fA(I)}

20
10

-1
1-

30

CS 4104

Lower Bound of a Problem (2)

We need the model to define:

• What problem

• What cost metric

Lower Bound on Problem P (for instance of size n).See Rawlins
Figure 1.7.

Growth Rate vs. In
Note the important difference between a growth rate graph
for a given problem, and a graph showing all the In’s (for a
given n) of that problem.

Examples: Consider the graphs for each of these
Find: Best, average, and worst cases as n grows
Find: Cost for all inputs of a given size n
Findmax: Cost as n grows (same for best, average,
worst cases)
Findmax: Cost for all inputs of a given size n

The fact that (for some problems) different Is in In can have
different costs is the reason why we must use the qualifier of
“best” “worst” or “average” cases.

CS 4104: Data and Algorithm
Analysis Fall 2010 38 / 351

Growth Rate vs. In
Note the important difference between a growth rate graph
for a given problem, and a graph showing all the In’s (for a
given n) of that problem.

Examples: Consider the graphs for each of these
Find: Best, average, and worst cases as n grows
Find: Cost for all inputs of a given size n
Findmax: Cost as n grows (same for best, average,
worst cases)
Findmax: Cost for all inputs of a given size n

The fact that (for some problems) different Is in In can have
different costs is the reason why we must use the qualifier of
“best” “worst” or “average” cases.

20
10

-1
1-

30

CS 4104

Growth Rate vs. In

Show graphs for each of the cases.

Lower Bound (cont.)

Lower bounds (of problems) are harder than upper
bounds (of algorithms) because we must consider ALL
of the possible algorithms – including the ones we don’t
know!

◮ Upper bound: How bad is the algorithm?
◮ Lower bound: How hard is the problem?

Lower bounds don’t give you a good algorithm. They
only help you know when to stop looking.
If the lower bound for the problem matches the upper
bound for the algorithm (within a constant factor), then
we know that we can find an algorithm that is better only
by a constant factor.
Can a lower bound tell us if an algorithm is NOT
optimal?

CS 4104: Data and Algorithm
Analysis Fall 2010 39 / 351

Lower Bound (cont.)

Lower bounds (of problems) are harder than upper
bounds (of algorithms) because we must consider ALL
of the possible algorithms – including the ones we don’t
know!

◮ Upper bound: How bad is the algorithm?
◮ Lower bound: How hard is the problem?

Lower bounds don’t give you a good algorithm. They
only help you know when to stop looking.
If the lower bound for the problem matches the upper
bound for the algorithm (within a constant factor), then
we know that we can find an algorithm that is better only
by a constant factor.
Can a lower bound tell us if an algorithm is NOT
optimal?

20
10

-1
1-

30

CS 4104

Lower Bound (cont.)

Since we cannot even enumerate all the algorithms and check
all the bounds, we need a different approach!

No, sorry!
Why not? Because we might not have the tightest possible
lower bound!

Lower Bounds for TOH

Try #1: We must move each disk at least twice, except
for the largest we move once.

◮ f (n) = 2n − 1.
Is this a good match to the cost of our algorithm?
Where is the problem: the lower bound or the algorithm?
Insight #1: f (n) > f (n − 1).

◮ Seems obvious, but why?
◮ Is this true for all problems?

Try #2: To move the bottom disk to Peg 3, we MUST
move n − 1 disks to Peg 2. Then, we MUST move n − 1
disks back to Peg 3.

f (n) ≥ 2f (n − 1) + 1.

Thus, TOH is optimal (for our model).
CS 4104: Data and Algorithm

Analysis Fall 2010 40 / 351

Lower Bounds for TOH

Try #1: We must move each disk at least twice, except
for the largest we move once.

◮ f (n) = 2n − 1.
Is this a good match to the cost of our algorithm?
Where is the problem: the lower bound or the algorithm?
Insight #1: f (n) > f (n − 1).

◮ Seems obvious, but why?
◮ Is this true for all problems?

Try #2: To move the bottom disk to Peg 3, we MUST
move n − 1 disks to Peg 2. Then, we MUST move n − 1
disks back to Peg 3.

f (n) ≥ 2f (n − 1) + 1.

Thus, TOH is optimal (for our model).

20
10

-1
1-

30

CS 4104

Lower Bounds for TOH

No! Ω(n) isn’t close to O(2n).

We must move n − 1 disks off the bottom disk first.
No! For example, sorting cost depends on particular problem
instances.Since it does nothing more than the minimum
required by the observation.

Warning: Normally we cannot “prove” anything about a problem
in general with this sort of behavioristic argument. Usually, we
cannot say so much about how an algorithm must work.

New Models

New model #1: We can move a stack of disks in one move.

New model #2: Not all disks start on Peg 1.

New model #3: Different numbers of pegs.

New model #4: We want to know what the k th move is.

CS 4104: Data and Algorithm
Analysis Fall 2010 41 / 351

New Models

New model #1: We can move a stack of disks in one move.

New model #2: Not all disks start on Peg 1.

New model #3: Different numbers of pegs.

New model #4: We want to know what the k th move is.20
10

-1
1-

30

CS 4104

New Models

Model #1: A big help! O(n) or even O(1).

Model #2: Doesn’t seem to change the cost of the problem.

Combining these two things: Looks to be O(n).

Problem Solving Algorithm

If the upper and lower bounds match,
then stop,
else if close or problem isn’t important,

then stop,
else if model focuses on wrong thing,

then restate it,
else if the algorithm is too fat,

then generate slimmer algorithm,
else if lower bound is too weak,

then generate stronger bound.

Repeat until done.
CS 4104: Data and Algorithm

Analysis Fall 2010 42 / 351

Problem Solving Algorithm

If the upper and lower bounds match,
then stop,
else if close or problem isn’t important,

then stop,
else if model focuses on wrong thing,

then restate it,
else if the algorithm is too fat,

then generate slimmer algorithm,
else if lower bound is too weak,

then generate stronger bound.

Repeat until done.

20
10

-1
1-

30

CS 4104

Problem Solving Algorithm

Does this “algorithm” always terminate?
No – you might get stuck in a look if you go through and make
no progress.

Factorial Growth (1)

Which function grows faster? f (n) = 2n or g(n) = n!

How about h(n) = 22n?

n 1 2 3 4 5 6 7 8
g(n) n! 1 2 6 24 120 720 5040 40320
f (n) 2n 2 4 8 16 32 64 128 256
h(n) 22n 4 16 64 256 1024 4096 16384 65536

CS 4104: Data and Algorithm
Analysis Fall 2010 43 / 351

Factorial Growth (1)

Which function grows faster? f (n) = 2n or g(n) = n!

How about h(n) = 22n?

n 1 2 3 4 5 6 7 8
g(n) n! 1 2 6 24 120 720 5040 40320
f (n) 2n 2 4 8 16 32 64 128 256
h(n) 22n 4 16 64 256 1024 4096 16384 6553620

10
-1

1-
30

CS 4104

Factorial Growth (1)

Hopefully your intuition tells you that n! grows much faster than
2n.

This one is probably not as obvious. Of course, this is 4n, so if
your intuition is good, you will realize that n! is much faster
growing (since most numbers are bigger than 4).

It just so happens that n! will be become bigger than 22n for
n = 9.

Factorial Growth (1)

Consider the recurrences:

h(n) =

{

4 n = 1
4h(n − 1) n > 1

g(n) =

{

1 n = 1
ng(n − 1) n > 1

I hope your intuition tells you the right thing.

But, how do you PROVE it?

Induction? What is the base case?
CS 4104: Data and Algorithm

Analysis Fall 2010 44 / 351

Factorial Growth (1)

Consider the recurrences:

h(n) =

{

4 n = 1
4h(n − 1) n > 1

g(n) =

{

1 n = 1
ng(n − 1) n > 1

I hope your intuition tells you the right thing.

But, how do you PROVE it?

Induction? What is the base case?

20
10

-1
1-

30

CS 4104

Factorial Growth (1)

The n > 1 clause is the important part of the recurrence for
growth.
The second recurrence is just n! in recurrence form.

Sorry, we don’t know the base case. It must be something
bigger than 8. So, we can’t use induction!

Induction is great for verifying a hypothesis. It is not so good for
generating candidate formulae!

Using Logarithms (1)

n! ≥ 22n iff log n! ≥ log 22n = 2n. Why?

n! = n × (n − 1) × · · · × n
2
× (

n
2
− 1) × · · · × 2 × 1

≥ n
2
× n

2
× · · · × n

2
× 1 × · · · × 1 × 1

= (
n
2

)n/2

Therefore
log n! ≥ log(

n
2

)n/2 = (
n
2

) log(
n
2

).

Need only show that this grows to be bigger than 2n.
CS 4104: Data and Algorithm

Analysis Fall 2010 45 / 351

Using Logarithms (1)

n! ≥ 22n iff log n! ≥ log 22n = 2n. Why?

n! = n × (n − 1) × · · · × n
2
× (

n
2
− 1) × · · · × 2 × 1

≥ n
2
× n

2
× · · · × n

2
× 1 × · · · × 1 × 1

= (
n
2

)n/2

Therefore
log n! ≥ log(

n
2

)n/2 = (
n
2

) log(
n
2

).

Need only show that this grows to be bigger than 2n.

20
10

-1
1-

30

CS 4104

Using Logarithms (1)

Take log of both sides.
Note that log always means log2 unless explicitly stated
otherwise.

We have n
2 n/2 times and we have 1 also n/2 times. This isn’t

quite perfect. What if n is odd?

Since we noted earlier that log n! > 2n if n! > 22n.

Using Logarithms (2)

(n
2) log(n

2) ≥ 2n
⇐⇒ log(n

2) ≥ 4
⇐⇒ n ≥ 32

So, n! ≥ 22n once n ≥ 32.

Now we could prove this with induction, using 32 for the
base case.

What is the tightest base case?

How did we get such a big over-estimate?
CS 4104: Data and Algorithm

Analysis Fall 2010 46 / 351

Using Logarithms (2)

(n
2) log(n

2) ≥ 2n
⇐⇒ log(n

2) ≥ 4
⇐⇒ n ≥ 32

So, n! ≥ 22n once n ≥ 32.

Now we could prove this with induction, using 32 for the
base case.

What is the tightest base case?

How did we get such a big over-estimate?

20
10

-1
1-

30

CS 4104

Using Logarithms (2)

Multiply by 2/n2 · 24 = 32. Take antilog and multiply by 2.

9

We grossly overestimated when going from n! to (n
2)n/2.

Logs and Factorials

We have proved that n! ∈ Ω(22n).

We have also proved that log n! ∈ Ω(n log n).

From here, its easy to prove that log n! ∈ O(n log n), so
log n! = Θ(n log n).

This does not mean that n! = Θ(nn).

Note that log n = Θ(log n2) but n 6= Θ(n2).

The log function is a “flattener” when dealing with
asymptotics.

CS 4104: Data and Algorithm
Analysis Fall 2010 47 / 351

Logs and Factorials

We have proved that n! ∈ Ω(22n).

We have also proved that log n! ∈ Ω(n log n).

From here, its easy to prove that log n! ∈ O(n log n), so
log n! = Θ(n log n).

This does not mean that n! = Θ(nn).

Note that log n = Θ(log n2) but n 6= Θ(n2).

The log function is a “flattener” when dealing with
asymptotics.

20
10

-1
1-

30

CS 4104

Logs and Factorials

Graphically, we can see a curve for n! that is above the curve
for 22n. But we dn’t know how big the gap is (if any).

Why? Because n! < nn.

Note from a previous slide that we claimed

n! ≥ 22n iff log n! ≥ log 22n = 2n.

But while A ≥ B iff log A ≥ log B, it is NOT TRUE that A > B iff
log A > log B.

A Simple Sum (1)

sum = 0; inc = 0;
for (i=1; i<=n; i++)
for (j=1; j<=i; j++) {

sum = sum + inc;
inc++;

}

Use summations to analyze this code fragment. The number
of assignments is:

2 +
n

∑

i=1

(
i

∑

j=1

2) = 2 +
n

∑

i=1

2i = 2 + 2
n

∑

i=1

i

CS 4104: Data and Algorithm
Analysis Fall 2010 48 / 351

A Simple Sum (1)

sum = 0; inc = 0;
for (i=1; i<=n; i++)

for (j=1; j<=i; j++) {
sum = sum + inc;
inc++;

}

Use summations to analyze this code fragment. The number
of assignments is:

2 +
n

∑

i=1

(
i

∑

j=1

2) = 2 +
n

∑

i=1

2i = 2 + 2
n

∑

i=1

i

20
10

-1
1-

30

CS 4104

A Simple Sum (1)

no notes

A Simple Sum (2)

Give a good estimate.

Observe that the biggest term is 2 + 2n and there are n
terms, so its at most: 2n + 2n2

Actually, most terms are much less, and its a linear
ramp, so a better estimate is: about n2.

Give the exact solution.

Of course, we all know the closed form solution for
∑n

i=1 i .

And we should all know how to prove it using induction.

But where did it come from?
CS 4104: Data and Algorithm

Analysis Fall 2010 49 / 351

A Simple Sum (2)

Give a good estimate.

Observe that the biggest term is 2 + 2n and there are n
terms, so its at most: 2n + 2n2

Actually, most terms are much less, and its a linear
ramp, so a better estimate is: about n2.

Give the exact solution.

Of course, we all know the closed form solution for
∑n

i=1 i .

And we should all know how to prove it using induction.

But where did it come from?

20
10

-1
1-

30

CS 4104

A Simple Sum (2)

2n + 2n2

About half of this, so about n2.

A Problem-Specific Approach

Observe that we can “pair up” the first and last terms, the
2nd and (n−1)th terms, and so on. Each pair sums to: n +1.

The number of pairs is: n/2.

Thus, the solution is: (n + 1)(n/2).

CS 4104: Data and Algorithm
Analysis Fall 2010 50 / 351

A Problem-Specific Approach

Observe that we can “pair up” the first and last terms, the
2nd and (n−1)th terms, and so on. Each pair sums to: n +1.

The number of pairs is: n/2.

Thus, the solution is: (n + 1)(n/2).

20
10

-1
1-

30

CS 4104

A Problem-Specific Approach

Each pair sums to n + 1.
of pairs is n/2.
The solution is (n + 1)(n/2).

This is pretty! But it is not useful for solving any other
summation!
Note that there is no question about its being correct.

A Little More General

Since the largest term is n and there are n terms, the
summation is less than n2.

If we are lucky, the solution is a polynomial.

Guess: f (n) = c1n2 + c2n + c3.
f (0) = 0 so c3 = 0.
For f (1), we get c1 + c2 = 1.
For f (2), we get 4c1 + 2c2 = 3.
Setting this up as a system of 2 equations on 2 variables, we
can solve to find that c1 = 1/2 and c2 = 1/2.

CS 4104: Data and Algorithm
Analysis Fall 2010 51 / 351

A Little More General

Since the largest term is n and there are n terms, the
summation is less than n2.

If we are lucky, the solution is a polynomial.

Guess: f (n) = c1n2 + c2n + c3.
f (0) = 0 so c3 = 0.
For f (1), we get c1 + c2 = 1.
For f (2), we get 4c1 + 2c2 = 3.
Setting this up as a system of 2 equations on 2 variables, we
can solve to find that c1 = 1/2 and c2 = 1/2.

20
10

-1
1-

30

CS 4104

A Little More General

Being polynomial is an assumption.

More General (2)

So, if it truely is a polynomial, it must be

f (n) = n2/2 + n/2 + 0 =
n(n + 1)

2
.

Use induction to prove. Why is this step necessary?

Why is this not a universal approach to solving summations?

CS 4104: Data and Algorithm
Analysis Fall 2010 52 / 351

More General (2)

So, if it truely is a polynomial, it must be

f (n) = n2/2 + n/2 + 0 =
n(n + 1)

2
.

Use induction to prove. Why is this step necessary?

Why is this not a universal approach to solving summations?20
10

-1
1-

30

CS 4104

More General (2)

Because we merely guessed that it is a polynomial and then fit
some points. For all we know, it could be something like
c1n2 + c2n log n.

Because lots of summations do not have polynomial
closed-form solutions.

An Even More General Approach

Subtract-and-Guess or Divide-and-Guess strategies.

To solve sum f , pick a known function g and find a pattern in
terms of f (n) − g(n) or f (n)/g(n).

Find the closed form solution for

f (n) =
n

∑

i=1

i .

CS 4104: Data and Algorithm
Analysis Fall 2010 53 / 351

An Even More General Approach

Subtract-and-Guess or Divide-and-Guess strategies.

To solve sum f , pick a known function g and find a pattern in
terms of f (n) − g(n) or f (n)/g(n).

Find the closed form solution for

f (n) =
n

∑

i=1

i .20
10

-1
1-

30

CS 4104

An Even More General Approach

no notes

Guessing (cont.)

Examples: Try g1(n) = n; g2(n) = f (n − 1).

n 1 2 3 4 5 6 7 8
f (n) 1 3 6 10 15 21 28 36

g1(n) 1 2 3 4 5 6 7 8
f (n)/g1(n) 2/2 3/2 4/2 5/2 6/2 7/2 8/2 9/2

g2(n) 0 1 3 6 10 15 21 28
f (n)/g2(n) 3/1 4/2 5/3 6/4 7/5 8/6 9/7

What are the patterns?
f (n)

g1(n)
=

f (n)
g2(n)

=
CS 4104: Data and Algorithm

Analysis Fall 2010 54 / 351

Guessing (cont.)

Examples: Try g1(n) = n; g2(n) = f (n − 1).

n 1 2 3 4 5 6 7 8
f (n) 1 3 6 10 15 21 28 36

g1(n) 1 2 3 4 5 6 7 8
f (n)/g1(n) 2/2 3/2 4/2 5/2 6/2 7/2 8/2 9/2

g2(n) 0 1 3 6 10 15 21 28
f (n)/g2(n) 3/1 4/2 5/3 6/4 7/5 8/6 9/7

What are the patterns?
f (n)

g1(n)
=

f (n)
g2(n)

=

20
10

-1
1-

30

CS 4104

Guessing (cont.)

(n + 1)/2
(n + 1)/(n − 1)

Of couse, lots of other approachs do NOT work.

• f (n) − g1(n) = f (n − 1). Knowing that f (n) = f (n − 1) + n is
not useful.

• f (n) − g2(n) = n. Knowing that f (n) = f (n − 1) + n is not
useful.

It can be like finding a needle in a haystack.

Solving Summations (cont.)

Use algebra to rearrange and solve for f (n)

f (n)

n
=

n + 1
2

f (n)

f (n − 1)
=

n + 1
n − 1

CS 4104: Data and Algorithm
Analysis Fall 2010 55 / 351

Solving Summations (cont.)

Use algebra to rearrange and solve for f (n)

f (n)

n
=

n + 1
2

f (n)

f (n − 1)
=

n + 1
n − 1

20
10

-1
1-

30

CS 4104

Solving Summations (cont.)

(1) is pretty direct. So f (n) = (n + 1)(n)/2.

(2) is not so direct, but useful as an example.

Solving Summations (cont.)

f (n)

f (n − 1)
=

n + 1
n − 1

f (n)(n − 1) = (n + 1)f (n − 1)

f (n)(n − 1) = (n + 1)(f (n) − n)

nf (n) − f (n) = nf (n) + f (n) − n2 − n

2f (n) = n2 + n = n(n + 1)

f (n) =
n(n + 1)

2

Important Note: This is not a proof that f (n) = n(n + 1)/2.
Why?

CS 4104: Data and Algorithm
Analysis Fall 2010 56 / 351

Solving Summations (cont.)

f (n)

f (n − 1)
=

n + 1
n − 1

f (n)(n − 1) = (n + 1)f (n − 1)

f (n)(n − 1) = (n + 1)(f (n) − n)

nf (n) − f (n) = nf (n) + f (n) − n2 − n

2f (n) = n2 + n = n(n + 1)

f (n) =
n(n + 1)

2

Important Note: This is not a proof that f (n) = n(n + 1)/2.
Why?

20
10

-1
1-

30

CS 4104

Solving Summations (cont.)

So long as we have both f (n) and f (n − 1) in the equation, we
are stuck. So, how can we get rid of f (n − 1)? What can we
replace it with? Something in terms of f (n). Replacing f (n − 1)
with f (n) − n is the key step.

Because we did not prove either (1) or (2). We merely detected
a pattern from looking at a few terms. Now we have a
hypothesis. Fortunately, its easy to check a hypothesis with
induction.

Growth Rates
Two functions of n have different growth rates if as n goes
to infinity their ratio either goes to infinity or goes to zero.

CS 4104: Data and Algorithm
Analysis Fall 2010 57 / 351

Growth Rates
Two functions of n have different growth rates if as n goes
to infinity their ratio either goes to infinity or goes to zero.

20
10

-1
1-

30

CS 4104

Growth Rates

Where does (1.618)n go on here?

Estimating Growth Rates

Exact equations relating program operations to running time
require machine-dependent constants.

Sometimes, the equation for exact running time is
complicated to compute.

Usually, we are satisfied with knowing an approximate
growth rate.

Example: Given two algorithms with growth rate c1n and
c22n!, do we need to know the values of c1 and c2?

Consider n2 and 3n. PROVE that n2 must eventually become
(and remain) bigger.

CS 4104: Data and Algorithm
Analysis Fall 2010 58 / 351

Estimating Growth Rates

Exact equations relating program operations to running time
require machine-dependent constants.

Sometimes, the equation for exact running time is
complicated to compute.

Usually, we are satisfied with knowing an approximate
growth rate.

Example: Given two algorithms with growth rate c1n and
c22n!, do we need to know the values of c1 and c2?

Consider n2 and 3n. PROVE that n2 must eventually become
(and remain) bigger.

20
10

-1
1-

30

CS 4104

Estimating Growth Rates

no notes

Proof by Contradiction

Assume there are some values for constants r and s such
that, for all values of n,

n2 < rn + s.

Then, n < r + s/n.

But, as n grows, what happens to s/n?

Since n grows toward infinity, the assumption must be false.

CS 4104: Data and Algorithm
Analysis Fall 2010 59 / 351

Proof by Contradiction

Assume there are some values for constants r and s such
that, for all values of n,

n2 < rn + s.

Then, n < r + s/n.

But, as n grows, what happens to s/n?

Since n grows toward infinity, the assumption must be false.20
10

-1
1-

30

CS 4104

Proof by Contradiction

It goes to zero.

Conclusion: In the limit, as n → ∞, constants don’t matter.
Limits are the typical way to prove that one function grows
faster than another.

Some Growth Rates (1)

Since n2 grows faster than n,

2n2
grows faster than 2n.

n4 grows faster than n2.

n grows faster than
√

n.

2 log n grows no slower than log n.

CS 4104: Data and Algorithm
Analysis Fall 2010 60 / 351

Some Growth Rates (1)

Since n2 grows faster than n,

2n2
grows faster than 2n.

n4 grows faster than n2.

n grows faster than
√

n.

2 log n grows no slower than log n.

20
10

-1
1-

30

CS 4104

Some Growth Rates (1)

Took antilog of both sides.
We squared boths sides.
n = (

√
n)2. We replaced n with

√
n.

Took log of both sides. Log “flattens” growth rates.

Some Growth Rates (2)

Since n! grows faster than 2n,

n!! grows faster than 2n!.

2n! grows faster than 22n
.

n!2 grows faster than 22n.√
n! grows faster than

√
2n.

log n! grows no slower than n.

CS 4104: Data and Algorithm
Analysis Fall 2010 61 / 351

Some Growth Rates (2)

Since n! grows faster than 2n,

n!! grows faster than 2n!.

2n! grows faster than 22n
.

n!2 grows faster than 22n.√
n! grows faster than

√
2n.

log n! grows no slower than n.

20
10

-1
1-

30

CS 4104

Some Growth Rates (2)

Apply factorial to both sides.
Take antilog of both sides.
Squared both sides.
Took square root of both sides.
Took log of both sides. Actually, it grows faster since
log n! = Θ(n log n).

Some Growth Rates (3)

If f grows faster than g, then

Must
√

f grow faster than
√

g?

Must log f grow faster than log g?

log n is related to n in exactly the same way that n is related
to 2n.

2log n = n

CS 4104: Data and Algorithm
Analysis Fall 2010 62 / 351

Some Growth Rates (3)

If f grows faster than g, then

Must
√

f grow faster than
√

g?

Must log f grow faster than log g?

log n is related to n in exactly the same way that n is related
to 2n.

2log n = n20
10

-1
1-

30

CS 4104

Some Growth Rates (3)

Yes.
No.

log n ≈ log n2 within a constant factor, that is, the growth rate is
the same!

Fibonacci Numbers (Iterative)

f (n) = f (n − 1) + f (n − 2) for n ≥ 2; f (0) = f (1) = 1.

long Fibi(int n) {
long past, prev, curr;
past = prev = curr = 1; // curr holds Fib(i)
for (int i=2; i<=n; i++) { // Compute next value
past = prev; prev = curr; // past holds Fib(i-2)
curr = past + prev; // prev holds Fib(i-1)

}
return curr;

}

The cost of Fibi is easy to compute:
CS 4104: Data and Algorithm

Analysis Fall 2010 63 / 351

Fibonacci Numbers (Iterative)

f (n) = f (n − 1) + f (n − 2) for n ≥ 2; f (0) = f (1) = 1.

long Fibi(int n) {
long past, prev, curr;
past = prev = curr = 1; // curr holds Fib(i)
for (int i=2; i<=n; i++) { // Compute next value
past = prev; prev = curr; // past holds Fib(i-2)
curr = past + prev; // prev holds Fib(i-1)

}
return curr;

}

The cost of Fibi is easy to compute:

20
10

-1
1-

30

CS 4104

Fibonacci Numbers (Iterative)

3n assignments.

Fibonacci Numbers (Recursive)

int Fibr(int n) {
if ((n <= 1) return 1; // Base case
return Fibr(n-1) + Fibr(n-2); // Recursive call

}

What is the cost of Fibr?

CS 4104: Data and Algorithm
Analysis Fall 2010 64 / 351

Fibonacci Numbers (Recursive)

int Fibr(int n) {
if ((n <= 1) return 1; // Base case
return Fibr(n-1) + Fibr(n-2); // Recursive call

}

What is the cost of Fibr?20
10

-1
1-

30

CS 4104

Fibonacci Numbers (Recursive)

It is a recursive function.
So we use a recurrence relation to describe its cost.
Basically, the number of function calls (the cost, since each
function does constant work aside from calling other functions)
is the same as the size of the Fibonacci number itself!

Analysis of Fibr

Use divide-and-guess with f (n − 1).

n 1 2 3 4 5 6 7 8
f (n) 1 2 3 5 8 13 21 28

f (n)/f (n − 1) 1 2 1.5 1.666 1.6 1.625 1.615 1.619

Following this out, it appears to settle to a ratio of 1.618.

Assuming f (n)/f (n − 1) really tends to a fixed value x , let’s
verify what x must be.

f (n)

f (n − 2)
=

f (n − 1)

f (n − 2)
+

f (n − 2)

f (n − 2)
→ x + 1

CS 4104: Data and Algorithm
Analysis Fall 2010 65 / 351

Analysis of Fibr

Use divide-and-guess with f (n − 1).

n 1 2 3 4 5 6 7 8
f (n) 1 2 3 5 8 13 21 28

f (n)/f (n − 1) 1 2 1.5 1.666 1.6 1.625 1.615 1.619

Following this out, it appears to settle to a ratio of 1.618.

Assuming f (n)/f (n − 1) really tends to a fixed value x , let’s
verify what x must be.

f (n)

f (n − 2)
=

f (n − 1)

f (n − 2)
+

f (n − 2)

f (n − 2)
→ x + 1

20
10

-1
1-

30

CS 4104

Analysis of Fibr

From f (n) = f (n − 1) + f (n − 2).
We divide by f (n − 2) to make the second term go away – and
we also get something useful in the first term. Remember that
the goal of such manipulations is to give us an equation that
relates f (n) to something without recursive subcalls.

Analysis of Fibr (cont.)

For large n,

f (n)

f (n − 2)
=

f (n)

f (n − 1)

f (n − 1)

f (n − 2)
→ x2

If x exists, then x2 − x − 1 → 0.

Using the quadratic equation, the only solution greater than
one is

x =
1 +

√
5

2
≈ 1.618.

What does this say about the growth rate of f?
CS 4104: Data and Algorithm

Analysis Fall 2010 66 / 351

Analysis of Fibr (cont.)

For large n,

f (n)

f (n − 2)
=

f (n)

f (n − 1)

f (n − 1)

f (n − 2)
→ x2

If x exists, then x2 − x − 1 → 0.

Using the quadratic equation, the only solution greater than
one is

x =
1 +

√
5

2
≈ 1.618.

What does this say about the growth rate of f?

20
10

-1
1-

30

CS 4104

Analysis of Fibr (cont.)

We get this by muliplying and rearranging:

f (n)

f (n − 2)

f (n − 1)

f (n − 1)

As n gets big, the two ratios go to x .

The growth rate is exponential. f (n) ≈ (1.618)n.

n 1 2 3 4 5 6 7
f (n) 1 2 3 5 8 13 21

1.62n 1.62 2.62 4.24 6.9 11.09 17.94 29.03

Note that the value is always in the right range, even if the scale
is off a bit.

Order Notation
little oh f (n) ∈ o(g(n)) < lim f (n)/g(n) = 0
big oh f (n) ∈ O(g(n)) ≤
Theta f (n) = Θ(g(n)) = f = O(g) and

g = O(f)
Big Omega f (n) ∈ Ω(g(n)) ≥
Little Omega f (n) ∈ ω(g(n)) > lim g(n)/f (n) = 0

I prefer “f ∈ O(n2)” to “f = O(n2)”
While n ∈ O(n2) and n2 ∈ O(n2), O(n) 6= O(n2).

Note: Big oh does not say how good an algorithm is – only
how bad it CAN be.

If A ∈ O(n) and B ∈ O(n2), is A better than B?

Perhaps... but perhaps better analysis will show that
A = Θ(n) while B = Θ(log n).

CS 4104: Data and Algorithm
Analysis Fall 2010 67 / 351

Order Notation
little oh f (n) ∈ o(g(n)) < lim f (n)/g(n) = 0
big oh f (n) ∈ O(g(n)) ≤
Theta f (n) = Θ(g(n)) = f = O(g) and

g = O(f)
Big Omega f (n) ∈ Ω(g(n)) ≥
Little Omega f (n) ∈ ω(g(n)) > lim g(n)/f (n) = 0

I prefer “f ∈ O(n2)” to “f = O(n2)”
While n ∈ O(n2) and n2 ∈ O(n2), O(n) 6= O(n2).

Note: Big oh does not say how good an algorithm is – only
how bad it CAN be.

If A ∈ O(n) and B ∈ O(n2), is A better than B?

Perhaps... but perhaps better analysis will show that
A = Θ(n) while B = Θ(log n).

20
10

-1
1-

30

CS 4104

Order Notation

no notes

Limitations on Order Notation

Statement: Algorithm A’s resource requirements grow
slower than Algorithm B’s resource requirements.

Is A better than B?

Potential problems:
How big must the input be?
Some growth rate differences are trivial

◮ Example: Θ(log2 n) vs. Θ(n1/10).
It is not always practical to reduce an algorithm’s growth
rate

◮ Shaving a factor of n reduces cost by a factor of a million
for input size of a million.

◮ Shaving a factor of log log n saves only a factor of 4-5.
CS 4104: Data and Algorithm

Analysis Fall 2010 68 / 351

Limitations on Order Notation

Statement: Algorithm A’s resource requirements grow
slower than Algorithm B’s resource requirements.

Is A better than B?

Potential problems:
How big must the input be?
Some growth rate differences are trivial

◮ Example: Θ(log2 n) vs. Θ(n1/10).
It is not always practical to reduce an algorithm’s growth
rate

◮ Shaving a factor of n reduces cost by a factor of a million
for input size of a million.

◮ Shaving a factor of log log n saves only a factor of 4-5.

20
10

-1
1-

30

CS 4104

Limitations on Order Notation

Notation: log n2(= 2 log n) vs. log2 n(= (log n)2) vs. log log n.
log 162 = 2 log 16 = 8. log2 16 = 42 = 16.
log log 16 = log 4 = 2.

If n is 1012(≈ 240) then log2 n ≈ 1600, n1/10 = 16 even though
n1/10 grows faster than log2 n.
n must be enormous (like 2150) for n1/10 to be bigger than
log2 n.

“Practical” here means that the constants might become too
much higher when we shave off the minor asymptotic growth.

Practicality Window

In general:

We have limited time to solve a problem.

We have a limited input size.

Fortunately, algorithm growth rates are USUALLY well
behaved, so that Order Notation gives practical indications.

CS 4104: Data and Algorithm
Analysis Fall 2010 69 / 351

Practicality Window

In general:

We have limited time to solve a problem.

We have a limited input size.

Fortunately, algorithm growth rates are USUALLY well
behaved, so that Order Notation gives practical indications.

20
10

-1
1-

30

CS 4104

Practicality Window

Input can only get so big before the computer chokes.

“Practical” is the keyword. We use asymptotics because they
provide a simple model that usually mirrors reality. This is
useful to simplify our thinking.

Searching

Assumptions for search problems:

Target is well defined.

Target is fixed.

Search domain is finite.

We (can) remember all information gathered during
search.

We search for a record with a key .

CS 4104: Data and Algorithm
Analysis Fall 2010 70 / 351

Searching

Assumptions for search problems:

Target is well defined.

Target is fixed.

Search domain is finite.

We (can) remember all information gathered during
search.

We search for a record with a key .20
10

-1
1-

30

CS 4104

Searching

Well defined: We recognize a hit or miss.

Fixed: The target doesn’t move during the life of the search.

We often choose not to remember information. For example,
sequential search does not remember the values seen already.

A Search Model (1)

Problem :
Given:

A list L, of n elements
A search key X

Solve: Identify one element in L which has key value X , if
any exist.

Model:
The key values for elements in L are unique.
One comparison determines <, =, >.
Comparison is our only way to find ordering information.
Every comparison costs the same.

CS 4104: Data and Algorithm
Analysis Fall 2010 71 / 351

A Search Model (1)

Problem :
Given:

A list L, of n elements
A search key X

Solve: Identify one element in L which has key value X , if
any exist.

Model:
The key values for elements in L are unique.
One comparison determines <, =, >.
Comparison is our only way to find ordering information.
Every comparison costs the same.

20
10

-1
1-

30

CS 4104

A Search Model (1)

What if the key values are not unique? Probably the cost goes
down, not up. This is an assumption for analysis, not for
implementation.

We would have a slightly different model (though no asymptotic
change in cost) if our only comparison test was <. We would
have a very different model if our only comparison was = / 6=.

A comparison-based model.

String data might require comparisons with very different costs.

A Search Model (2)

Goal: Solve the problem using the minimum number of
comparisons.

Cost model: Number of comparisons.

(Implication) Access to every item in L costs the same
(array).

Is this a reasonable model and goal?

CS 4104: Data and Algorithm
Analysis Fall 2010 72 / 351

A Search Model (2)

Goal: Solve the problem using the minimum number of
comparisons.

Cost model: Number of comparisons.

(Implication) Access to every item in L costs the same
(array).

Is this a reasonable model and goal?20
10

-1
1-

30

CS 4104

A Search Model (2)

• We are assuming that the # of comparisons is proportional to
runtime.

• Might not always share an array (assumption that all
accesses are equal). For example, linked lists.

• We assume there is no relationship between value X and its
position.

Linear Search

General algorithm strategy: Reduce the problem.
Compare X to the first element.
If not done, then solve the problem for n − 1 elements.

Position linear_search(L, lower, upper, X) {
if L[lower] = X then

return lower;
else if lower = upper then

return -1;
else

return linear_search(L, lower+1, upper, X);
}

What equation represents the worst case cost?
CS 4104: Data and Algorithm

Analysis Fall 2010 73 / 351

Linear Search

General algorithm strategy: Reduce the problem.
Compare X to the first element.
If not done, then solve the problem for n − 1 elements.

Position linear_search(L, lower, upper, X) {
if L[lower] = X then
return lower;

else if lower = upper then
return -1;

else
return linear_search(L, lower+1, upper, X);

}

What equation represents the worst case cost?

20
10

-1
1-

30

CS 4104

Linear Search

Warning: We are using this simple, familiar algorithm as an
illustration of how to do full, formal analysis. This includes some
recurrence solving techniques, and attention to lower bounds.

Cost given on next slide.

Worst Cost Upper Bound

f (n) =

{

1 n = 1
f (n − 1) + 1 n > 1

Reasonable to guess that f (n) = n.
Prove by induction:
Basis step : f (1) = 1, so f (n) = n when n = 1.
Induction hypothesis : For k < n, f (k) = k .
Induction step : From recurrence,

f (n) = f (n − 1) + 1

= (n − 1) + 1

= n

Thus, the worst case cost for n elements is linear.
Induction is great for verifying a hypothesis.

CS 4104: Data and Algorithm
Analysis Fall 2010 74 / 351

Worst Cost Upper Bound

f (n) =

{

1 n = 1
f (n − 1) + 1 n > 1

Reasonable to guess that f (n) = n.
Prove by induction:
Basis step : f (1) = 1, so f (n) = n when n = 1.
Induction hypothesis : For k < n, f (k) = k .
Induction step : From recurrence,

f (n) = f (n − 1) + 1

= (n − 1) + 1

= n

Thus, the worst case cost for n elements is linear.
Induction is great for verifying a hypothesis.

20
10

-1
1-

30

CS 4104

Worst Cost Upper Bound

no notes

Approach #2

What if we couldn’t guess a solution?
Try: Substitute and Guess.

◮ Iterate a few steps of the recurrence, and look for a
summation.

f (n) = f (n − 1) + 1

= {f (n − 2) + 1} + 1

= {{f (n − 3) + 1} + 1} + 1}
Now what? Guess f (n) = f (n − i) + i .
When do we stop? When we reach a value for f that we
know.

f (n) = f (n − (n − 1)) + n − 1 = f (1) + n − 1 = n

Now, go back and test the guess using induction.
CS 4104: Data and Algorithm

Analysis Fall 2010 75 / 351

Approach #2

What if we couldn’t guess a solution?
Try: Substitute and Guess.

◮ Iterate a few steps of the recurrence, and look for a
summation.

f (n) = f (n − 1) + 1

= {f (n − 2) + 1} + 1

= {{f (n − 3) + 1} + 1} + 1}
Now what? Guess f (n) = f (n − i) + i .
When do we stop? When we reach a value for f that we
know.

f (n) = f (n − (n − 1)) + n − 1 = f (1) + n − 1 = n

Now, go back and test the guess using induction.

20
10

-1
1-

30

CS 4104

Approach #2

Replace i with n − 1.

Alternative: Recognize f (n) = f (1+
∑n

i=2 1.

Approach #3

Guess and Test : Guess the form of the solution, then solve
the resulting equations.

Guess : f (n) is linear.
f (n) = rn + s for some r , s.

What do we know?
f (1) = r × 1 + s = r + s = 1.
f (n) = r × n + s = r × (n − 1) + s + 1.

Solving these two simultaneous equations, r = 1, s = 0.

Final form of guess: f (n) = n.

Now, prove using induction.
CS 4104: Data and Algorithm

Analysis Fall 2010 76 / 351

Approach #3

Guess and Test : Guess the form of the solution, then solve
the resulting equations.

Guess : f (n) is linear.
f (n) = rn + s for some r , s.

What do we know?
f (1) = r × 1 + s = r + s = 1.
f (n) = r × n + s = r × (n − 1) + s + 1.

Solving these two simultaneous equations, r = 1, s = 0.

Final form of guess: f (n) = n.

Now, prove using induction.

20
10

-1
1-

30

CS 4104

Approach #3

Often, f (0) is easier. Or maybe f (2).

By definition, f (n) = f (n − 1) + 1, so r × n = r × (n − 1) + 1.
So rn + s = rn − r + s + 1.
s = s − r + 1
r − 1 = 0

Since f (n) = f (n − 1) + 1.

Why is this a guess and not a proof? Because all we did is
show that our model passes through two points that the “real”
curve also passes through. If the curve really is linear, 2 points
is all that we need. But, we need to prove that it is linear.

Lower Bound on Problem

Theorem : Lower bound (in the worst case) for the problem
is n comparisons.

Proof : By contradiction.
Assume an algorithm A exists that requires only n − 1
(or less) comparisons of X with elements of L.
Since there are n elements of L, A must have avoided
comparing X with L[i] for some value i .
We can feed the algorithm an input with X in position i .
Such an input is legal in our model, so the algorithm is
incorrect.

Is this proof correct?
CS 4104: Data and Algorithm

Analysis Fall 2010 77 / 351

Lower Bound on Problem

Theorem : Lower bound (in the worst case) for the problem
is n comparisons.

Proof : By contradiction.
Assume an algorithm A exists that requires only n − 1
(or less) comparisons of X with elements of L.
Since there are n elements of L, A must have avoided
comparing X with L[i] for some value i .
We can feed the algorithm an input with X in position i .
Such an input is legal in our model, so the algorithm is
incorrect.

Is this proof correct?

20
10

-1
1-

30

CS 4104

Lower Bound on Problem

Be careful about assumptions on how an algorithm might
(must) behave.
After all, where do new, clever algorithms come from? From
different behavior than was previously assumed!

Fixing the Proof (1)

Error #1: An algorithm need not consistently skip position i .
Fix:

On any given run of the algorithm, some element i gets
skipped.

It is possible that X is in position i at that time.

CS 4104: Data and Algorithm
Analysis Fall 2010 78 / 351

Fixing the Proof (1)

Error #1: An algorithm need not consistently skip position i .
Fix:

On any given run of the algorithm, some element i gets
skipped.

It is possible that X is in position i at that time.

20
10

-1
1-

30

CS 4104

Fixing the Proof (1)

no notes

Fixing the Proof (2)

Error #2: Must allow comparisons between elements of L.
Fix:

Include the ability to “preprocess” L.

View L as initially consisting of n “pieces.”

A comparison can join two pieces (without involving X).

The total of these comparisons is k .

We must have at least n − k pieces.

A comparison of X against a piece can reject the whole
piece.

This requires n − k comparisons.

The total is still at least n comparisons.
CS 4104: Data and Algorithm

Analysis Fall 2010 79 / 351

Fixing the Proof (2)

Error #2: Must allow comparisons between elements of L.
Fix:

Include the ability to “preprocess” L.

View L as initially consisting of n “pieces.”

A comparison can join two pieces (without involving X).

The total of these comparisons is k .

We must have at least n − k pieces.

A comparison of X against a piece can reject the whole
piece.

This requires n − k comparisons.

The total is still at least n comparisons.

20
10

-1
1-

30

CS 4104

Fixing the Proof (2)

no notes

Average Cost

How many comparisons does linear search do on average?

We must know the probability of occurrence for each
possible input.

(Must X be in L?)

Ignore everything except the position of X in L. Why?

What are the n + 1 events?

P(X /∈ L) = 1 −
n

∑

i=1

P(X = L[i]).

CS 4104: Data and Algorithm
Analysis Fall 2010 80 / 351

Average Cost

How many comparisons does linear search do on average?

We must know the probability of occurrence for each
possible input.

(Must X be in L?)

Ignore everything except the position of X in L. Why?

What are the n + 1 events?

P(X /∈ L) = 1 −
n

∑

i=1

P(X = L[i]).

20
10

-1
1-

30

CS 4104

Average Cost

No, X might not be in L! What is this probability?

The actual values of other elements is irrelevent to the search
routine.

L[1], L[2], ..., L[n] and not found.

Assume that array bounds are 1..n.

Average Cost Equation

Let ki = i be the number of comparisons when X = L[i].
Let k0 = n be the number of comparisons when X /∈ L.

Let pi be the probability that X = L[i].
Let p0 be the probability that X /∈ L[i] for any i .

f (n) = k0p0 +
n

∑

i=1

kipi

= np0 +
n

∑

i=1

ipi

What happens to the equation if we assume all pi ’s are
equal (except p0)?

CS 4104: Data and Algorithm
Analysis Fall 2010 81 / 351

Average Cost Equation

Let ki = i be the number of comparisons when X = L[i].
Let k0 = n be the number of comparisons when X /∈ L.

Let pi be the probability that X = L[i].
Let p0 be the probability that X /∈ L[i] for any i .

f (n) = k0p0 +
n

∑

i=1

kipi

= np0 +
n

∑

i=1

ipi

What happens to the equation if we assume all pi ’s are
equal (except p0)?

20
10

-1
1-

30

CS 4104

Average Cost Equation

no notes

Computation

f (n) = p0n +

n
∑

i=1

ip

= p0n + p
n

∑

i=1

i

= p0n + p
n(n + 1)

2

= p0n +
1 − p0

n
n(n + 1)

2

=
n + 1 + p0(n − 1)

2

Depending on the value of p0, n+1
2 ≤ f (n) ≤ n.

CS 4104: Data and Algorithm
Analysis Fall 2010 82 / 351

Computation

f (n) = p0n +

n
∑

i=1

ip

= p0n + p
n

∑

i=1

i

= p0n + p
n(n + 1)

2

= p0n +
1 − p0

n
n(n + 1)

2

=
n + 1 + p0(n − 1)

2

Depending on the value of p0, n+1
2 ≤ f (n) ≤ n.

20
10

-1
1-

30

CS 4104

Computation

p =
1 − p0

n
.
Show a graph of p0 vs. cost for 0 ≤ p0 ≤ 1, with y axis going
from 0 to n.

Problems with Average Cost

Average cost is usually harder to determine than worst
cost.

We really need also to know the variance around the
average.

Our computation is only as good as our knowledge
(guess) on distribution.

CS 4104: Data and Algorithm
Analysis Fall 2010 83 / 351

Problems with Average Cost

Average cost is usually harder to determine than worst
cost.

We really need also to know the variance around the
average.

Our computation is only as good as our knowledge
(guess) on distribution.

20
10

-1
1-

30

CS 4104

Problems with Average Cost

Example: Quicksort variance is rather low. For this linear
search, the variances is higher (normal curve).

Sorted List
Change the model: Assume that the elements are in
ascending order.

Is linear search still optimal? Why not?

Optimization: Use linear search, but test if the element is
greater than X . Why?

Observation: If we look at L[5] and find that X is bigger, then
we rule out L[1] to L[4] as well.

More is Better: If we look at L[n] and find that X is bigger,
then we know in one test that X is not in L. Great!

What is wrong here?
CS 4104: Data and Algorithm

Analysis Fall 2010 84 / 351

Sorted List
Change the model: Assume that the elements are in
ascending order.

Is linear search still optimal? Why not?

Optimization: Use linear search, but test if the element is
greater than X . Why?

Observation: If we look at L[5] and find that X is bigger, then
we rule out L[1] to L[4] as well.

More is Better: If we look at L[n] and find that X is bigger,
then we know in one test that X is not in L. Great!

What is wrong here?

20
10

-1
1-

30

CS 4104

Sorted List

We have more information a priori.

Can quit early.
What is best, worst, average cost? 1, n, n/2, respectively.
Effectively eliminates case of x not on list.

If we find that x is smaller, we only rule out one element.
Cost is 1 either way, but we don’t get much information in worst
case.
Small probability for big information, but big probability for small
information.

Jump Search

Algorithm:

From the beginning of the array, start making jumps of
size k , checking L[k] then L[2k], and so on.

So long as X is greater, keep jumping by k .

If X is less, then use linear search on the last sublist of
k elements.

This is called Jump Search.

What is the right amount to jump?

CS 4104: Data and Algorithm
Analysis Fall 2010 85 / 351

Jump Search

Algorithm:

From the beginning of the array, start making jumps of
size k , checking L[k] then L[2k], and so on.

So long as X is greater, keep jumping by k .

If X is less, then use linear search on the last sublist of
k elements.

This is called Jump Search.

What is the right amount to jump?

20
10

-1
1-

30

CS 4104

Jump Search

no notes

Analysis of Jump Search

If mk ≤ n < (m + 1)k , then the total cost is at most
m + k − 1 3-way comparisons.

f (n, k) = m + k − 1 =
⌊n

k

⌋

+ k − 1.

What should k be?

min
1≤k≤n

{⌊n
k

⌋

+ k − 1
}

Take the derivative and solve for f ′(x) = 0 to find the
minimum.
This is a minimum when k =

√
n.

What is the worst case cost?
◮ Roughly 2

√
n.

CS 4104: Data and Algorithm
Analysis Fall 2010 86 / 351

Analysis of Jump Search

If mk ≤ n < (m + 1)k , then the total cost is at most
m + k − 1 3-way comparisons.

f (n, k) = m + k − 1 =
⌊n

k

⌋

+ k − 1.

What should k be?

min
1≤k≤n

{⌊n
k

⌋

+ k − 1
}

Take the derivative and solve for f ′(x) = 0 to find the
minimum.
This is a minimum when k =

√
n.

What is the worst case cost?
◮ Roughly 2

√
n.

20
10

-1
1-

30

CS 4104

Analysis of Jump Search

m is number of big steps, k is size of big step.

Rawlins has a discussion about some technicalities related to
how to take derivative since k is an integer. Essentially, the
real-valued equivalent cannot be off by more than 1.

Lessons
We want to balance the work done while selecting a sublist
with the work done while searching a sublist.

In general, make subproblems of equal effort.

This is an example of divide and conquer

What if we extend this to three levels?
We’d jump to get a sublist, then jump to get a
sub-sublist, then do sequential search
While it might make sense to do a two-level algorithm
(like jump search), it almost never makes sense to do a
three-level algorithm
Instead, we resort to recursion

CS 4104: Data and Algorithm
Analysis Fall 2010 87 / 351

Lessons
We want to balance the work done while selecting a sublist
with the work done while searching a sublist.

In general, make subproblems of equal effort.

This is an example of divide and conquer

What if we extend this to three levels?
We’d jump to get a sublist, then jump to get a
sub-sublist, then do sequential search
While it might make sense to do a two-level algorithm
(like jump search), it almost never makes sense to do a
three-level algorithm
Instead, we resort to recursion

20
10

-1
1-

30

CS 4104

Lessons

This takes us to binary search.

Binary Search

int binary(int K, int* array, int left, int right) {
// Return position of element (if any) with value K
int l = left-1;
int r = right+1; // l and r beyond array bounds
while (l+1 != r) { // Stop when l and r meet
int i = (l+r)/2; // Middle of remaining subarray
if (K < array[i]) r = i; // In left half
if (K == array[i]) return i; // Found it
if (K > array[i]) l = i; // In right half

}
return UNSUCCESSFUL; // Search value not in array

}

CS 4104: Data and Algorithm
Analysis Fall 2010 88 / 351

Binary Search

int binary(int K, int* array, int left, int right) {
// Return position of element (if any) with value K
int l = left-1;
int r = right+1; // l and r beyond array bounds
while (l+1 != r) { // Stop when l and r meet
int i = (l+r)/2; // Middle of remaining subarray
if (K < array[i]) r = i; // In left half
if (K == array[i]) return i; // Found it
if (K > array[i]) l = i; // In right half

}
return UNSUCCESSFUL; // Search value not in array

}20
10

-1
1-

30

CS 4104

Binary Search

no notes

Worst Case for Binary Search (1)

f (n) =

{

1 n = 1
f (⌊n/2⌋) + 1 n > 1

Since n/2 ≥ ⌊n/2⌋, and since f (n) is assumed to be
non-decreasing (why?), we can use

f (n) = f (n/2) + 1.

Alternatively, assume n is a power of 2.
Expand the recurrence:

f (n) = f (n/2) + 1

= {f (n/4) + 1} + 1

= {{f (n/8) + 1} + 1} + 1

CS 4104: Data and Algorithm
Analysis Fall 2010 89 / 351

Worst Case for Binary Search (1)

f (n) =

{

1 n = 1
f (⌊n/2⌋) + 1 n > 1

Since n/2 ≥ ⌊n/2⌋, and since f (n) is assumed to be
non-decreasing (why?), we can use

f (n) = f (n/2) + 1.

Alternatively, assume n is a power of 2.
Expand the recurrence:

f (n) = f (n/2) + 1

= {f (n/4) + 1} + 1

= {{f (n/8) + 1} + 1} + 1

20
10

-1
1-

30

CS 4104

Worst Case for Binary Search (1)

We get rid of at least ⌈n/2⌉ elements.

Adding more elements won’t decrease the work.

Worst Case for Binary Search (2)

Collapse to

f (n) = f (n/2i) + i = f (1) + log n = log n + 1

Now, prove it with induction.

f (n/2) + 1 = (log(n/2) + 1) + 1

= (log n − 1 + 1) + 1

= log n + 1 = f (n).

CS 4104: Data and Algorithm
Analysis Fall 2010 90 / 351

Worst Case for Binary Search (2)

Collapse to

f (n) = f (n/2i) + i = f (1) + log n = log n + 1

Now, prove it with induction.

f (n/2) + 1 = (log(n/2) + 1) + 1

= (log n − 1 + 1) + 1

= log n + 1 = f (n).20
10

-1
1-

30

CS 4104

Worst Case for Binary Search (2)

By the IH,
f (n/2) = log(n/2) + 1.

Lower Bound (for Problem Worst Case)

How does n compare to
√

n compare to log n?

Can we do better?

Model an algorithm for the problem using a decision tree.
Consider only comparisons with X .
Branch depending on the result of comparing X with
L[i].
There must be at least n leaf nodes in the tree. (Why?)
Some path must be at least log n deep. (Why?)

Thus, binary search has optimal worst cost under this
model.

CS 4104: Data and Algorithm
Analysis Fall 2010 91 / 351

Lower Bound (for Problem Worst Case)

How does n compare to
√

n compare to log n?

Can we do better?

Model an algorithm for the problem using a decision tree.
Consider only comparisons with X .
Branch depending on the result of comparing X with
L[i].
There must be at least n leaf nodes in the tree. (Why?)
Some path must be at least log n deep. (Why?)

Thus, binary search has optimal worst cost under this
model.

20
10

-1
1-

30

CS 4104

Lower Bound (for Problem Worst Case)

Assumption: A deterministic algorithm: For a given input, the
algorithm always does the same comparisons.

Since L is sorted, we already know the outcome of any
comparisons between elements in L, so such comparisons are
useless.

There must be some point in the algorithm, for each position in
the array, where only that position remains as the possible
outcome. Each such place corresponds to a (leaf) node.

Because a tree of n nodes requires at least this depth.Show
decision tree illustration.

Average Cost of Binary Search (1)

An estimate given these assumptions:
X is in L.
X is equally likely to be in any position.
n = 2k for some non-negative integer k .

Cost?

One chance to hit in one probe.
Two chances to hit in two probes.
2i−1 to hit in i probes.
i ≤ k .

What is the equation?
CS 4104: Data and Algorithm

Analysis Fall 2010 92 / 351

Average Cost of Binary Search (1)

An estimate given these assumptions:
X is in L.
X is equally likely to be in any position.
n = 2k for some non-negative integer k .

Cost?

One chance to hit in one probe.
Two chances to hit in two probes.
2i−1 to hit in i probes.
i ≤ k .

What is the equation?

20
10

-1
1-

30

CS 4104

Average Cost of Binary Search (1)

no notes

Average Cost (2)

1 × 1 + 2 × 2 + 3 × 4 + ... + log n2log n−1

n
=

1
n

log n
∑

i=1

i2i−1

k
∑

i=1

i2i−1 =
k−1
∑

i=0

(i + 1)2i =
k−1
∑

i=0

i2i +
k−1
∑

i=0

2i

= 2
k−1
∑

i=0

i2i−1 + 2k − 1

= 2
k

∑

i=1

i2i−1 − k2k + 2k − 1

CS 4104: Data and Algorithm
Analysis Fall 2010 93 / 351

Average Cost (2)

1 × 1 + 2 × 2 + 3 × 4 + ... + log n2log n−1

n
=

1
n

log n
∑

i=1

i2i−1

k
∑

i=1

i2i−1 =
k−1
∑

i=0

(i + 1)2i =
k−1
∑

i=0

i2i +
k−1
∑

i=0

2i

= 2
k−1
∑

i=0

i2i−1 + 2k − 1

= 2
k

∑

i=1

i2i−1 − k2k + 2k − 1

20
10

-1
1-

30

CS 4104

Average Cost (2)

2log n−1 = n/2.

From the second line, and through the next slide, works on
solving the summation in its own right. We’ll come back to
solving the original equation after we have the summation.

Change variables: i → i + 1.

0th term contributed nothing. Take out the k th term.

Now we have f (n) = 2f (n) − stuff so f (n) = stuff.

Form: x = 2x − y so x = y .

Average Cost (3)

Now what? Subtract from the original!

k
∑

i=1

i2i−1 = k2k − 2k + 1 = (k − 1)2k + 1.

CS 4104: Data and Algorithm
Analysis Fall 2010 94 / 351

Average Cost (3)

Now what? Subtract from the original!

k
∑

i=1

i2i−1 = k2k − 2k + 1 = (k − 1)2k + 1.

20
10

-1
1-

30

CS 4104

Average Cost (3)

k
∑

i=1

i2i−1 = 2
k

∑

i=1

i2i−1 − k2k + 2k − 1

So,

k
∑

i=1

i2i−1 = k2k − 2k + 1

= (k − 1)2k + 1

Result (1)

1
n

log n
∑

i=1

i2i−1 =
(log n − 1)2log n + 1

n

=
n(log n − 1) + 1

n
≈ log n − 1

So the average cost is only about one or two comparisons
less than the worst cost.

CS 4104: Data and Algorithm
Analysis Fall 2010 95 / 351

Result (1)

1
n

log n
∑

i=1

i2i−1 =
(log n − 1)2log n + 1

n

=
n(log n − 1) + 1

n
≈ log n − 1

So the average cost is only about one or two comparisons
less than the worst cost.20

10
-1

1-
30

CS 4104

Result (1)

Now we come back to solving the original equation. Since we
have a closed-form solution for the summation in hand, we can
restate the equation with the appropriate variable substitutions.

2log n = n.

Result (2)

If we want to relax the assumption that n = 2k , we get:

f (n) =























0 n = 0
1 n = 1
⌈ n

2 ⌉−1
n f (⌈n

2⌉ − 1) + 1
n0 +

⌊ n
2 ⌋
n f (⌊n

2⌋) + 1 n > 1

CS 4104: Data and Algorithm
Analysis Fall 2010 96 / 351

Result (2)

If we want to relax the assumption that n = 2k , we get:

f (n) =























0 n = 0
1 n = 1
⌈ n

2 ⌉−1
n f (⌈n

2⌉ − 1) + 1
n0 +

⌊ n
2 ⌋
n f (⌊n

2⌋) + 1 n > 1

20
10

-1
1-

30

CS 4104

Result (2)

Identify each of the components of this equation.

Left branch (X < L[i])
L(i) == X (no cost, 1/n chance)
Right branch (X > L[i])

Average Cost Lower Bound

Use decision trees again.

Total Path Length : Sum of the level for each node.

The cost of an outcome is the level of the corresponding
node plus 1.

The average cost of the algorithm is the average cost of
the outcomes (total path length/n).

What is the tree with the least average depth?

This is equivalent to the tree that corresponds to binary
search.

Thus, binary search is optimal.

CS 4104: Data and Algorithm
Analysis Fall 2010 97 / 351

Average Cost Lower Bound

Use decision trees again.

Total Path Length : Sum of the level for each node.

The cost of an outcome is the level of the corresponding
node plus 1.

The average cost of the algorithm is the average cost of
the outcomes (total path length/n).

What is the tree with the least average depth?

This is equivalent to the tree that corresponds to binary
search.

Thus, binary search is optimal.

20
10

-1
1-

30

CS 4104

Average Cost Lower Bound

(In worst case.)

Fill in tree row by row, left to right. So node i is at depth ⌊log i⌋.

Changing the Model

What are factors that might make binary search either
unusable or not optimal?

We know something about the distribution.

Data are not sorted. (Preprocessing?)

Data sorted, but probes not all the same cost (not an
array).

Data are static, know all search requests in advance.

CS 4104: Data and Algorithm
Analysis Fall 2010 98 / 351

Changing the Model

What are factors that might make binary search either
unusable or not optimal?

We know something about the distribution.

Data are not sorted. (Preprocessing?)

Data sorted, but probes not all the same cost (not an
array).

Data are static, know all search requests in advance.20
10

-1
1-

30

CS 4104

Changing the Model

Or otherwise know more about the data.

Do more preprocessing than sorting?

Linked list.

Could order data to optimize the total series of requests (e.g.,
by frequency).

Interpolation Search

(Also known as Dictionary Search)

Search L at a position that is appropriate to the value of X .

p =
X − L[1]

L[n] − L[1]

Repeat as necessary to recalculate p for future searches.

CS 4104: Data and Algorithm
Analysis Fall 2010 99 / 351

Interpolation Search

(Also known as Dictionary Search)

Search L at a position that is appropriate to the value of X .

p =
X − L[1]

L[n] − L[1]

Repeat as necessary to recalculate p for future searches.20
10

-1
1-

30

CS 4104

Interpolation Search

That is, readjust for new array bounds.

Note that p is a fraction, so ⌊pn⌋ is an index position between 0
and n − 1.

Quadratic Binary Search

This is easier to analyze:

Compute p and examine L[⌈pn⌉].
If X < L[⌈pn⌉] then sequentially probe

L[⌈pn − i
√

n⌉], i = 1, 2, 3, ...

until we reach a value less than or equal to X .
Similar for X > L[⌈pn⌉].
We are now within

√
n positions of X .

ASSUME (for now) that this takes a constant number of
comparisons.
Now we have a sublist of size

√
n.

Repeat the process recursively.
What is the cost?

CS 4104: Data and Algorithm
Analysis Fall 2010 100 / 351

Quadratic Binary Search

This is easier to analyze:

Compute p and examine L[⌈pn⌉].
If X < L[⌈pn⌉] then sequentially probe

L[⌈pn − i
√

n⌉], i = 1, 2, 3, ...

until we reach a value less than or equal to X .
Similar for X > L[⌈pn⌉].
We are now within

√
n positions of X .

ASSUME (for now) that this takes a constant number of
comparisons.
Now we have a sublist of size

√
n.

Repeat the process recursively.
What is the cost?

20
10

-1
1-

30

CS 4104

Quadratic Binary Search

We will come back and examine this assumption.

How many times can we take the square root of n?
Keep dividing the exponent by 2 until we reach 1 – that is, take
the log of the exponent.
What is the exponent? It is log n.
log log n is the number of times that we can take the square
root.

QBS Probe Count (1)

Cost is Θ(log log n) IF the number of probes on jump search
is constant.

Number of comparisons needed is:
√

n
∑

i=1

iP(need exactly i probes)

= 1P1 + 2P2 + 3P3 + · · · +
√

nP√
n

This is equal to:
√

n
∑

i=1

P(need at least i probes)

CS 4104: Data and Algorithm
Analysis Fall 2010 101 / 351

QBS Probe Count (1)

Cost is Θ(log log n) IF the number of probes on jump search
is constant.

Number of comparisons needed is:
√

n
∑

i=1

iP(need exactly i probes)

= 1P1 + 2P2 + 3P3 + · · · +
√

nP√
n

This is equal to:
√

n
∑

i=1

P(need at least i probes)

20
10

-1
1-

30

CS 4104

QBS Probe Count (1)

no notes

QBS Probe Count (2)

√
n

∑

i=1

P(need at least i probes)

= 1 + (1 − P1) + (1 − P1 − P2) + · · · + P√
n

= (P1 + ... + P√
n) + (P2 + ... + P√

n) +

(P3 + ... + P√
n) + · · ·

= 1P1 + 2P2 + 3P3 + · · · +
√

nP√
n

CS 4104: Data and Algorithm
Analysis Fall 2010 102 / 351

QBS Probe Count (2)

√
n

∑

i=1

P(need at least i probes)

= 1 + (1 − P1) + (1 − P1 − P2) + · · · + P√
n

= (P1 + ... + P√
n) + (P2 + ... + P√

n) +

(P3 + ... + P√
n) + · · ·

= 1P1 + 2P2 + 3P3 + · · · +
√

nP√
n20

10
-1

1-
30

CS 4104

QBS Probe Count (2)

no notes

QBS Probe Count (3)

We require at least two probes to set the bounds, so cost is:

2 +

√
n

∑

i=3

P(need at least i probes)

Useful fact (Čebyšev’s Inequality):
The probability that we need probe i times (Pi) is:

Pi ≤
p(1 − p)n
(i − 2)2n

≤ 1
4(i − 2)2

since p(1 − p) ≤ 1/4.

This assumes uniformly distributed data.
CS 4104: Data and Algorithm

Analysis Fall 2010 103 / 351

QBS Probe Count (3)

We require at least two probes to set the bounds, so cost is:

2 +

√
n

∑

i=3

P(need at least i probes)

Useful fact (Čebyšev’s Inequality):
The probability that we need probe i times (Pi) is:

Pi ≤
p(1 − p)n
(i − 2)2n

≤ 1
4(i − 2)2

since p(1 − p) ≤ 1/4.

This assumes uniformly distributed data.

20
10

-1
1-

30

CS 4104

QBS Probe Count (3)

Original C’s Inequality ≤ the result of recognizing that
p(1 − p) ≤ 1/4.

Important assumption!

QBS Probe Count (4)

Final result:

2 +

√
n

∑

i=3

1
4(i − 2)2

≈ 2.4112

Is this better than binary search?

What happened to our proof that binary search is optimal?

CS 4104: Data and Algorithm
Analysis Fall 2010 104 / 351

QBS Probe Count (4)

Final result:

2 +

√
n

∑

i=3

1
4(i − 2)2

≈ 2.4112

Is this better than binary search?

What happened to our proof that binary search is optimal?20
10

-1
1-

30

CS 4104

QBS Probe Count (4)

The assumption of uniform distribution (resulting in constant
number of probes on average) is much stronger than the
assumptions used by the lower bounds proof.

Comparison (1)

Let’s compare log log n to log n.
n log n log log n Diff
16 4 2 2
256 8 3 2.7
64K 16 4 4
232 32 5 6.4

Now look at the actual comparisons used.
Binary search ≈ log n − 1
Interpolation search ≈ 2.4 log log n

n log n − 1 2.4 log log n Diff
16 3 4.8 worse
256 7 7.2 ≈ same
64K 15 9.6 1.6
232 31 12 2.6

CS 4104: Data and Algorithm
Analysis Fall 2010 105 / 351

Comparison (1)

Let’s compare log log n to log n.
n log n log log n Diff
16 4 2 2
256 8 3 2.7
64K 16 4 4
232 32 5 6.4

Now look at the actual comparisons used.
Binary search ≈ log n − 1
Interpolation search ≈ 2.4 log log n

n log n − 1 2.4 log log n Diff
16 3 4.8 worse
256 7 7.2 ≈ same
64K 15 9.6 1.6
232 31 12 2.6

20
10

-1
1-

30

CS 4104

Comparison (1)

no notes

Comparison (2)

Not done yet! This is only a count of comparisons!

Which is more expensive: calculating the midpoint or
calculating the interpolation point?

Which algorithm is dependent on good behavior by the
input?

CS 4104: Data and Algorithm
Analysis Fall 2010 106 / 351

Comparison (2)

Not done yet! This is only a count of comparisons!

Which is more expensive: calculating the midpoint or
calculating the interpolation point?

Which algorithm is dependent on good behavior by the
input?

20
10

-1
1-

30

CS 4104

Comparison (2)

Taking an interpolation point.

QBS

Hashing

Assume we can preprocess the data.
How should we do it to minimize search?

Put record with key value X in L[X].

If the range is too big, then use hashing.

How much can we get from this?

Simplifying assumptions:
We hash to each slot with equal probability
We probe to each (new) slot with equal probability
This is called uniform hashing

CS 4104: Data and Algorithm
Analysis Fall 2010 107 / 351

Hashing

Assume we can preprocess the data.
How should we do it to minimize search?

Put record with key value X in L[X].

If the range is too big, then use hashing.

How much can we get from this?

Simplifying assumptions:
We hash to each slot with equal probability
We probe to each (new) slot with equal probability
This is called uniform hashing

20
10

-1
1-

30

CS 4104

Hashing

This is the theoritical “ideal” for hashing. True hash functions
and probe functions can’t do quite this well.

Perfect hashing is an even more extreme case. In perfect
hashing, we must know all records in advance (no dynamic
update of the database). We then construct a hash function for
that set of records. Constructing the hash function takes time
roughly equivalent to sorting. After that, the search cost is
constant.

Hashing Insertion Analysis (1)

Define α = N/M (Records stored/Table size)

Insertion cost: sum of costs times probabilities for looking at
1, 2, ..., N + 1 slots

Probability of collision on insertion? α = N/M

Probability of initial collision and another collision when
probing? α2

i=N
∑

i=0

i(
N
M

)i M − N
M

=
i=N
∑

i=0

iαi(1 − α)

CS 4104: Data and Algorithm
Analysis Fall 2010 108 / 351

Hashing Insertion Analysis (1)

Define α = N/M (Records stored/Table size)

Insertion cost: sum of costs times probabilities for looking at
1, 2, ..., N + 1 slots

Probability of collision on insertion? α = N/M

Probability of initial collision and another collision when
probing? α2

i=N
∑

i=0

i(
N
M

)i M − N
M

=
i=N
∑

i=0

iαi(1 − α)

20
10

-1
1-

30

CS 4104

Hashing Insertion Analysis (1)

no notes

Hashing Insertion Analysis (2)

Simpler formulation: Always look at least once, look at least
twice with probability α, look at least three times with
probability α2, etc.

∞
∑

i=0

αi = 1 + α + α2 · · · =
1

1 − α

How does this grow?

CS 4104: Data and Algorithm
Analysis Fall 2010 109 / 351

Hashing Insertion Analysis (2)

Simpler formulation: Always look at least once, look at least
twice with probability α, look at least three times with
probability α2, etc.

∞
∑

i=0

αi = 1 + α + α2 · · · =
1

1 − α

How does this grow?20
10

-1
1-

30

CS 4104

Hashing Insertion Analysis (2)

Similar to analysis of QBS.

This grows super-linearly on α.

Need to show graph of alpha vs. cost.

Searching Linked Lists

Assume the list is sorted, but is stored in a linked list.

Can we use binary search?

Comparisons?

“Work?”

What if we add additional pointers?

CS 4104: Data and Algorithm
Analysis Fall 2010 110 / 351

Searching Linked Lists

Assume the list is sorted, but is stored in a linked list.

Can we use binary search?

Comparisons?

“Work?”

What if we add additional pointers?20
10

-1
1-

30

CS 4104

Searching Linked Lists

Same. Is this a good model? No.

Much higher since we must move around a lot (without
comparisons) to get to the same position.

Might get to desired position faster.

“Perfect” Skip List

62

head

0

5 25 30 58 6931

(a)

42 62

5 25 30 58

0

1

6931

head

(b)

42 62

5 25 30 58

0

1

2

6931

head

(c)

42

CS 4104: Data and Algorithm
Analysis Fall 2010 111 / 351

“Perfect” Skip List

62

head

0

5 25 30 58 6931

(a)

42 62

5 25 30 58

0

1

6931

head

(b)

42 62

5 25 30 58

0

1

2

6931

head

(c)

42

20
10

-1
1-

30

CS 4104

“Perfect” Skip List

What is the access time? log n.
We can insert/delete in log n time as well.

Building a Skip List
Pick the node size at random (from a suitable probability
distribution).

head

(a) (b)

(c) (d)

(e)

head head

5 10 20

head

2

2 5 10 20 30

10 2010

5 10 20

head

CS 4104: Data and Algorithm
Analysis Fall 2010 112 / 351

Building a Skip List
Pick the node size at random (from a suitable probability
distribution).

head

(a) (b)

(c) (d)

(e)

head head

5 10 20

head

2

2 5 10 20 30

10 2010

5 10 20

head

20
10

-1
1-

30

CS 4104

Building a Skip List

no notes

Skip List Analysis (1)

What distribution do we want for the node depths?

int randomLevel(void) { // Exponential distrib
for (int level=0; Random(2) == 0; level++);
return level;

}

What is the worst cost to search in the “perfect” Skip List?

What is the average cost to search in the “perfect” Skip List?

What is the cost to insert?

What is the average cost in the “typical” Skip List?
CS 4104: Data and Algorithm

Analysis Fall 2010 113 / 351

Skip List Analysis (1)

What distribution do we want for the node depths?

int randomLevel(void) { // Exponential distrib
for (int level=0; Random(2) == 0; level++);
return level;

}

What is the worst cost to search in the “perfect” Skip List?

What is the average cost to search in the “perfect” Skip List?

What is the cost to insert?

What is the average cost in the “typical” Skip List?

20
10

-1
1-

30

CS 4104

Skip List Analysis (1)

Exponential decay. 1 link half of the time, 2 links one quarter, 3
links one eighth, and so on.

log n.

Close to log n.

log n.

log n.

Skip List Analysis (2)

How does this differ from a BST?

Simpler or more complex?

More or less efficient?

Which relies on data distribution, which on basic laws of
probability?

CS 4104: Data and Algorithm
Analysis Fall 2010 114 / 351

Skip List Analysis (2)

How does this differ from a BST?

Simpler or more complex?

More or less efficient?

Which relies on data distribution, which on basic laws of
probability?

20
10

-1
1-

30

CS 4104

Skip List Analysis (2)

About the same.

On average, about the same if data are well distributed.

BST relies on data distribution, while skiplist merely relies on
chance.

Other Types of Search

Nearest neighbor (if X not in L).

Exact Match Query.

Range query.

Multi-dimensional search.

Is L static?

Is linear search on a sorted list ever better than binary
search?

CS 4104: Data and Algorithm
Analysis Fall 2010 115 / 351

Other Types of Search

Nearest neighbor (if X not in L).

Exact Match Query.

Range query.

Multi-dimensional search.

Is L static?

Is linear search on a sorted list ever better than binary
search?20

10
-1

1-
30

CS 4104

Other Types of Search

Use a minor variant on binary search.
This is what we have been talking about.
This really changes the rules, need to think about amortization.
Example: 2D or 3D points.
What if L can change (how much?) after each comparison?

Lots of cases:

• Linked list

• Small list

• High probability of search key near front

Selection

How can we find the i th largest value

in a sorted list?

in an unsorted list?

Can we do better with an unsorted list than to sort it?

Assumption: Elements can be ranked .

CS 4104: Data and Algorithm
Analysis Fall 2010 116 / 351

Selection

How can we find the i th largest value

in a sorted list?

in an unsorted list?

Can we do better with an unsorted list than to sort it?

Assumption: Elements can be ranked .20
10

-1
1-

30

CS 4104

Selection

Constant – go to position i .

Sorting costs n log n time.

Properties of Relationships (1)

Partial Order: Given a set S and a binary operator R, R
defines a partial order on S if R is:

Antisymmetric: Whenever aRb and bRa, then a = b, for
all a, b ∈ S.
Transitive: Whenever aRb and bRc, then aRc, for all
a, b, c ∈ S.

Think of a relationship as a set of tuples.
A tuple is in the set (in the relation) iff the relation holds
on that tuple.

Example: S is Integers, R is <.

Example: S is the power set of {1, 2, 3}, R is subset.
CS 4104: Data and Algorithm

Analysis Fall 2010 117 / 351

Properties of Relationships (1)

Partial Order: Given a set S and a binary operator R, R
defines a partial order on S if R is:

Antisymmetric: Whenever aRb and bRa, then a = b, for
all a, b ∈ S.
Transitive: Whenever aRb and bRc, then aRc, for all
a, b, c ∈ S.

Think of a relationship as a set of tuples.
A tuple is in the set (in the relation) iff the relation holds
on that tuple.

Example: S is Integers, R is <.

Example: S is the power set of {1, 2, 3}, R is subset.

20
10

-1
1-

30

CS 4104

Properties of Relationships (1)

It is “anti” symmetric because it says that if aRb then it is NOT
bRa unless a = b. Consider for example ≤ relation.

Not all authors use the same definitions.

< is vacuously antisymmetric.

Properties of Relationships (2)

A partial order is also called a poset .

If every pair of elements in S is relatable by R, then we have
a linear order .

CS 4104: Data and Algorithm
Analysis Fall 2010 118 / 351

Properties of Relationships (2)

A partial order is also called a poset .

If every pair of elements in S is relatable by R, then we have
a linear order .

20
10

-1
1-

30

CS 4104

Properties of Relationships (2)

We cannot relate {1, 2} with {1, 3}. Which is “bigger? Neither!

Why are we interested in partial orders? Can we find the i th
biggest in a partial order? Maybe, but often not.

However, posets are useful to represent current knowledge,
and also weaker relationships such as max .

General Model

For all of our problems on Selection and Sorting:

The poset has a linear ordering. (Usually natural
numbers and a relationship of ≤.)
Cost measure is the number of 3-way element-element
comparisons.

Selection problems:
Find the max or min.
Find the second largest.
Find the median.
Find the i th largest.
Find several ranks simultaneously.

CS 4104: Data and Algorithm
Analysis Fall 2010 119 / 351

General Model

For all of our problems on Selection and Sorting:

The poset has a linear ordering. (Usually natural
numbers and a relationship of ≤.)
Cost measure is the number of 3-way element-element
comparisons.

Selection problems:
Find the max or min.
Find the second largest.
Find the median.
Find the i th largest.
Find several ranks simultaneously.

20
10

-1
1-

30

CS 4104

General Model

no notes

Finding the Maximum

int Find_max(int *L, int low, int high) {
max = low;
for(i=low+1; i<= high; i++)
if(L[i] > L[max])
max = i;

return max;
}

What is the cost?

Is this optimal?
CS 4104: Data and Algorithm

Analysis Fall 2010 120 / 351

Finding the Maximum

int Find_max(int *L, int low, int high) {
max = low;
for(i=low+1; i<= high; i++)
if(L[i] > L[max])
max = i;

return max;
}

What is the cost?

Is this optimal?

20
10

-1
1-

30

CS 4104

Finding the Maximum

n − 1 = Θ(n) comparisons.

What is the lower bound for this problem?

Proof of Lower Bound (1)

Try #1:

The winner must compare against all other elements, so
there must be n − 1 comparisons.

Try #2:

Only the winner does not lose.

There are n − 1 losers.

A single comparison generates (at most) one (new)
loser.

Therefore, there must be n − 1 comparisons.

CS 4104: Data and Algorithm
Analysis Fall 2010 121 / 351

Proof of Lower Bound (1)

Try #1:

The winner must compare against all other elements, so
there must be n − 1 comparisons.

Try #2:

Only the winner does not lose.

There are n − 1 losers.

A single comparison generates (at most) one (new)
loser.

Therefore, there must be n − 1 comparisons.

20
10

-1
1-

30

CS 4104

Proof of Lower Bound (1)

Try #1 is flawed: There is no reason why the winner needs to
directly compare against each other element. (Note that it does
not in our algorithm!)

Proof of Lower Bound (2)

Alternative proof:

To find the max, we must build a poset having one max
and n − 1 losers, starting from a poset of n singletons.

We wish to connect the elements of the poset with the
minimum number of links.

This requires at least n − 1 links.

A comparison provides at most one new link.

CS 4104: Data and Algorithm
Analysis Fall 2010 122 / 351

Proof of Lower Bound (2)

Alternative proof:

To find the max, we must build a poset having one max
and n − 1 losers, starting from a poset of n singletons.

We wish to connect the elements of the poset with the
minimum number of links.

This requires at least n − 1 links.

A comparison provides at most one new link.20
10

-1
1-

30

CS 4104

Proof of Lower Bound (2)

This proof is not simpler than try #2! But it is a model for proofs
that will be useful later.

Average Cost

What is the average cost for Find_max?
◮ Since it always does the same number of comparisons,

clearly n − 1 comparisons.

How many assignments to max does it do?

Ignoring the actual values in L, there are n!
permutations for the input.

Find_max does an assignment on the i th iteration iff
L[i] is the biggest of the first i elements.
Since this event does happen, or does not happen:

◮ Given no information about distribution, the probability of
an assignment after each comparison is 50%.

CS 4104: Data and Algorithm
Analysis Fall 2010 123 / 351

Average Cost

What is the average cost for Find_max?
◮ Since it always does the same number of comparisons,

clearly n − 1 comparisons.

How many assignments to max does it do?

Ignoring the actual values in L, there are n!
permutations for the input.

Find_max does an assignment on the i th iteration iff
L[i] is the biggest of the first i elements.
Since this event does happen, or does not happen:

◮ Given no information about distribution, the probability of
an assignment after each comparison is 50%.

20
10

-1
1-

30

CS 4104

Average Cost

Warning: For the next few problems, we are not going to be
looking at asymptotic growth rate as we usually do. Instead, we
will look at the exact number of operations of interest
(comparisons, or whatever), and try to minimize the number.

If all values are unique.

Wrong! As i grows, the probability that the next element is
bigger than any of those already seen reduces.

Average Number of Assignments

Find_max does an assignment on the i th iteration iff L[i] is
the biggest of the first i elements.

Assuming all permutations are equally likely, the probability
of this being true is 1/i .

1 +
n

∑

i=2

1
i
× 1 =

n
∑

i=1

1
i
.

This sum generates the nth harmonic number : Hn.

CS 4104: Data and Algorithm
Analysis Fall 2010 124 / 351

Average Number of Assignments

Find_max does an assignment on the i th iteration iff L[i] is
the biggest of the first i elements.

Assuming all permutations are equally likely, the probability
of this being true is 1/i .

1 +
n

∑

i=2

1
i
× 1 =

n
∑

i=1

1
i
.

This sum generates the nth harmonic number : Hn.20
10

-1
1-

30

CS 4104

Average Number of Assignments

∑n
i=2

1
i is the probability, and 1 is the cost.

Technique (1)

Since i ≤ 2⌈log i⌉, 1/i ≥ 1/2⌈log i⌉.

Thus, if n = 2k

H2k = 1 +
1
2

+
1
3

+ ... +
1
2k

≥ 1 +
1
2

+
1
4

+
1
4

+
1
8

+
1
8

+
1
8

+
1
8

+... +
1
2k

= 1 +
1
2

+
2
4

+
4
8

+ ...
2k−1

2k

= 1 +
k
2

.

CS 4104: Data and Algorithm
Analysis Fall 2010 125 / 351

Technique (1)

Since i ≤ 2⌈log i⌉, 1/i ≥ 1/2⌈log i⌉.

Thus, if n = 2k

H2k = 1 +
1
2

+
1
3

+ ... +
1
2k

≥ 1 +
1
2

+
1
4

+
1
4

+
1
8

+
1
8

+
1
8

+
1
8

+... +
1
2k

= 1 +
1
2

+
2
4

+
4
8

+ ...
2k−1

2k

= 1 +
k
2

.

20
10

-1
1-

30

CS 4104

Technique (1)

no notes

Technique (2)

Using similar logic, H2k ≤ k + 1
2k . Thus, Hn = Θ(log n).

More exactly, Hn is close to ln n.

CS 4104: Data and Algorithm
Analysis Fall 2010 126 / 351

Technique (2)

Using similar logic, H2k ≤ k + 1
2k . Thus, Hn = Θ(log n).

More exactly, Hn is close to ln n.

20
10

-1
1-

30

CS 4104

Technique (2)

k = log n

ln means natural log of n (loge n).

Conclusion: The number of assignments is about log n in the
average case.

Variance (1)

How “reliable” is the average?
How much will a given run of the program deviate from
the average?

Variance : For runs of the program, average square of
differences.

Standard deviation : Square root of variance.

From Čebyšev’s Inequality, 75% of the observations fall
within 2 standard deviations of the average.

For Find_max, the variance is

Hn −
π2

6
= ln n − π2

6
CS 4104: Data and Algorithm

Analysis Fall 2010 127 / 351

Variance (1)

How “reliable” is the average?
How much will a given run of the program deviate from
the average?

Variance : For runs of the program, average square of
differences.

Standard deviation : Square root of variance.

From Čebyšev’s Inequality, 75% of the observations fall
within 2 standard deviations of the average.

For Find_max, the variance is

Hn −
π2

6
= ln n − π2

6

20
10

-1
1-

30

CS 4104

Variance (1)

Čebyšev’s Inequality applies to a normal distribution.

Variance (2)

The standard deviation is thus about
√

ln n.

So, 75% of the observations are between ln n − 2
√

ln n
and ln n + 2

√
ln n.

Is this a narrow spread or a wide spread?

CS 4104: Data and Algorithm
Analysis Fall 2010 128 / 351

Variance (2)

The standard deviation is thus about
√

ln n.

So, 75% of the observations are between ln n − 2
√

ln n
and ln n + 2

√
ln n.

Is this a narrow spread or a wide spread?

20
10

-1
1-

30

CS 4104

Variance (2)

A wide spread. Example:

• n = 16. ln n ≈ 4,±2
√

4 = 4, so 4 ± 4.

• n = 64k . ln n ≈ 16,±2
√

16 = 8, so 16 ± 8.

Finding the Second Best

In a single-elimination tournament, is the second best the
one who loses in the finals? Simple algorithm:

Find the best.

Discard it.

Now, find the second best of the n − 1 remaining
elements.

Cost? Is this optimal?

CS 4104: Data and Algorithm
Analysis Fall 2010 129 / 351

Finding the Second Best

In a single-elimination tournament, is the second best the
one who loses in the finals? Simple algorithm:

Find the best.

Discard it.

Now, find the second best of the n − 1 remaining
elements.

Cost? Is this optimal?20
10

-1
1-

30

CS 4104

Finding the Second Best

As we discuss this problem, we consider exact counts, not
asymptotics.

Not necessarily – the best 2 could compete in the first round!
Note that we ignore variations in performance, the outcome
between two players will always be the same.

2n − 3.

To know, need a lower bound on the problem.
Naive: ≈ n might work. Clearly not optimal here! But, tighten
lower bound.

Lower Bound for Second (1)

Lower bound:

Anyone who lost to anyone who is not the max cannot
be second.

So, the only candidates are those who lost to max.

Find_max might compare max to n − 1 others.

Thus, we might need n − 2 additional comparisons to
find second.

Wrong!

CS 4104: Data and Algorithm
Analysis Fall 2010 130 / 351

Lower Bound for Second (1)

Lower bound:

Anyone who lost to anyone who is not the max cannot
be second.

So, the only candidates are those who lost to max.

Find_max might compare max to n − 1 others.

Thus, we might need n − 2 additional comparisons to
find second.

Wrong!20
10

-1
1-

30

CS 4104

Lower Bound for Second (1)

What is wrong with this argument?

Lower Bound for Second (2)

The previous argument exhibits the necessity fallacy :
Our algorithm does something, therefore all algorithms
solving the problem must do the same.

Alternative: Divide and conquer
Break the list into two halves.
Run Find_max on each half.
Compare the winners.
Run Find_max on the winner’s half for second.
Compare that second to second winner.

Cost: ⌈3n/2⌉ − 2.
Is this optimal?
What if we break the list into four pieces? Eight?

CS 4104: Data and Algorithm
Analysis Fall 2010 131 / 351

Lower Bound for Second (2)

The previous argument exhibits the necessity fallacy :
Our algorithm does something, therefore all algorithms
solving the problem must do the same.

Alternative: Divide and conquer
Break the list into two halves.
Run Find_max on each half.
Compare the winners.
Run Find_max on the winner’s half for second.
Compare that second to second winner.

Cost: ⌈3n/2⌉ − 2.
Is this optimal?
What if we break the list into four pieces? Eight?

20
10

-1
1-

30

CS 4104

Lower Bound for Second (2)

In particular, it is not necessary that the max element compare
with n − 1 others, even in the worst case.
⌊n/2⌋ − 1 + ⌈n/2⌉ − 1 ... +1 = n − 1.
Worst case: ⌈n/2⌉ − 1 elements, since winner need not
compete again.
+1.
Cost of ⌈3n/2⌉ − 2 just closed half of the gap between our old
lower bound and our old algorithm – pretty good progress!
4: about 5/4.
8: n − 1 + ⌈n/8⌉ − 1 = ⌈9n/8⌉ − 2.
What if we do this recursively?
f (n) = 2f (n/2) + 2; f (1) = 0 which is 3n/2 − 2, which is no
better than halves. So recursive divide & conquer (in a naive
way) does not work! Quarters would be better!

Binomial Trees (1)
Pushing this idea to its extreme, we want each
comparison to be between winners of equal numbers of
comparisons.

The only candidates for second are losers to the
eventual winner.
A binomial tree of height m has 2m nodes organized
as:

◮ a single node, if m = 0, or
◮ two height m − 1 binomial trees with one tree’s root

becoming a child of the other.

CS 4104: Data and Algorithm
Analysis Fall 2010 132 / 351

Binomial Trees (1)
Pushing this idea to its extreme, we want each
comparison to be between winners of equal numbers of
comparisons.

The only candidates for second are losers to the
eventual winner.
A binomial tree of height m has 2m nodes organized
as:

◮ a single node, if m = 0, or
◮ two height m − 1 binomial trees with one tree’s root

becoming a child of the other.20
10

-1
1-

30

CS 4104

Binomial Trees (1)

but, we want as few of these as possible.

Binomial Trees (2)

Algorithm:

Build the tree.

Compare the ⌈log n⌉ children of the root for second.

Cost?

CS 4104: Data and Algorithm
Analysis Fall 2010 133 / 351

Binomial Trees (2)

Algorithm:

Build the tree.

Compare the ⌈log n⌉ children of the root for second.

Cost?

20
10

-1
1-

30

CS 4104

Binomial Trees (2)

n + ⌈log n⌉ − 2.

Binomial Tree Representation

We could store the binomial tree as an explicit tree
structure.
Can also store binomial tree implicitly: In array.
Assume two trees, each with 2k nodes, are in array as:

◮ First tree in positions 1 to 2k .
◮ Second tree in positions 2k + 1 to 2k+1.
◮ The root of a subtree is in the final array position for that

subtree.
To join:

◮ Compare the roots of the subtrees.
◮ If necessary, swap subtrees so larger root element is

second subtree.

Trades space for time.
CS 4104: Data and Algorithm

Analysis Fall 2010 134 / 351

Binomial Tree Representation

We could store the binomial tree as an explicit tree
structure.
Can also store binomial tree implicitly: In array.
Assume two trees, each with 2k nodes, are in array as:

◮ First tree in positions 1 to 2k .
◮ Second tree in positions 2k + 1 to 2k+1.
◮ The root of a subtree is in the final array position for that

subtree.
To join:

◮ Compare the roots of the subtrees.
◮ If necessary, swap subtrees so larger root element is

second subtree.

Trades space for time.

20
10

-1
1-

30

CS 4104

Binomial Tree Representation

Need more time to swap the trees, but less space.
But all the swaps add up to a total of Θ(n log n) time in the
worst case.
Not really practical to add Θ(n log n) swaps to the cost.

Adversarial Lower Bounds Proof (1)

Many lower bounds proofs use the concept of an adversary .

The adversary’s job is to make an algorithm’s cost as high as
possible.

The algorithm asks the adversary for information about the
input.

The adversary may never lie.

CS 4104: Data and Algorithm
Analysis Fall 2010 135 / 351

Adversarial Lower Bounds Proof (1)

Many lower bounds proofs use the concept of an adversary .

The adversary’s job is to make an algorithm’s cost as high as
possible.

The algorithm asks the adversary for information about the
input.

The adversary may never lie.20
10

-1
1-

30

CS 4104

Adversarial Lower Bounds Proof (1)

no notes

Adversarial Lower Bounds Proof (2)

Imagine that the adversary keeps a list of all possible inputs.

When the algorithm asks a question, the adversary
answers, and crosses out all remaining inputs
inconsistent with that answer.

The adversary is permitted to give any answer that is
consistent with at least one remaining input.

Examples:

Hangman.
Search an unordered list.

CS 4104: Data and Algorithm
Analysis Fall 2010 136 / 351

Adversarial Lower Bounds Proof (2)

Imagine that the adversary keeps a list of all possible inputs.

When the algorithm asks a question, the adversary
answers, and crosses out all remaining inputs
inconsistent with that answer.

The adversary is permitted to give any answer that is
consistent with at least one remaining input.

Examples:

Hangman.
Search an unordered list.

20
10

-1
1-

30

CS 4104

Adversarial Lower Bounds Proof (2)

Adversary maintains dictionary, and can give any answer that
conforms with at least one entry in the dictionary.

Adversary always says “not found” until last element.

Lower Bound for Second Best

At least n − 1 values must lose at least once.

At least n − 1 compares.

In addition, at least k − 1 values must lose to the second
best.

I.e., k direct losers to the winner must be compared.

There must be at least n + k − 2 comparisons.

How low can we make k?

CS 4104: Data and Algorithm
Analysis Fall 2010 137 / 351

Lower Bound for Second Best

At least n − 1 values must lose at least once.

At least n − 1 compares.

In addition, at least k − 1 values must lose to the second
best.

I.e., k direct losers to the winner must be compared.

There must be at least n + k − 2 comparisons.

How low can we make k?

20
10

-1
1-

30

CS 4104

Lower Bound for Second Best

What does your intuition tell you as a lower bound for k? Ω(n)?
Ω(log n)? Ω(c)?

Adversarial Lower Bound

Call the strength of element L[i] the number of elements L[i]
is (known to be) bigger than.

If L[i] has strength a, and L[j] has strength b, then the winner
has strength a + b + 1.

What should the adversary do?

Minimize the rate at which any element improves.

Do this by making the stronger element always win.

Is this legal?

CS 4104: Data and Algorithm
Analysis Fall 2010 138 / 351

Adversarial Lower Bound

Call the strength of element L[i] the number of elements L[i]
is (known to be) bigger than.

If L[i] has strength a, and L[j] has strength b, then the winner
has strength a + b + 1.

What should the adversary do?

Minimize the rate at which any element improves.

Do this by making the stronger element always win.

Is this legal?

20
10

-1
1-

30

CS 4104

Adversarial Lower Bound

The winner has now proved stronger than a + b+ the one who
just lost.

Yes. The adversary cannot “fix” the fight to give contradictory
answers. But, it can give answers consistent with some legal
input.

Lower Bound (Cont.)

What should the algorithm do?

If a ≥ b, then 2a ≥ a + b.

From the algorithm’s point of view, the best outcome is
that an element doubles in strength.

This happens when a = b.

All strengths begin at zero, so the winner must make at
least k comparisons for 2k−1 < n ≤ 2k .

Thus, there must be at least n + ⌈log n⌉ − 2 comparisons.

CS 4104: Data and Algorithm
Analysis Fall 2010 139 / 351

Lower Bound (Cont.)

What should the algorithm do?

If a ≥ b, then 2a ≥ a + b.

From the algorithm’s point of view, the best outcome is
that an element doubles in strength.

This happens when a = b.

All strengths begin at zero, so the winner must make at
least k comparisons for 2k−1 < n ≤ 2k .

Thus, there must be at least n + ⌈log n⌉ − 2 comparisons.

20
10

-1
1-

30

CS 4104

Lower Bound (Cont.)

Need to get the final strength up to n − 1.
These k losers are candidates for 2nd place.

Find Min and Max (1)

Find them independantly: 2n − 2.

Can easily modify to get 2n − 3.

Should be able to do better(?)

Try divide and conquer.

CS 4104: Data and Algorithm
Analysis Fall 2010 140 / 351

Find Min and Max (1)

Find them independantly: 2n − 2.

Can easily modify to get 2n − 3.

Should be able to do better(?)

Try divide and conquer.

20
10

-1
1-

30

CS 4104

Find Min and Max (1)

A slightly different problem.
Question: Which is the tougher problem? Find first and
second? Or find first and last?
The intuition is not obvious.
On the one hand, it seems that in the process of finding the
maximum, you will learn more about the second than you will
about the min.
On the other hand, a given comparison tells you something
about a candidate for max, and a candidate for min.

Find Min and Max (2)

Find_Max_Min(ELEM *L, int lower, int upper) {
if (upper == lower) return lower, lower; // n=1
if (upper == lower+1) // n=2
return max(L[upper], L[lower]),

min(L[upper], L[lower]); // 1 compare
mid = (lower + upper)/2; // n>2
max1, min1 = Find_Max_Min(L, lower, mid);
max2, min2 = Find_Max_Min(L, mid+1, upper);
return max(L[max1], L[max2]),

min(L[min1], L[min2]);
}

Recurrence:

f (n) =

{

2f (n/2) + 2 n > 2
1 n = 2

CS 4104: Data and Algorithm
Analysis Fall 2010 141 / 351

Find Min and Max (2)

Find_Max_Min(ELEM *L, int lower, int upper) {
if (upper == lower) return lower, lower; // n=1
if (upper == lower+1) // n=2
return max(L[upper], L[lower]),

min(L[upper], L[lower]); // 1 compare
mid = (lower + upper)/2; // n>2
max1, min1 = Find_Max_Min(L, lower, mid);
max2, min2 = Find_Max_Min(L, mid+1, upper);
return max(L[max1], L[max2]),

min(L[min1], L[min2]);
}

Recurrence:

f (n) =

{

2f (n/2) + 2 n > 2
1 n = 2

20
10

-1
1-

30

CS 4104

Find Min and Max (2)

no notes

Solving the Recurrence (1)

Assume n = 2k .
Let’s expand the recurrence a bit.

f (n) = 2f (n/2) + 2

= 2[2f (n/4) + 2] + 2

= 4f (n/4) + 4 + 2

= 4[2f (n/8) + 2] + 4 + 2

= 8f (n/8) + 8 + 4 + 2

= 2i f (n/2i) +
i

∑

j=1

2j

CS 4104: Data and Algorithm
Analysis Fall 2010 142 / 351

Solving the Recurrence (1)

Assume n = 2k .
Let’s expand the recurrence a bit.

f (n) = 2f (n/2) + 2

= 2[2f (n/4) + 2] + 2

= 4f (n/4) + 4 + 2

= 4[2f (n/8) + 2] + 4 + 2

= 8f (n/8) + 8 + 4 + 2

= 2i f (n/2i) +
i

∑

j=1

2j20
10

-1
1-

30

CS 4104

Solving the Recurrence (1)

no notes

Solving the Recurrence (2)

f (n) = 2k−1f (n/2k−1) +
k−1
∑

j=1

2j

= 2k−1f (2) +
k−1
∑

j=1

2j

= 2k−1 +
k−1
∑

j=1

2j

= n/2 + 2k − 2

= 3n/2 − 2

CS 4104: Data and Algorithm
Analysis Fall 2010 143 / 351

Solving the Recurrence (2)

f (n) = 2k−1f (n/2k−1) +
k−1
∑

j=1

2j

= 2k−1f (2) +
k−1
∑

j=1

2j

= 2k−1 +
k−1
∑

j=1

2j

= n/2 + 2k − 2

= 3n/2 − 2

20
10

-1
1-

30

CS 4104

Solving the Recurrence (2)

no notes

Looking Closer (1)

But its not always true that n = 2k .
The true cost recurrence is:

f (n) =







0 n = 1
1 n = 2
f (⌊n/2⌋) + f (⌈n/2⌉) + 2 n > 2

Here is what really happens:

n 2 3 4 5 6 7 8 9 10 11
f (n) 1 2 4 6 8 9 10 12 14 16
3n/2 − 2 1 2.5 4 5.5 7 8.5 10 11.5 13 14.5

The true cost for f (n) ranges between 3n/2 − 2 and
5n/3 − 2.

For what sort of input does the algorithm work best?
CS 4104: Data and Algorithm

Analysis Fall 2010 144 / 351

Looking Closer (1)

But its not always true that n = 2k .
The true cost recurrence is:

f (n) =







0 n = 1
1 n = 2
f (⌊n/2⌋) + f (⌈n/2⌉) + 2 n > 2

Here is what really happens:

n 2 3 4 5 6 7 8 9 10 11
f (n) 1 2 4 6 8 9 10 12 14 16
3n/2 − 2 1 2.5 4 5.5 7 8.5 10 11.5 13 14.5

The true cost for f (n) ranges between 3n/2 − 2 and
5n/3 − 2.

For what sort of input does the algorithm work best?

20
10

-1
1-

30

CS 4104

Looking Closer (1)

no notes

Finding a Better Algorithm

What is the cost with six values?

What if we divide into a group of 4 and a group of 2?

With divide and conquer, we seek to minimize the work, not
necessarily balance the input sizes.

When does the algorithm do its best?

What about 12? 24?

Lesson: For divide and conquer, pay attention to what
happens for small n.

CS 4104: Data and Algorithm
Analysis Fall 2010 145 / 351

Finding a Better Algorithm

What is the cost with six values?

What if we divide into a group of 4 and a group of 2?

With divide and conquer, we seek to minimize the work, not
necessarily balance the input sizes.

When does the algorithm do its best?

What about 12? 24?

Lesson: For divide and conquer, pay attention to what
happens for small n.

20
10

-1
1-

30

CS 4104

Finding a Better Algorithm

8

Only need 7.

When each part is a power of 2.

8 vs. 4. 16 vs. 8.

Algorithms from Recurrences (1)

What does this model?

f (n) =







0 n = 1
1 n = 2
min1≤k≤n−1{f (k) + f (n − k)} + 2 n > 2

n 1 2 3 4 5 6 7 8
3 3 3
4 5 4 5
5 7 6 6 7
6 9 7 8 7 9
7 11 9 9 9 9 11
8 13 10 11 10 11 10 13
9 15 12 12 12 12 12 12 15

k = 2 looks promising.
CS 4104: Data and Algorithm

Analysis Fall 2010 146 / 351

Algorithms from Recurrences (1)

What does this model?

f (n) =







0 n = 1
1 n = 2
min1≤k≤n−1{f (k) + f (n − k)} + 2 n > 2

n 1 2 3 4 5 6 7 8
3 3 3
4 5 4 5
5 7 6 6 7
6 9 7 8 7 9
7 11 9 9 9 9 11
8 13 10 11 10 11 10 13
9 15 12 12 12 12 12 12 15

k = 2 looks promising.

20
10

-1
1-

30

CS 4104

Algorithms from Recurrences (1)

no notes

Algorithms from Recurrences (2)

f (n) =







0 n = 1
1 n = 2
f (2) + f (n − 2) + 2 n > 2

Cost: What is the corresponding algorithm?

CS 4104: Data and Algorithm
Analysis Fall 2010 147 / 351

Algorithms from Recurrences (2)

f (n) =







0 n = 1
1 n = 2
f (2) + f (n − 2) + 2 n > 2

Cost: What is the corresponding algorithm?

20
10

-1
1-

30

CS 4104

Algorithms from Recurrences (2)

f (n) = 3/2n − 2.

The Lower Bound (1)

Is ⌈3n/2⌉ − 2 optimal?

Consider all states that a successful algorithm must go
through: The state space lower bound.

At any given instant, track the following four categories:

Novices: not tested.

Winners: Won at least once, never lost.

Losers: Lost at least once, never won.

Moderates: Both won and lost at least once.

CS 4104: Data and Algorithm
Analysis Fall 2010 148 / 351

The Lower Bound (1)

Is ⌈3n/2⌉ − 2 optimal?

Consider all states that a successful algorithm must go
through: The state space lower bound.

At any given instant, track the following four categories:

Novices: not tested.

Winners: Won at least once, never lost.

Losers: Lost at least once, never won.

Moderates: Both won and lost at least once.

20
10

-1
1-

30

CS 4104

The Lower Bound (1)

no notes

The Lower Bound (2)

Who can get ignored?

What is the initial state?

What is the final state?

How is this relevant?

CS 4104: Data and Algorithm
Analysis Fall 2010 149 / 351

The Lower Bound (2)

Who can get ignored?

What is the initial state?

What is the final state?

How is this relevant?20
10

-1
1-

30

CS 4104

The Lower Bound (2)

Moderates – Can’t be min or max.

Initial: (n, 0, 0, 0).

Final: (0, 1, 1, n-2).

We must go from the initial state to the final state to solve the
problem.
So, we can analyze how this gets done.

Lower Bound (3)

Every algorithm must go from (n, 0, 0, 0) to (0, 1, 1, n − 2).

There are 10 types of comparison.

Comparing with a moderate cannot be more efficient than
other comparisons, so ignore them.

CS 4104: Data and Algorithm
Analysis Fall 2010 150 / 351

Lower Bound (3)

Every algorithm must go from (n, 0, 0, 0) to (0, 1, 1, n − 2).

There are 10 types of comparison.

Comparing with a moderate cannot be more efficient than
other comparisons, so ignore them.

20
10

-1
1-

30

CS 4104

Lower Bound (3)

That gets rid of 4 types of comparisons.

Lower Bound (3)

If we are in state (i , j , k , l) and we have a comparison, then:
N : N (i − 2, j + 1, k + 1, l)
W : W (i , j − 1, k , l + 1)
L : L (i , j , k − 1, l + 1)
L : N (i − 1, j + 1, k , l)

or (i − 1, j , k , l + 1)
W : N (i − 1, j , k + 1, l)

or (i − 1, j , k , l + 1)
W : L (i , j , k , l)

or (i , j − 1, k − 1, l + 2)

CS 4104: Data and Algorithm
Analysis Fall 2010 151 / 351

Lower Bound (3)

If we are in state (i , j , k , l) and we have a comparison, then:
N : N (i − 2, j + 1, k + 1, l)
W : W (i , j − 1, k , l + 1)
L : L (i , j , k − 1, l + 1)
L : N (i − 1, j + 1, k , l)

or (i − 1, j , k , l + 1)
W : N (i − 1, j , k + 1, l)

or (i − 1, j , k , l + 1)
W : L (i , j , k , l)

or (i , j − 1, k − 1, l + 2)20
10

-1
1-

30

CS 4104

Lower Bound (3)

no notes

Adversarial Argument

What should an adversary do?
Comparing a winner to a loser is of no value.

Only the following five transitions are of interest:
N : N (i − 2, j + 1, k + 1, l)
L : N (i − 1, j + 1, k , l)
W : N (i − 1, j , k + 1, l)
W : W (i , j − 1, k , l + 1)
L : L (i , j , k − 1, l + 1)

Only the last two types increase the number of moderates,
so there must be n − 2 of these.

The number of novices must go to 0, and the first is the most
efficient way to do this: ⌈n/2⌉ are required.

CS 4104: Data and Algorithm
Analysis Fall 2010 152 / 351

Adversarial Argument

What should an adversary do?
Comparing a winner to a loser is of no value.

Only the following five transitions are of interest:
N : N (i − 2, j + 1, k + 1, l)
L : N (i − 1, j + 1, k , l)
W : N (i − 1, j , k + 1, l)
W : W (i , j − 1, k , l + 1)
L : L (i , j , k − 1, l + 1)

Only the last two types increase the number of moderates,
so there must be n − 2 of these.

The number of novices must go to 0, and the first is the most
efficient way to do this: ⌈n/2⌉ are required.

20
10

-1
1-

30

CS 4104

Adversarial Argument

Minimize information gained.

Adversary will just make the winner win – No new information is
provided.

This provides an algorithm. Think about it and you will see
“MinMax” program.

Finding the i th Best

We need to find the following poset:

We don’t care about the relative order within the upper
and lower groups.

Can we do better than sorting? (Θ(n log n))

Can we tighten the lower bound beyond n?

What if we want to find the median element?
CS 4104: Data and Algorithm

Analysis Fall 2010 153 / 351

Finding the i th Best

We need to find the following poset:

We don’t care about the relative order within the upper
and lower groups.

Can we do better than sorting? (Θ(n log n))

Can we tighten the lower bound beyond n?

What if we want to find the median element?

20
10

-1
1-

30

CS 4104

Finding the i th Best

Hopefully, since less information is required.

No – the i th element could be any of the inputs.

This is probably the hardest.

Splitting a List

Given an arbitrary element, partition the list into those
elements less and those elements greater.

// Initially, l and r are one position to left and
// right of the subarray, respectively
int partition(Elem A[], int l, int r, Elem pivot) {
do { // Move bounds inward to meet
while (A[++l] < pivot); // Move l right and
while ((l < r) && (A[--r] > pivot)); // r left
swap(A, l, r); // Swap values

} while (l < r); // Stop when they cross
return l; // Return first position on right

}

If the pivot position is i th best, we are done.
If not, solve the subproblem recursively.

CS 4104: Data and Algorithm
Analysis Fall 2010 154 / 351

Splitting a List

Given an arbitrary element, partition the list into those
elements less and those elements greater.

// Initially, l and r are one position to left and
// right of the subarray, respectively
int partition(Elem A[], int l, int r, Elem pivot) {

do { // Move bounds inward to meet
while (A[++l] < pivot); // Move l right and
while ((l < r) && (A[--r] > pivot)); // r left
swap(A, l, r); // Swap values

} while (l < r); // Stop when they cross
return l; // Return first position on right

}

If the pivot position is i th best, we are done.
If not, solve the subproblem recursively.

20
10

-1
1-

30

CS 4104

Splitting a List

no notes

Cost (1)

What is the worst case cost of this algorithm?
Under what circumstances?

What is average case cost if we pick pivots at random?
Let f (n, i) be average time to find i th best of n elements.
Array bounds go from 1 to n
Call j the position of the pivot

f (n, i) = (n − 1) +
1
n

n
∑

j=i+1

f (j − 1, i) +
1
n

0

+
1
n

i−1
∑

j=1

f (n − j , i − j).

CS 4104: Data and Algorithm
Analysis Fall 2010 155 / 351

Cost (1)

What is the worst case cost of this algorithm?
Under what circumstances?

What is average case cost if we pick pivots at random?
Let f (n, i) be average time to find i th best of n elements.
Array bounds go from 1 to n
Call j the position of the pivot

f (n, i) = (n − 1) +
1
n

n
∑

j=i+1

f (j − 1, i) +
1
n

0

+
1
n

i−1
∑

j=1

f (n − j , i − j).20
10

-1
1-

30

CS 4104

Cost (1)

Θ(n2) for bad pivots.
We will find average case cost by summing all the costs for all
the cases, and divide by number of cases.

First part is partion cost, next is when i < j , then when i = j ,
and finally, the case when i > j .

Cost (2)

Let f (n) be the cost averaged over all i .

f (n) =
1
n

n
∑

i=1

f (n, i).

Note: Even if we just want to analyze for median-finding, still
need to be able to solve for arbitrary i on recursive calls.

CS 4104: Data and Algorithm
Analysis Fall 2010 156 / 351

Cost (2)

Let f (n) be the cost averaged over all i .

f (n) =
1
n

n
∑

i=1

f (n, i).

Note: Even if we just want to analyze for median-finding, still
need to be able to solve for arbitrary i on recursive calls.

20
10

-1
1-

30

CS 4104

Cost (2)

no notes

Technique (1)

nf (n) =
n

∑

i=1

f (n, i)

= n2 − n +
1
n

n
∑

i=1







n
∑

j=i+1

f (j − 1, i)+

i−1
∑

j=1

f (n − j , i − j)







.

It turns out that the two double sums are the same (just
going from different directions).

CS 4104: Data and Algorithm
Analysis Fall 2010 157 / 351

Technique (1)

nf (n) =
n

∑

i=1

f (n, i)

= n2 − n +
1
n

n
∑

i=1







n
∑

j=i+1

f (j − 1, i)+

i−1
∑

j=1

f (n − j , i − j)







.

It turns out that the two double sums are the same (just
going from different directions).

20
10

-1
1-

30

CS 4104

Technique (1)

Factor n2 − n out of f (n, i) since there are n of them.
Swap columns for rows in the two inner sums, they are the
same.

Technique (2)

nf (n) = n2 − n +
2
n

n−1
∑

j=1

j
∑

i=1

f (j , i)

= n2 − n +
2
n

n−1
∑

j=1

jf (j)

Therefore,

n2f (n) = n3 − n2 + 2
n−1
∑

j=1

jf (j).

This is an example of a full history recurrence.
CS 4104: Data and Algorithm

Analysis Fall 2010 158 / 351

Technique (2)

nf (n) = n2 − n +
2
n

n−1
∑

j=1

j
∑

i=1

f (j , i)

= n2 − n +
2
n

n−1
∑

j=1

jf (j)

Therefore,

n2f (n) = n3 − n2 + 2
n−1
∑

j=1

jf (j).

This is an example of a full history recurrence.

20
10

-1
1-

30

CS 4104

Technique (2)

The inner sum on the first line is the same as the two inner
sums on the previous page... the diagonals are the first one’s
columns.
Note:

f (n) = 1/n
n

∑

i=1

f (n, i)

f (j) = 1/j
j

∑

i=1

f (j , i)

So jf (j) =
∑j

i=1 f (j , i).
Cancel out 1/n.

Solving the Recurrence (1)

If we subtract the appropriate form of f (n − 1), most of the
terms will cancel out.

n2f (n) − (n − 1)2f (n − 1)

= n3 − n2 + 2
n−1
∑

j=1

jf (j)

−(n − 1)3 + (n − 1)2 − 2
n−2
∑

j=1

jf (j)

= 3n2 − 5n + 2 + 2(n − 1)f (n − 1)

⇒ n2f (n) = (n2 − 1)f (n − 1) + 3n2 − 5n + 2.

CS 4104: Data and Algorithm
Analysis Fall 2010 159 / 351

Solving the Recurrence (1)

If we subtract the appropriate form of f (n − 1), most of the
terms will cancel out.

n2f (n) − (n − 1)2f (n − 1)

= n3 − n2 + 2
n−1
∑

j=1

jf (j)

−(n − 1)3 + (n − 1)2 − 2
n−2
∑

j=1

jf (j)

= 3n2 − 5n + 2 + 2(n − 1)f (n − 1)

⇒ n2f (n) = (n2 − 1)f (n − 1) + 3n2 − 5n + 2.

20
10

-1
1-

30

CS 4104

Solving the Recurrence (1)

The two sums add up to 2(n − 1)f (n − 1).

Now add back (n − 1)2f (n − 1) to get next line

Gather up f (n − 1) terms on both sides:
n2 − 2n + 1 + 2n − 2 = n2 − 1.

Solving the Recurrence (2)

Estimate:

n2f (n) = (n2 − 1)f (n − 1) + 3n2 − 5n + 2

< n2f (n − 1) + 3n2

⇒ f (n) < f (n − 1) + 3

⇒ f (n) < 3n

Therefore, f (n) is in O(n).

Does this mean that the worst case is linear?

CS 4104: Data and Algorithm
Analysis Fall 2010 160 / 351

Solving the Recurrence (2)

Estimate:

n2f (n) = (n2 − 1)f (n − 1) + 3n2 − 5n + 2

< n2f (n − 1) + 3n2

⇒ f (n) < f (n − 1) + 3

⇒ f (n) < 3n

Therefore, f (n) is in O(n).

Does this mean that the worst case is linear?

20
10

-1
1-

30

CS 4104

Solving the Recurrence (2)

No, we are just computing the average.

Improving the Worst Case

Want worst case linear algorithm.

Goal: Pick a pivot that guarentees discarding a fixed
proportion of the elements.

Can’t just choose a pivot at random.

Median would be ideal – too expensive.

Choose a constant c, pick the median of a sample of size
n/c elements.

Will discard at least n/2c elements.
CS 4104: Data and Algorithm

Analysis Fall 2010 161 / 351

Improving the Worst Case

Want worst case linear algorithm.

Goal: Pick a pivot that guarentees discarding a fixed
proportion of the elements.

Can’t just choose a pivot at random.

Median would be ideal – too expensive.

Choose a constant c, pick the median of a sample of size
n/c elements.

Will discard at least n/2c elements.

20
10

-1
1-

30

CS 4104

Improving the Worst Case

no notes

Selecting an Approximate Median

Algorithm:
Choose the n/5 medians for groups of 5 elements of L.
Recursively, select the median of the n/5 elements.
Use partition to partition the list into large and small
elements around the “median.”

For 5, discard at least 2
For 15, discard at least 5
For 25, discard at least 8
In general, discard at least (3n + 5)/10

CS 4104: Data and Algorithm
Analysis Fall 2010 162 / 351

Selecting an Approximate Median

Algorithm:
Choose the n/5 medians for groups of 5 elements of L.
Recursively, select the median of the n/5 elements.
Use partition to partition the list into large and small
elements around the “median.”

For 5, discard at least 2
For 15, discard at least 5
For 25, discard at least 8
In general, discard at least (3n + 5)/10

20
10

-1
1-

30

CS 4104

Selecting an Approximate Median

Can find median of 5 values in 6 compares.

Constructive Induction (1)

Is the following recurrence linear?
f (n) ≤ f (⌈n/5⌉) + f (⌈(7n − 5)/10⌉) + 6⌈n/5⌉ + n − 1.

To answer this, assume it is true for some constant r such
that f (n) ≤ rn for all n greater than some bound.

f (n) ≤ f (⌈n
5
⌉) + f (⌈7n − 5

10
⌉) + 6⌈n

5
⌉ + n − 1

≤ r(
n
5

+ 1) + r(
7n − 5

10
+ 1) + 6(

n
5

+ 1) + n − 1

≤ (
r
5

+
7r
10

+
11
5

)n +
3r
2

+ 5

≤ 9r + 22
10

n +
3r + 10

2
≤ rn.

CS 4104: Data and Algorithm
Analysis Fall 2010 163 / 351

Constructive Induction (1)

Is the following recurrence linear?
f (n) ≤ f (⌈n/5⌉) + f (⌈(7n − 5)/10⌉) + 6⌈n/5⌉ + n − 1.

To answer this, assume it is true for some constant r such
that f (n) ≤ rn for all n greater than some bound.

f (n) ≤ f (⌈n
5
⌉) + f (⌈7n − 5

10
⌉) + 6⌈n

5
⌉ + n − 1

≤ r(
n
5

+ 1) + r(
7n − 5

10
+ 1) + 6(

n
5

+ 1) + n − 1

≤ (
r
5

+
7r
10

+
11
5

)n +
3r
2

+ 5

≤ 9r + 22
10

n +
3r + 10

2
≤ rn.

20
10

-1
1-

30

CS 4104

Constructive Induction (1)

Parts:

• Median of sample

• Largest possible fraction to find in recursive call – due to
“select median of medians” process.

• Find median of 5 elements in 6 passes.

• Partition

Apply hypothesis

Constructive Induction (2)

Try r = 1: 3.1n + 7.5 ≤ n which doesn’t work.
Try r = 23: Get 22.9n + 39.5 ≤ 23n.
This is true for n ≥ 395.

Thus, we can use induction to prove that,

∀n ≥ 395, f (n) ≤ 23n.

This algorithm is not practical. Better to rely on “luck.”

CS 4104: Data and Algorithm
Analysis Fall 2010 164 / 351

Constructive Induction (2)

Try r = 1: 3.1n + 7.5 ≤ n which doesn’t work.
Try r = 23: Get 22.9n + 39.5 ≤ 23n.
This is true for n ≥ 395.

Thus, we can use induction to prove that,

∀n ≥ 395, f (n) ≤ 23n.

This algorithm is not practical. Better to rely on “luck.”20
10

-1
1-

30

CS 4104

Constructive Induction (2)

no notes

Changing the Model (1)

What if we settle for the “approximate best?”

Types of guarentees, given that the algorithm produces X
and the best is Y :

1 X = Y . [Deterministic algorithm]
2 X ’s rank is “close to” Y ’s rank: [Approximation]

rank(X) ≤ rank(Y) + “small”.

3 X is “usually” Y . [Probabilistic]

P(X = Y) ≥ “large”.

4 X ’s rank is “usually” “close” to Y ’s rank. [Heuristic]
CS 4104: Data and Algorithm

Analysis Fall 2010 165 / 351

Changing the Model (1)

What if we settle for the “approximate best?”

Types of guarentees, given that the algorithm produces X
and the best is Y :

1 X = Y . [Deterministic algorithm]
2 X ’s rank is “close to” Y ’s rank: [Approximation]

rank(X) ≤ rank(Y) + “small”.

3 X is “usually” Y . [Probabilistic]

P(X = Y) ≥ “large”.

4 X ’s rank is “usually” “close” to Y ’s rank. [Heuristic]

20
10

-1
1-

30

CS 4104

Changing the Model (1)

no notes

Changing the Model (2)

We can also sacrifice reliability for speed:
1 We find the best, “usually” fast.
2 We find the best fast, or we don’t get an answer at all

(but fast).

CS 4104: Data and Algorithm
Analysis Fall 2010 166 / 351

Changing the Model (2)

We can also sacrifice reliability for speed:
1 We find the best, “usually” fast.
2 We find the best fast, or we don’t get an answer at all

(but fast).

20
10

-1
1-

30

CS 4104

Changing the Model (2)

This is good if we can re-run with equal, independent
probability of getting the correct answer.

Examples for Findmax

Choose m elements at random, and pick the best.

For large n, if m = log n, the answer is pretty good.

Cost is m − 1.

Rank is mn
m+1 .

CS 4104: Data and Algorithm
Analysis Fall 2010 167 / 351

Examples for Findmax

Choose m elements at random, and pick the best.

For large n, if m = log n, the answer is pretty good.

Cost is m − 1.

Rank is mn
m+1 .

20
10

-1
1-

30

CS 4104

Examples for Findmax

An approximation algorithm.

“Rank” meaning average best rank.
For n = 1000, that is 10/11n (top 100).
For n = 1, 000, 000, that is 20/21n (top 50k).

Probabilistic Algorithms

Probabilistic algorithms include steps that are affected by
random events.

Problem: Pick one number in the upper half of the values in
a set.

1 Pick maximum: n − 1 comparisons.
2 Pick maximum from just over 1/2 of the elements: n/2

comparisons.

Can we do better? Not if we want a guarantee .

CS 4104: Data and Algorithm
Analysis Fall 2010 168 / 351

Probabilistic Algorithms

Probabilistic algorithms include steps that are affected by
random events.

Problem: Pick one number in the upper half of the values in
a set.

1 Pick maximum: n − 1 comparisons.
2 Pick maximum from just over 1/2 of the elements: n/2

comparisons.

Can we do better? Not if we want a guarantee .

20
10

-1
1-

30

CS 4104

Probabilistic Algorithms

no notes

Probabilistic Algorithm

Pick 2 numbers and choose the greater.

This will be in the upper half with probability 3/4.

Not good enough? Pick more numbers!

For k numbers, greatest is in upper half with probability
1 − 2−k .

Monte Carlo Algorithm: Good running time, result not
guaranteed.

Las Vegas Algorithm: Result guaranteed, but not running
time.

CS 4104: Data and Algorithm
Analysis Fall 2010 169 / 351

Probabilistic Algorithm

Pick 2 numbers and choose the greater.

This will be in the upper half with probability 3/4.

Not good enough? Pick more numbers!

For k numbers, greatest is in upper half with probability
1 − 2−k .

Monte Carlo Algorithm: Good running time, result not
guaranteed.

Las Vegas Algorithm: Result guaranteed, but not running
time.

20
10

-1
1-

30

CS 4104

Probabilistic Algorithm

Pick k large enough, and the chance for failure becomes less
than the chance that the machine will crash (e.g., probability
that determinisitic algorithm will give no answer).

Think that you would rather have no answer than the wrong
answer? If k is big enough, the probability of a wrong answer is
less than that of any calamity (with non-zero probability) that
you can think of – with this probability independent of n, and
independent of the data.

An example would be finding a value in an array by guessing a
position.

Sorting

Initial model:
Sort key has a linear order (comparable).
We have an array of elements.
We wish to sort the elements in the array.
We get information about elements only by comparison
of two elements.
We can preserve order information only by swapping a
pair of elements.

To simplify analysis:
Assume all elements are unique.
For analysis purposes, consider the input to be a
permutation of the values 1 to n.

What if the ALGORITHM could make this assumption?
CS 4104: Data and Algorithm

Analysis Fall 2010 170 / 351

Sorting

Initial model:
Sort key has a linear order (comparable).
We have an array of elements.
We wish to sort the elements in the array.
We get information about elements only by comparison
of two elements.
We can preserve order information only by swapping a
pair of elements.

To simplify analysis:
Assume all elements are unique.
For analysis purposes, consider the input to be a
permutation of the values 1 to n.

What if the ALGORITHM could make this assumption?

20
10

-1
1-

30

CS 4104

Sorting

With this assumption, the algorithm could just be simple
binsort. The goal is to simplify our analysis, not our problem.

Swap Sorts (1)

Repeatedly scan input, swapping any out-of-order elements.

Bubble sort: O(n2) in worst case.

Inversions of an element: the number of smaller elements
to the right of the element.

The sum of inversions for all elements is the number of
swaps required by bubblesort.

ANY algorithm that removes one inversion per swap requires
at least this many swaps.

CS 4104: Data and Algorithm
Analysis Fall 2010 171 / 351

Swap Sorts (1)

Repeatedly scan input, swapping any out-of-order elements.

Bubble sort: O(n2) in worst case.

Inversions of an element: the number of smaller elements
to the right of the element.

The sum of inversions for all elements is the number of
swaps required by bubblesort.

ANY algorithm that removes one inversion per swap requires
at least this many swaps.

20
10

-1
1-

30

CS 4104

Swap Sorts (1)

no notes

Swap Sorts (2)

Worst number of inversions:

Best number of inversions:

Average number of inversions:

Note that the sum of the total inversions for any
permutation and its reverse is n(n−1)

2 .

Alternative view: every one of the n(n−1)
2 possible

inversions occurs in a given permutation or its reverse.

CS 4104: Data and Algorithm
Analysis Fall 2010 172 / 351

Swap Sorts (2)

Worst number of inversions:

Best number of inversions:

Average number of inversions:

Note that the sum of the total inversions for any
permutation and its reverse is n(n−1)

2 .

Alternative view: every one of the n(n−1)
2 possible

inversions occurs in a given permutation or its reverse.20
10

-1
1-

30

CS 4104

Swap Sorts (2)

Worst # inversions:
n−1
∑

i=0

i =
n(n − 1)

2

Best # inversions: 0

So, n(n − 1)/4 on average.

Heap Sort (1)

Heap: complete binary tree with the value of any node at
least as large as its two children.

Algorithm:
Build the heap.
Repeat n times:

◮ Remove the root.
◮ Repair the heap.

This gives us list in reverse sorted order.

Since the heap is a complete binary tree, it can be stored in
an array.

CS 4104: Data and Algorithm
Analysis Fall 2010 173 / 351

Heap Sort (1)

Heap: complete binary tree with the value of any node at
least as large as its two children.

Algorithm:
Build the heap.
Repeat n times:

◮ Remove the root.
◮ Repair the heap.

This gives us list in reverse sorted order.

Since the heap is a complete binary tree, it can be stored in
an array.

20
10

-1
1-

30

CS 4104

Heap Sort (1)

no notes

Heap Sort (2)

To delete max element:

Swap the last element in the heap with the first (root).

Repeatedly swap the placeholder with larger of its two
children until done.

CS 4104: Data and Algorithm
Analysis Fall 2010 174 / 351

Heap Sort (2)

To delete max element:

Swap the last element in the heap with the first (root).

Repeatedly swap the placeholder with larger of its two
children until done.

20
10

-1
1-

30

CS 4104

Heap Sort (2)

no notes

Building the heap

To build a heap, first heapify the two subheaps, then push
down the root to its proper position.

Cost: f (n) ≤ 2f (n/2) + 2 log n.

Alternatively: Start at first internal node and, moving up the
array, siftdown each element.

Cost:

f (n) =

log n
∑

i=1

(i − 1)
n
2i

=
n
2

log n−1
∑

i=1

i
2i

< 2
n
2

= n.

CS 4104: Data and Algorithm
Analysis Fall 2010 175 / 351

Building the heap

To build a heap, first heapify the two subheaps, then push
down the root to its proper position.

Cost: f (n) ≤ 2f (n/2) + 2 log n.

Alternatively: Start at first internal node and, moving up the
array, siftdown each element.

Cost:

f (n) =

log n
∑

i=1

(i − 1)
n
2i

=
n
2

log n−1
∑

i=1

i
2i

< 2
n
2

= n.

20
10

-1
1-

30

CS 4104

Building the heap

Distance from bottom × # of nodes at that distance.

This is an example where exponential growth works in your
favor. A lot of the elements are at the bottom, where they do not
have much work to do.

Quicksort

Algorithm:

Pick a pivot value.

Split the array into elements less than the pivot and
elements greater than the pivot.

Recursively sort the sublists.

Worst case:

Pick the pivot at random, so that no particular input has bad
performance.

CS 4104: Data and Algorithm
Analysis Fall 2010 176 / 351

Quicksort

Algorithm:

Pick a pivot value.

Split the array into elements less than the pivot and
elements greater than the pivot.

Recursively sort the sublists.

Worst case:

Pick the pivot at random, so that no particular input has bad
performance.

20
10

-1
1-

30

CS 4104

Quicksort

n2

Quicksort Average Cost (1)

f (n) =

{

0 n ≤ 1
n − 1 + 1

n

∑n−1
i=0 (f (i) + f (n − i − 1)) n > 1

Since the two halves of the summation are identical,

f (n) =

{

0 n ≤ 1
n − 1 + 2

n

∑n−1
i=0 f (i) n > 1

Multiplying both sides by n yields

nf (n) = n(n − 1) + 2
n−1
∑

i=0

f (i).

CS 4104: Data and Algorithm
Analysis Fall 2010 177 / 351

Quicksort Average Cost (1)

f (n) =

{

0 n ≤ 1
n − 1 + 1

n

∑n−1
i=0 (f (i) + f (n − i − 1)) n > 1

Since the two halves of the summation are identical,

f (n) =

{

0 n ≤ 1
n − 1 + 2

n

∑n−1
i=0 f (i) n > 1

Multiplying both sides by n yields

nf (n) = n(n − 1) + 2
n−1
∑

i=0

f (i).

20
10

-1
1-

30

CS 4104

Quicksort Average Cost (1)

Why multiply by n? Because otherwise (when we subtract later)
you get

f (n) − f (n − 1) = (n − 1) − (n − 2) +
2
n

n−1
∑

i=0

f (i) − 2
n − 1

n−2
∑

i=0

f (i)

which is no improvement!

Average Cost (2)

Get rid of the full history by subtracting nf (n) from
(n + 1)f (n + 1)

nf (n) = n(n − 1) + 2
n−1
∑

i=1

f (i)

(n + 1)f (n + 1) = (n + 1)n + 2
n

∑

i=1

f (i)

(n + 1)f (n + 1) − nf (n) = 2n + 2f (n)

(n + 1)f (n + 1) = 2n + (n + 2)f (n)

f (n + 1) =
2n

n + 1
+

n + 2
n + 1

f (n).

CS 4104: Data and Algorithm
Analysis Fall 2010 178 / 351

Average Cost (2)

Get rid of the full history by subtracting nf (n) from
(n + 1)f (n + 1)

nf (n) = n(n − 1) + 2
n−1
∑

i=1

f (i)

(n + 1)f (n + 1) = (n + 1)n + 2
n

∑

i=1

f (i)

(n + 1)f (n + 1) − nf (n) = 2n + 2f (n)

(n + 1)f (n + 1) = 2n + (n + 2)f (n)

f (n + 1) =
2n

n + 1
+

n + 2
n + 1

f (n).

20
10

-1
1-

30

CS 4104

Average Cost (2)

no notes

Average Cost (3)

Note that 2n
n+1 ≤ 2 for n ≥ 1. Expanding the recurrence, we

get

f (n+1) ≤ 2 +
n + 2
n + 1

f (n)

= 2 +
n + 2
n + 1

(

2 +
n + 1

n
f (n − 1)

)

= 2 +
n + 2
n + 1

(

2 +
n + 1

n

(

2 +
n

n − 1
f (n − 2)

))

= 2 +
n + 2
n + 1

(

2 + · · · + 4
3

(2 +
3
2

f (1))

)

CS 4104: Data and Algorithm
Analysis Fall 2010 179 / 351

Average Cost (3)

Note that 2n
n+1 ≤ 2 for n ≥ 1. Expanding the recurrence, we

get

f (n+1) ≤ 2 +
n + 2
n + 1

f (n)

= 2 +
n + 2
n + 1

(

2 +
n + 1

n
f (n − 1)

)

= 2 +
n + 2
n + 1

(

2 +
n + 1

n

(

2 +
n

n − 1
f (n − 2)

))

= 2 +
n + 2
n + 1

(

2 + · · · + 4
3

(2 +
3
2

f (1))

)

20
10

-1
1-

30

CS 4104

Average Cost (3)

no notes

Average Cost (3)

= 2
(

1 +
n + 2
n + 1

+
n + 2
n + 1

n + 1
n

+ · · ·

+
n + 2
n + 1

n + 1
n

· · · 3
2

)

= 2
(

1 + (n + 2)

(

1
n + 1

+
1
n

+ · · · + 1
2

))

= 2 + 2(n + 2) (Hn+1 − 1)

= Θ(n log n).

CS 4104: Data and Algorithm
Analysis Fall 2010 180 / 351

Average Cost (3)

= 2
(

1 +
n + 2
n + 1

+
n + 2
n + 1

n + 1
n

+ · · ·

+
n + 2
n + 1

n + 1
n

· · · 3
2

)

= 2
(

1 + (n + 2)

(

1
n + 1

+
1
n

+ · · · + 1
2

))

= 2 + 2(n + 2) (Hn+1 − 1)

= Θ(n log n).20
10

-1
1-

30

CS 4104

Average Cost (3)

Hn is the Harmonic series.

This actually just tells us O(n log n), but

Hn =
n

∑

i=1

1/i = Θ(log n).

Lower Bound for Sorting (1)

What is the smallest number of comparisons needed to sort
n values?

Clearly, sorting is as hard as finding the min and max
element: ⌈3n/2⌉ − 2.

Why?

Information theory says that, if an algorithm uses only
binary decisions to distinguish between n possibilities, then it
must use at least log n such decisions on average.

How is this relevant?
CS 4104: Data and Algorithm

Analysis Fall 2010 181 / 351

Lower Bound for Sorting (1)

What is the smallest number of comparisons needed to sort
n values?

Clearly, sorting is as hard as finding the min and max
element: ⌈3n/2⌉ − 2.

Why?

Information theory says that, if an algorithm uses only
binary decisions to distinguish between n possibilities, then it
must use at least log n such decisions on average.

How is this relevant?

20
10

-1
1-

30

CS 4104

Lower Bound for Sorting (1)

Because, if it weren’t, we could sort and then get the min and
max elements from the sorted list. This is an example of a
reduction.

Comparisons are binary decisions. There are n! possible
inputs.

Lower Bound for Sorting (2)

There are n! permutations to the input array.

So, by information theory, we need at least
log n! = Θ(n log n) comparisons.

Using the decision tree model, what is the average depth of
a node?

This is also Θ(log n!).

CS 4104: Data and Algorithm
Analysis Fall 2010 182 / 351

Lower Bound for Sorting (2)

There are n! permutations to the input array.

So, by information theory, we need at least
log n! = Θ(n log n) comparisons.

Using the decision tree model, what is the average depth of
a node?

This is also Θ(log n!).20
10

-1
1-

30

CS 4104

Lower Bound for Sorting (2)

log n− (1 or 2).

Linear Insert Sort

Put the element i into a sorted list of the first i − 1 elements.

Worst case cost:

Best case cost:

Average case cost:

What if we use binary search? (This is called binary insert
sort.)

CS 4104: Data and Algorithm
Analysis Fall 2010 183 / 351

Linear Insert Sort

Put the element i into a sorted list of the first i − 1 elements.

Worst case cost:

Best case cost:

Average case cost:

What if we use binary search? (This is called binary insert
sort.)

20
10

-1
1-

30

CS 4104

Linear Insert Sort

Θ(n2): Each element does i − 1 comparisons.

n (1 comparison each).

n(n − 1)

4

Cuts # of comparisons – does not change # of swaps.

Optimal Sorting (1)

If we count ONLY comparisons, binary insert sort is pretty
good.

What is the absolute minimum number of comparisons
needed to sort?

For n = 5, how many comparisons do we need for binary
insert sort?

Binary search is best for what values of n?

Binary search is worst for what values of n?
CS 4104: Data and Algorithm

Analysis Fall 2010 184 / 351

Optimal Sorting (1)

If we count ONLY comparisons, binary insert sort is pretty
good.

What is the absolute minimum number of comparisons
needed to sort?

For n = 5, how many comparisons do we need for binary
insert sort?

Binary search is best for what values of n?

Binary search is worst for what values of n?

20
10

-1
1-

30

CS 4104

Optimal Sorting (1)

Binary insert sort: 1 + 2 + 2 + 3 = 8 compares.

Best for 2i − 1

Worst for 2i

Optimal Sorting (2)

Build the following poset:

Now, put in the fifth element (B) into the chain of 3.

Now, put in the off-element (A).

Total cost?

CS 4104: Data and Algorithm
Analysis Fall 2010 185 / 351

Optimal Sorting (2)

Build the following poset:

Now, put in the fifth element (B) into the chain of 3.

Now, put in the off-element (A).

Total cost?

20
10

-1
1-

30

CS 4104

Optimal Sorting (2)

In two steps

2 compares

2 compare

7 compares

Ten Elements

Pair the elements: 5 comparisons.

Sort the winners of the pairings, using the previous
algorithm: 7 comparisons.

Now, all we need to do is to deal with the original losers.

General algorithm:

Pair up all the nodes with ⌊n
2⌋ comparisons.

Recursively sort the winners.

Fold in the losers.
CS 4104: Data and Algorithm

Analysis Fall 2010 186 / 351

Ten Elements

Pair the elements: 5 comparisons.

Sort the winners of the pairings, using the previous
algorithm: 7 comparisons.

Now, all we need to do is to deal with the original losers.

General algorithm:

Pair up all the nodes with ⌊n
2⌋ comparisons.

Recursively sort the winners.

Fold in the losers.

20
10

-1
1-

30

CS 4104

Ten Elements

no notes

Finishing the Sort (1)

We will use binary insert to place the losers.

However, we are free to choose best ordering for inserting.

Recall that binary search is best for 2k − 1 items.

CS 4104: Data and Algorithm
Analysis Fall 2010 187 / 351

Finishing the Sort (1)

We will use binary insert to place the losers.

However, we are free to choose best ordering for inserting.

Recall that binary search is best for 2k − 1 items.

20
10

-1
1-

30

CS 4104

Finishing the Sort (1)

no notes

Finishing the Sort (2)

Pick the order of inserts to optimize the binary searches.

3 (2 compares: size 3)

4 (2 compares: size either 2 or 3, depending on where
element 3 ends up)

1 (3 compares: size between 5 and 7)

2 (3 compares: size between 5 and 7)

We can form an algorithm: Binary Merge.

This sort is called merge insert sort

CS 4104: Data and Algorithm
Analysis Fall 2010 188 / 351

Finishing the Sort (2)

Pick the order of inserts to optimize the binary searches.

3 (2 compares: size 3)

4 (2 compares: size either 2 or 3, depending on where
element 3 ends up)

1 (3 compares: size between 5 and 7)

2 (3 compares: size between 5 and 7)

We can form an algorithm: Binary Merge.

This sort is called merge insert sort

20
10

-1
1-

30

CS 4104

Finishing the Sort (2)

When we insert one of these numbers into the chain, we are
concerned about everything on the chain below were that
number comes in.

Total cost: 5 + 7 + 10 = 22 compares.

Also called the Ford-Johnson sort.

Optimal Sort Algorithm?

Merge insert sort is pretty good, but is it optimal?
It does not match the information theoretic lower bound
for n = 12.

◮ Merge insert sort gives 30 instead of 29 comparison.
BUT, exhaustive search shows the information theoretic
bound is an underestimate for n = 12. 30 is best.
Call the optimal worst cost for n elements S(n).

◮ S(n + 1) ≤ S(n) + ⌈log(n + 1)⌉.
Otherwise, we would sort n elements and binary insert
the last.

◮ For all n and m, S(n + m) ≤ S(n) + S(m) + M(m, n) for
M(m, n) the best time to merge two sorted lists.

◮ For n = 47, we can do better by splitting into pieces of
size 5 and 42, then merging.

CS 4104: Data and Algorithm
Analysis Fall 2010 189 / 351

Optimal Sort Algorithm?

Merge insert sort is pretty good, but is it optimal?
It does not match the information theoretic lower bound
for n = 12.

◮ Merge insert sort gives 30 instead of 29 comparison.
BUT, exhaustive search shows the information theoretic
bound is an underestimate for n = 12. 30 is best.
Call the optimal worst cost for n elements S(n).

◮ S(n + 1) ≤ S(n) + ⌈log(n + 1)⌉.
Otherwise, we would sort n elements and binary insert
the last.

◮ For all n and m, S(n + m) ≤ S(n) + S(m) + M(m, n) for
M(m, n) the best time to merge two sorted lists.

◮ For n = 47, we can do better by splitting into pieces of
size 5 and 42, then merging.

20
10

-1
1-

30

CS 4104

Optimal Sort Algorithm?

⌈log n!⌉ = 29

Try every possible combination of comparison.

A Truly Optimal Algorithm

Pick the best set of comparisons for size 2.

Then for size 3, 4, 5, ...

Combine them together into one program with a big case
statement.

Is this an algorithm?

CS 4104: Data and Algorithm
Analysis Fall 2010 190 / 351

A Truly Optimal Algorithm

Pick the best set of comparisons for size 2.

Then for size 3, 4, 5, ...

Combine them together into one program with a big case
statement.

Is this an algorithm?20
10

-1
1-

30

CS 4104

A Truly Optimal Algorithm

No. Program size grows with size of n.
Algorithms must be of finite (fixed) length.

Note: There is no particular limit to the size of any partiulcar
program. But, the program lenght must be fixed to something.

Numbers
Examples of problems:

Raise a number to a power.
Find common factors for two numbers.
Tell whether a number is prime.
Generate a random integer.
Multiply two integers.

These operations use all the digits, and cannot use floating
point approximation.

For large numbers, cannot rely on hardware (constant time)
operations.

Measure input size by number of binary digits.
Multiply, divide become expensive.

CS 4104: Data and Algorithm
Analysis Fall 2010 191 / 351

Numbers
Examples of problems:

Raise a number to a power.
Find common factors for two numbers.
Tell whether a number is prime.
Generate a random integer.
Multiply two integers.

These operations use all the digits, and cannot use floating
point approximation.

For large numbers, cannot rely on hardware (constant time)
operations.

Measure input size by number of binary digits.
Multiply, divide become expensive.

20
10

-1
1-

30

CS 4104

Numbers

n2 for operations on numbers with n digits.

Analysis of Number Problems

Analysis problem: Cost may depend on properties of the
number other than size.

It is easy to check an even number for primeness.

Considering cost over all k -bit inputs, cost grows with k .

Features:
Arithmetical operations are not cheap.
There is only one instance of value n.
There are 2k instances of length k or less.
The size (length) of value n is log n.
The cost may decrease when n increases in value, but
generally increases when n increases in size (length).

CS 4104: Data and Algorithm
Analysis Fall 2010 192 / 351

Analysis of Number Problems

Analysis problem: Cost may depend on properties of the
number other than size.

It is easy to check an even number for primeness.

Considering cost over all k -bit inputs, cost grows with k .

Features:
Arithmetical operations are not cheap.
There is only one instance of value n.
There are 2k instances of length k or less.
The size (length) of value n is log n.
The cost may decrease when n increases in value, but
generally increases when n increases in size (length).

20
10

-1
1-

30

CS 4104

Analysis of Number Problems

So, we can go back to our normal intuition about cost growing
with size (as opposed to special properties of value).

multiplication is much worse than add, divide is worse still.

Actually, 2k−1 have length exactly k .

Exponentiation (1)

How do we compute mn?

We could multiply n − 1 times.
Can we do better?

Approaches to divide and conquer:
Relate mn to kn for k < m.
Relate mn to mk for k < n.

If n is even, then mn = mn/2mn/2.

If n is odd, then mn = m⌊n/2⌋m⌊n/2⌋m.
CS 4104: Data and Algorithm

Analysis Fall 2010 193 / 351

Exponentiation (1)

How do we compute mn?

We could multiply n − 1 times.
Can we do better?

Approaches to divide and conquer:
Relate mn to kn for k < m.
Relate mn to mk for k < n.

If n is even, then mn = mn/2mn/2.

If n is odd, then mn = m⌊n/2⌋m⌊n/2⌋m.

20
10

-1
1-

30

CS 4104

Exponentiation (1)

Why bother? Because the input size is Θ(log n), so naive
algorithm is exponential!

That is, take same power of a smaller number. 68 = 28 · 38.

That is, take smaller power of some number. 68 = 64 · 64.

Exponentiation (2)

int Power(int base, int exp) {
int half, total;
if exp = 0 return 1;
half = Power(base, exp/2);
total = half * half;
if (odd(exp)) then total = total * base;
return total;

}

CS 4104: Data and Algorithm
Analysis Fall 2010 194 / 351

Exponentiation (2)

int Power(int base, int exp) {
int half, total;
if exp = 0 return 1;
half = Power(base, exp/2);
total = half * half;
if (odd(exp)) then total = total * base;
return total;

}20
10

-1
1-

30

CS 4104

Exponentiation (2)

no notes

Analysis of Power

f (n) =

{

0 n = 1
f (⌊n/2⌋) + 1 + n mod 2 n > 1

Solution: f (n) = ⌊log n⌋ + β(n) − 1
where β is the number of 1’s in binary representation of n.

How does this cost compare with the problem size?

Is this the best possible? What if n = 15?

What if n stays the same but m changes over many runs?

In general, finding the best set of multiplications is expensive
(probably exponential).

CS 4104: Data and Algorithm
Analysis Fall 2010 195 / 351

Analysis of Power

f (n) =

{

0 n = 1
f (⌊n/2⌋) + 1 + n mod 2 n > 1

Solution: f (n) = ⌊log n⌋ + β(n) − 1
where β is the number of 1’s in binary representation of n.

How does this cost compare with the problem size?

Is this the best possible? What if n = 15?

What if n stays the same but m changes over many runs?

In general, finding the best set of multiplications is expensive
(probably exponential).

20
10

-1
1-

30

CS 4104

Analysis of Power

n mod 2 is extra cost for odd.

Problem size is log n, so linear.

Best to compute n5 · n5 · n5. n5 takes 3 multiplies, then 2 to
combine, for 5 total. “Normal” algorithm takes 7 multiplies.

Compute and store the best multiplication ordering.

In fact, it is NP-complete, but I’ve not defined this term yet.
This is O(2n) work. Note that the “standard” exponential
algorithm is (O(log n))(cost to multiply) which is
(O(log n))(log m)2. So it isn’t quite a direct comparison.

Largest Common Factor (1)

The largest common factor of two numbers is the largest
integer that divides both evenly.

Observation: If k divides n and m, then k divides n − m.

So, f (n, m) = f (n − m, n) = f (m, n − m) = f (m, n).

Observation: There exists k and l such that

n = km + l where m > l ≥ 0.

n = ⌊n/m⌋m + n mod m.

So, f (n, m) = f (m, l) = f (m, n mod m).
CS 4104: Data and Algorithm

Analysis Fall 2010 196 / 351

Largest Common Factor (1)

The largest common factor of two numbers is the largest
integer that divides both evenly.

Observation: If k divides n and m, then k divides n − m.

So, f (n, m) = f (n − m, n) = f (m, n − m) = f (m, n).

Observation: There exists k and l such that

n = km + l where m > l ≥ 0.

n = ⌊n/m⌋m + n mod m.

So, f (n, m) = f (m, l) = f (m, n mod m).

20
10

-1
1-

30

CS 4104

Largest Common Factor (1)

Assuming n > m, then n = ak , m = bk , n −m = (a− b)k , for a,
b integers.

For n > m. l is remainder.

From definition of mod.
LCF is of course a factor of n and km, so it is also a factor of l ,
since we just remove a multiple of it from n.
Example: n = 35, m = 14. Find 35, 14 ⇒ find 14, 7 ⇒ 7, 0.
Done.

Largest Common Factor (2)

f (n, m) =

{

n m = 0
f (m, n mod m) m > 0

int LCF(int n, int m) {
if (m == 0) return n;
return LCF(m, n % m);

}

CS 4104: Data and Algorithm
Analysis Fall 2010 197 / 351

Largest Common Factor (2)

f (n, m) =

{

n m = 0
f (m, n mod m) m > 0

int LCF(int n, int m) {
if (m == 0) return n;
return LCF(m, n % m);

}20
10

-1
1-

30

CS 4104

Largest Common Factor (2)

no notes

Analysis of LCF

How big is n mod m relative to n?

n ≥ m ⇒ n/m ≥ 1

⇒ 2⌊n/m⌋ > n/m

⇒ m⌊n/m⌋ > n/2

⇒ n − n/2 > n − m⌊n/m⌋ = n mod m

⇒ n/2 > n mod m

The first argument must be halved in no more than 2
iterations.

Total cost:
CS 4104: Data and Algorithm

Analysis Fall 2010 198 / 351

Analysis of LCF

How big is n mod m relative to n?

n ≥ m ⇒ n/m ≥ 1

⇒ 2⌊n/m⌋ > n/m

⇒ m⌊n/m⌋ > n/2

⇒ n − n/2 > n − m⌊n/m⌋ = n mod m

⇒ n/2 > n mod m

The first argument must be halved in no more than 2
iterations.

Total cost:

20
10

-1
1-

30

CS 4104

Analysis of LCF

Depends in part on how big m is relative to n.

Multiply both sides by m/2.

By definition of n mod m.

Can split in half log n times. So 2 log n is upper bound.
Note that this is linear on problem size, since problem size is
2 log n (2 numbers).

Reminder: This upper bound is not necessarily tight!

Matrix Multiplication

Given: n × n matrices A and B.

Compute: C = A × B.

cij =
n

∑

k=1

aikbkj .

Straightforward algorithm:

Θ(n3) multiplications and additions.

Lower bound for any matrix multiplication algorithm: Ω(n2).

CS 4104: Data and Algorithm
Analysis Fall 2010 199 / 351

Matrix Multiplication

Given: n × n matrices A and B.

Compute: C = A × B.

cij =
n

∑

k=1

aikbkj .

Straightforward algorithm:

Θ(n3) multiplications and additions.

Lower bound for any matrix multiplication algorithm: Ω(n2).

20
10

-1
1-

30

CS 4104

Matrix Multiplication

Not quite as bad as it first looks, since input size is n2.

Because we create n2 outputs.

Another Approach

Compute: m1 = (a12 − a22)(b21 + b22)

m2 = (a11 + a22)(b11 + b22)

m3 = (a11 − a21)(b11 + b12)

m4 = (a11 + a12)b22

m5 = a11(b12 − b22)

m6 = a22(b21 − b11)

m7 = (a21 + a22)b11

Then: c11 = m1 + m2 − m4 + m6

c12 = m4 + m5

c21 = m6 + m7

c22 = m2 − m3 + m5 − m7

7 multiplications and 18 additions/subtractions.
CS 4104: Data and Algorithm

Analysis Fall 2010 200 / 351

Another Approach

Compute: m1 = (a12 − a22)(b21 + b22)

m2 = (a11 + a22)(b11 + b22)

m3 = (a11 − a21)(b11 + b12)

m4 = (a11 + a12)b22

m5 = a11(b12 − b22)

m6 = a22(b21 − b11)

m7 = (a21 + a22)b11

Then: c11 = m1 + m2 − m4 + m6

c12 = m4 + m5

c21 = m6 + m7

c22 = m2 − m3 + m5 − m7

7 multiplications and 18 additions/subtractions.

20
10

-1
1-

30

CS 4104

Another Approach

Verify:

c11 = m1 + m2 − m4 + m6

= (a12 − a22)(b21 + b22) + (a11 + a22)(b11 + b22)

−(a11 + a12)b22 + a22(b21 − b11)

= a12b21 + a12b22 − a22b21 − a22b22 + a11b22 + a22b11

+a22b22 − a11b22 − a12b22 + a22b21 − a22b11

= a11b11 + a12b21

Strassen’s Algorithm (1)

(1) Trade more additions/subtractions for fewer
multiplications in 2 × 2 case.

(2) Divide and conquer.

In the straightforward implementation, 2 × 2 case is:

c11 = a11b11 + a12b21

c12 = a11b12 + a12b22

c21 = a21b11 + a22b21

c22 = a21b12 + a22b22

Requires 8 multiplications and 4 additions.
CS 4104: Data and Algorithm

Analysis Fall 2010 201 / 351

Strassen’s Algorithm (1)

(1) Trade more additions/subtractions for fewer
multiplications in 2 × 2 case.

(2) Divide and conquer.

In the straightforward implementation, 2 × 2 case is:

c11 = a11b11 + a12b21

c12 = a11b12 + a12b22

c21 = a21b11 + a22b21

c22 = a21b12 + a22b22

Requires 8 multiplications and 4 additions.

20
10

-1
1-

30

CS 4104

Strassen’s Algorithm (1)

no notes

Strassen’s Algorithm (2)

Divide and conquer step:

Assume n is a power of 2.

Express C = A × B in terms of n
2 × n

2 matrices.
[

C11 C12

C21 C22

]

=

[

A11 A12

A21 A22

] [

B11 B12

B21 B22

]

CS 4104: Data and Algorithm
Analysis Fall 2010 202 / 351

Strassen’s Algorithm (2)

Divide and conquer step:

Assume n is a power of 2.

Express C = A × B in terms of n
2 × n

2 matrices.
[

C11 C12

C21 C22

]

=

[

A11 A12

A21 A22

] [

B11 B12

B21 B22

]

20
10

-1
1-

30

CS 4104

Strassen’s Algorithm (2)

no notes

Strassen’s Algorithm (3)

By Strassen’s algorithm, this can be computed with 7
multiplications and 18 additions/subtractions of n/2 × n/2
matrices.

Recurrence:

T (n) = 7T (n/2) + 18(n/2)2

T (n) = Θ(nlog2 7) = Θ(n2.81).

Current “fastest” algorithm is Θ(n2.376)

Open question: Can matrix multiplication be done in O(n2)
time?

CS 4104: Data and Algorithm
Analysis Fall 2010 203 / 351

Strassen’s Algorithm (3)

By Strassen’s algorithm, this can be computed with 7
multiplications and 18 additions/subtractions of n/2 × n/2
matrices.

Recurrence:

T (n) = 7T (n/2) + 18(n/2)2

T (n) = Θ(nlog2 7) = Θ(n2.81).

Current “fastest” algorithm is Θ(n2.376)

Open question: Can matrix multiplication be done in O(n2)
time?

20
10

-1
1-

30

CS 4104

Strassen’s Algorithm (3)

From recurrence Master Theorem. But this has a high constant
due to the additions.

But is impractical due to overhead.

Divide and Conquer Recurrences (1)

These have the form:

T (n) = aT (n/b) + cnk

T (1) = c

... where a, b, c, k are constants.

A problem of size n is divided into a subproblems of size
n/b, while cnk is the amount of work needed to combine the
solutions.

CS 4104: Data and Algorithm
Analysis Fall 2010 204 / 351

Divide and Conquer Recurrences (1)

These have the form:

T (n) = aT (n/b) + cnk

T (1) = c

... where a, b, c, k are constants.

A problem of size n is divided into a subproblems of size
n/b, while cnk is the amount of work needed to combine the
solutions.20

10
-1

1-
30

CS 4104

Divide and Conquer Recurrences (1)

no notes

Divide and Conquer Recurrences (2)

Expand the sum; assume n = bm.

T (n) = a(aT (n/b2) + c(n/b)k) + cnk

= amT (1) + am−1c(n/bm−1)k + · · · + ac(n/b)k + cnk

= cam
m

∑

i=0

(bk/a)i

am = alogb n = nlogb a

The summation is a geometric series whose sum depends
on the ratio

r = bk/a.

There are 3 cases.
CS 4104: Data and Algorithm

Analysis Fall 2010 205 / 351

Divide and Conquer Recurrences (2)

Expand the sum; assume n = bm.

T (n) = a(aT (n/b2) + c(n/b)k) + cnk

= amT (1) + am−1c(n/bm−1)k + · · · + ac(n/b)k + cnk

= cam
m

∑

i=0

(bk/a)i

am = alogb n = nlogb a

The summation is a geometric series whose sum depends
on the ratio

r = bk/a.

There are 3 cases.

20
10

-1
1-

30

CS 4104

Divide and Conquer Recurrences (2)

Set a = blogb a. Switch order of logs, giving
(blogb n)logb a = nlogb a.

D & C Recurrences (3)

(1) r < 1
m

∑

i=0

r i < 1/(1 − r), a constant.

T (n) = Θ(am) = Θ(nlogb a).

(2) r = 1
m

∑

i=0

r i = m + 1 = logb n + 1

T (n) = Θ(nlogb a log n) = Θ(nk log n)

CS 4104: Data and Algorithm
Analysis Fall 2010 206 / 351

D & C Recurrences (3)

(1) r < 1
m

∑

i=0

r i < 1/(1 − r), a constant.

T (n) = Θ(am) = Θ(nlogb a).

(2) r = 1
m

∑

i=0

r i = m + 1 = logb n + 1

T (n) = Θ(nlogb a log n) = Θ(nk log n)

20
10

-1
1-

30

CS 4104

D & C Recurrences (3)

T (n) = 2T (n/2) + 1.
r = 20/2 = 1/2.
Θ(nlog2 2) = n

Since r = bk/a, a = bk , k = logb a.

T (n) = n0 log n = log n.
T (n) = 2T (n/2) + n.
r = 21/2 = 1.
T (n) = n1 log n = n log n.

D & C Recurrences (4)

(3) r > 1
m

∑

i=0

r i =
rm+1 − 1

r − 1
= Θ(rm)

So, from T (n) = cam
∑

r i ,

T (n) = Θ(amrm)

= Θ(am(bk/a)m)

= Θ(bkm)

= Θ(nk)

CS 4104: Data and Algorithm
Analysis Fall 2010 207 / 351

D & C Recurrences (4)

(3) r > 1
m

∑

i=0

r i =
rm+1 − 1

r − 1
= Θ(rm)

So, from T (n) = cam
∑

r i ,

T (n) = Θ(amrm)

= Θ(am(bk/a)m)

= Θ(bkm)

= Θ(nk)20
10

-1
1-

30

CS 4104

D & C Recurrences (4)

T (n) = 3T (n/4) + n.
r = 41/3. So T (n) = n1 = Θ(n).

T (n) = T (n/2) + n2.
r = 22/1. So T (n) = Θ(n2).

Strassen’s Algorithm: T (n) = 7T (n/2) + n2.
r = 22/7, so r < 1. T (n) = Θ(nlog2 7).

Summary

Theorem 3.4 :

T (n) =







Θ(nlogb a) if a > bk

Θ(nk log n) if a = bk

Θ(nk) if a < bk

Apply the theorem:
T (n) = 3T (n/5) + 8n2.
a = 3, b = 5, c = 8, k = 2.
bk/a = 25/3.

Case (3) holds: T (n) = Θ(n2).
CS 4104: Data and Algorithm

Analysis Fall 2010 208 / 351

Summary

Theorem 3.4 :

T (n) =







Θ(nlogb a) if a > bk

Θ(nk log n) if a = bk

Θ(nk) if a < bk

Apply the theorem:
T (n) = 3T (n/5) + 8n2.
a = 3, b = 5, c = 8, k = 2.
bk/a = 25/3.

Case (3) holds: T (n) = Θ(n2).

20
10

-1
1-

30

CS 4104

Summary

no notes

Prime Numbers

How do we tell if a number is prime?

One approach is the prime sieve: Test all prime up to ⌊√n⌋.

This requires up to ⌊√n⌋ − 1 divisions.
How does this compare to the input size?

Note that it is easy to check the number of times 2 divides n
for the binary representation

What about 3?
What if n is represented in trinary?

Is there a polynomial time algorithm?
CS 4104: Data and Algorithm

Analysis Fall 2010 209 / 351

Prime Numbers

How do we tell if a number is prime?

One approach is the prime sieve: Test all prime up to ⌊√n⌋.

This requires up to ⌊√n⌋ − 1 divisions.
How does this compare to the input size?

Note that it is easy to check the number of times 2 divides n
for the binary representation

What about 3?
What if n is represented in trinary?

Is there a polynomial time algorithm?

20
10

-1
1-

30

CS 4104

Prime Numbers

Exponential, since problem size is log n.

Not easy.

Now easy to check for 3.

We don’t know of one. What if we are willing to settle for a
probabilistic algorithm?

Facts about Primes

Some useful theorems from Number Theory:

Prime Number Theorem : The number of primes less
than n is (approximately)

n
ln n

◮ The average distance between primes is ln n.

Prime Factors Distribution Theorem : For large n, on
average, n has about ln ln n different prime factors with a
standard deviation of

√
ln ln n.

To prove that a number is composite, need only one factor.
What does it take to prove that a number is prime?
Do we need to check all

√
n candidates?

CS 4104: Data and Algorithm
Analysis Fall 2010 210 / 351

Facts about Primes

Some useful theorems from Number Theory:

Prime Number Theorem : The number of primes less
than n is (approximately)

n
ln n

◮ The average distance between primes is ln n.

Prime Factors Distribution Theorem : For large n, on
average, n has about ln ln n different prime factors with a
standard deviation of

√
ln ln n.

To prove that a number is composite, need only one factor.
What does it take to prove that a number is prime?
Do we need to check all

√
n candidates?

20
10

-1
1-

30

CS 4104

Facts about Primes

This is quite small. For 232, log log n = 5.Much harder than
proving it is composite!

Depends on how safe you want to be. (Actually, only need to
check primes <

√
n)

Probablistic Algorithms

Some probablistic algorithms:
Prime(n) = FALSE.
With probability 1/ ln n, Prime(n) = TRUE.
Pick a number m between 2 and

√
n. Say n is prime iff

m does not divide n.
Using number theory, can create cheap test that determines
a number to be composite (if it is) 50% of the time.

Prime(n) {
for(i=0; i<COMFORT; i++)
if !CHEAPTEST(n)

return FALSE;
return TRUE;

}

Of course, this does nothing to help you find the factors!
CS 4104: Data and Algorithm

Analysis Fall 2010 211 / 351

Probablistic Algorithms

Some probablistic algorithms:
Prime(n) = FALSE.
With probability 1/ ln n, Prime(n) = TRUE.
Pick a number m between 2 and

√
n. Say n is prime iff

m does not divide n.
Using number theory, can create cheap test that determines
a number to be composite (if it is) 50% of the time.

Prime(n) {
for(i=0; i<COMFORT; i++)
if !CHEAPTEST(n)
return FALSE;

return TRUE;
}

Of course, this does nothing to help you find the factors!

20
10

-1
1-

30

CS 4104

Probablistic Algorithms

Works, except 1/logn times on average.
No improvement.
Not much help. Probably did not pick a factor!

One nice side effect: We actually use large primes for
cryptography. The numbers used don’t actually need to be
prime. They only need to be hard to factor! And those numbers
that continually pass the cheap 50/50 test tend to be hard to
factor. So, even if a non-prime is used, it will still probably
succeed in its intended use!

Random Numbers
Which sequences are random?

1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, 8, 9, ...
2, 7, 1, 8, 2, 8, 1, 8, 2, ...

Meanings of “random”:
Cannot predict the next item: unpredictable .
Series cannot be described more briefly than to
reproduce it: equidistribution .

There is no such thing as a random number sequence, only
“random enough” sequences.

A sequence is pseudorandom if no future term can be
predicted in polynomial time, given all past terms.

CS 4104: Data and Algorithm
Analysis Fall 2010 212 / 351

Random Numbers
Which sequences are random?

1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, 8, 9, ...
2, 7, 1, 8, 2, 8, 1, 8, 2, ...

Meanings of “random”:
Cannot predict the next item: unpredictable .
Series cannot be described more briefly than to
reproduce it: equidistribution .

There is no such thing as a random number sequence, only
“random enough” sequences.

A sequence is pseudorandom if no future term can be
predicted in polynomial time, given all past terms.

20
10

-1
1-

30

CS 4104

Random Numbers

Which series of 9 digits is “most likely”? Answer: Every one is
equally likely!

Most people are notoriously bad at “inventing” random
sequences, or recognizing them. It stems from the fact that (a)
most people don’t have a gut-level understanding of probability,
and (b) people expect that the global properties of randomness
of the series will also apply locally. They tend to
under-represent series of repeats.

A Good Random Number Generator
Most computer systems use a deterministic algorithm to
select pseudorandom numbers.

Linear congruential method :
Pick a seed r(1). Then,

r(i) = (r(i − 1) × b) mod t .

Resulting numbers must be in what range?

What happens if r(i) = r(j)?

Must pick good values for b and t .
t should be prime.

CS 4104: Data and Algorithm
Analysis Fall 2010 213 / 351

A Good Random Number Generator
Most computer systems use a deterministic algorithm to
select pseudorandom numbers.

Linear congruential method :
Pick a seed r(1). Then,

r(i) = (r(i − 1) × b) mod t .

Resulting numbers must be in what range?

What happens if r(i) = r(j)?

Must pick good values for b and t .
t should be prime.

20
10

-1
1-

30

CS 4104

A Good Random Number Generator

Numbers are in the range 0 to t − 1.

Then r(i + 1) = r(j + 1) and we get a repeating cycle.

Random Number examples

r(i) = 6r(i − 1) mod 13 =
..., 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, ...

r(i) = 7r(i − 1) mod 13 =
..., 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1, ...

r(i) = 5r(i − 1) mod 13 =
..., 1, 5, 12, 8, 1, ...
..., 2, 10, 11, 3, 2, ...
..., 4, 7, 9, 6, 4, ...
..., 0, 0, ...

Suggested generator: r(i) = 16807r(i − 1) mod 231 − 1.
CS 4104: Data and Algorithm

Analysis Fall 2010 214 / 351

Random Number examples

r(i) = 6r(i − 1) mod 13 =
..., 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, ...

r(i) = 7r(i − 1) mod 13 =
..., 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1, ...

r(i) = 5r(i − 1) mod 13 =
..., 1, 5, 12, 8, 1, ...
..., 2, 10, 11, 3, 2, ...
..., 4, 7, 9, 6, 4, ...
..., 0, 0, ...

Suggested generator: r(i) = 16807r(i − 1) mod 231 − 1.

20
10

-1
1-

30

CS 4104

Random Number examples

no notes

Introduction to the Sliderule

Compared to addition, multiplication is hard.

In the physical world, addition is merely concatenating two
lengths.

Observation:
log nm = log n + log m.

Therefore,
nm = antilog(log n + log m).

What if taking logs and antilogs were easy?
CS 4104: Data and Algorithm

Analysis Fall 2010 215 / 351

Introduction to the Sliderule

Compared to addition, multiplication is hard.

In the physical world, addition is merely concatenating two
lengths.

Observation:
log nm = log n + log m.

Therefore,
nm = antilog(log n + log m).

What if taking logs and antilogs were easy?

20
10

-1
1-

30

CS 4104

Introduction to the Sliderule

no notes

Introduction to the Sliderule (2)

The sliderule does exactly this!

It is essentially two rulers in log scale.

Slide the scales to add the lengths of the two numbers
(in log form).

The third scale shows the value for the total length.

CS 4104: Data and Algorithm
Analysis Fall 2010 216 / 351

Introduction to the Sliderule (2)

The sliderule does exactly this!

It is essentially two rulers in log scale.

Slide the scales to add the lengths of the two numbers
(in log form).

The third scale shows the value for the total length.

20
10

-1
1-

30

CS 4104

Introduction to the Sliderule (2)

This is an example of a transform. We do transforms to convert
a hard problem into a (relatively) easy problem.

Representing Polynomials

A vector a of n values can uniquely represent a polynomial
of degree n − 1

Pa(x) =
n−1
∑

i=0

aix i .

Alternatively, a degree n − 1 polynomial can be uniquely
represented by a list of its values at n distinct points.

Finding the value for a polynomial at a given point is
called evaluation .

Finding the coefficients for the polynomial given the
values at n points is called interpolation .

CS 4104: Data and Algorithm
Analysis Fall 2010 217 / 351

Representing Polynomials

A vector a of n values can uniquely represent a polynomial
of degree n − 1

Pa(x) =
n−1
∑

i=0

aix i .

Alternatively, a degree n − 1 polynomial can be uniquely
represented by a list of its values at n distinct points.

Finding the value for a polynomial at a given point is
called evaluation .

Finding the coefficients for the polynomial given the
values at n points is called interpolation .

20
10

-1
1-

30

CS 4104

Representing Polynomials

That is, a polynomial can be represented by it coefficients.

Multiplication of Polynomials

To multiply two n − 1-degree polynomials A and B normally
takes Θ(n2) coefficient multiplications.

However, if we evaluate both polynomials, we can simply
multiply the corresponding pairs of values to get the values
of polynomial AB.

Process:

Evaluate polynomials A and B at enough points.

Pairwise multiplications of resulting values.

Interpolation of resulting values.

CS 4104: Data and Algorithm
Analysis Fall 2010 218 / 351

Multiplication of Polynomials

To multiply two n − 1-degree polynomials A and B normally
takes Θ(n2) coefficient multiplications.

However, if we evaluate both polynomials, we can simply
multiply the corresponding pairs of values to get the values
of polynomial AB.

Process:

Evaluate polynomials A and B at enough points.

Pairwise multiplications of resulting values.

Interpolation of resulting values.

20
10

-1
1-

30

CS 4104

Multiplication of Polynomials

no notes

Multiplication of Polynomials (2)

This can be faster than Θ(n2) IF a fast way can be found to
do evaluation/interpolation of 2n − 1 points (normally this
takes Θ(n2) time).

Note that evaluating a polynomial at 0 is easy, and that if we
evaluate at 1 and -1, we can share a lot of the work between
the two evaluations.

Can we find enough such points to make the process
cheap?

CS 4104: Data and Algorithm
Analysis Fall 2010 219 / 351

Multiplication of Polynomials (2)

This can be faster than Θ(n2) IF a fast way can be found to
do evaluation/interpolation of 2n − 1 points (normally this
takes Θ(n2) time).

Note that evaluating a polynomial at 0 is easy, and that if we
evaluate at 1 and -1, we can share a lot of the work between
the two evaluations.

Can we find enough such points to make the process
cheap?20

10
-1

1-
30

CS 4104

Multiplication of Polynomials (2)

no notes

An Example

Polynomial A: x2 + 1.
Polynomial B: 2x2 − x + 1.
Polynomial AB: 2x4 − x3 + 3x2 − x + 1.

Notice:

AB(−1) = (2)(4) = 8

AB(0) = (1)(1) = 1

AB(1) = (2)(2) = 4

But: We need 5 points to nail down Polynomial AB. And, we
also need to interpolate the 5 values to get the coefficients
back.

CS 4104: Data and Algorithm
Analysis Fall 2010 220 / 351

An Example

Polynomial A: x2 + 1.
Polynomial B: 2x2 − x + 1.
Polynomial AB: 2x4 − x3 + 3x2 − x + 1.

Notice:

AB(−1) = (2)(4) = 8

AB(0) = (1)(1) = 1

AB(1) = (2)(2) = 4

But: We need 5 points to nail down Polynomial AB. And, we
also need to interpolate the 5 values to get the coefficients
back.

20
10

-1
1-

30

CS 4104

An Example

−1 0 1
A 2 1 2
B 4 1 2

AB 8 1 4

Nth Root of Unity

The key to fast polynomial multiplication is finding the right
points to use for evaluation/interpolation to make the process
efficient.

Complex number ω is a primitive nth root of unity if
1 ωn = 1 and
2 ωk 6= 1 for 0 < k < n.

ω0, ω1, ..., ωn−1 are the nth roots of unity .

Example:
For n = 4, ω = i or ω = −i .

CS 4104: Data and Algorithm
Analysis Fall 2010 221 / 351

Nth Root of Unity

The key to fast polynomial multiplication is finding the right
points to use for evaluation/interpolation to make the process
efficient.

Complex number ω is a primitive nth root of unity if
1 ωn = 1 and
2 ωk 6= 1 for 0 < k < n.

ω0, ω1, ..., ωn−1 are the nth roots of unity .

Example:
For n = 4, ω = i or ω = −i .

20
10

-1
1-

30

CS 4104

Nth Root of Unity

For the first circle, n = 4, ω = i .

For the second circle, n = 8, ω =
√

i .

Nth Root of Unity (cont)

−i

1

i

−i

1

i

−1 −1

n = 4, ω = i .
n = 8, ω =

√
i .

CS 4104: Data and Algorithm
Analysis Fall 2010 222 / 351

Nth Root of Unity (cont)

−i

1

i

−i

1

i

−1 −1

n = 4, ω = i .
n = 8, ω =

√
i .

20
10

-1
1-

30

CS 4104

Nth Root of Unity (cont)

no notes

Discrete Fourier Transform
Define an n × n matrix V (ω) with row i and column j as

V (ω) = (ωij).

Example: n = 4, ω = i :

V (ω) =









1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i









Let a = [a0, a1, ..., an−1]
T be a vector.

The Discrete Fourier Transform (DFT) of a is:

Fω = V (ω)a = v .

This is equivalent to evaluating the polynomial at the nth
roots of unity.

CS 4104: Data and Algorithm
Analysis Fall 2010 223 / 351

Discrete Fourier Transform
Define an n × n matrix V (ω) with row i and column j as

V (ω) = (ωij).

Example: n = 4, ω = i :

V (ω) =









1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i









Let a = [a0, a1, ..., an−1]
T be a vector.

The Discrete Fourier Transform (DFT) of a is:

Fω = V (ω)a = v .

This is equivalent to evaluating the polynomial at the nth
roots of unity.

20
10

-1
1-

30

CS 4104

Discrete Fourier Transform

In the array, indexing begins with 0.

Example:
1 + 2x + 3x2 + 4x3

Values to evaluate at: 1, i ,−1,−i .

Array example

For n = 8, ω =
√

i , V (ω) =

1 1 1 1 1 1 1 1
1

√
i i i

√
i −1 −

√
i −i −i

√
i

1 i −1 −i 1 i −1 −i
1 i

√
i −i

√
i −1 −i

√
i i −

√
i

1 −1 1 −1 1 −1 1 −1
1 −

√
i i −i

√
i −1

√
i −i i

√
i

1 −i −1 i 1 −i −1 i
1 −i

√
i −i −

√
i −1 i

√
i i

√
i

CS 4104: Data and Algorithm
Analysis Fall 2010 224 / 351

Array example

For n = 8, ω =
√

i , V (ω) =

1 1 1 1 1 1 1 1
1

√
i i i

√
i −1 −

√
i −i −i

√
i

1 i −1 −i 1 i −1 −i
1 i

√
i −i

√
i −1 −i

√
i i −

√
i

1 −1 1 −1 1 −1 1 −1
1 −

√
i i −i

√
i −1

√
i −i i

√
i

1 −i −1 i 1 −i −1 i
1 −i

√
i −i −

√
i −1 i

√
i i

√
i20

10
-1

1-
30

CS 4104

Array example

The key thing to note here is the symmetries in the array. This
is what permits the fast algorithm to emerge. With suitable
minor changes (like switching signs), we can easily share parts
of the work through the recursion process.

Inverse Fourier Transform

The inverse Fourier Transform to recover a from v is:

F−1
ω = a = [V (ω)]−1 · v .

[V (ω)]−1 =
1
n

V (
1
ω

).

This is equivalent to interpolating the polynomial at the nth
roots of unity.

An efficient divide and conquer algorithm can perform both
the DFT and its inverse in Θ(n lg n) time.

CS 4104: Data and Algorithm
Analysis Fall 2010 225 / 351

Inverse Fourier Transform

The inverse Fourier Transform to recover a from v is:

F−1
ω = a = [V (ω)]−1 · v .

[V (ω)]−1 =
1
n

V (
1
ω

).

This is equivalent to interpolating the polynomial at the nth
roots of unity.

An efficient divide and conquer algorithm can perform both
the DFT and its inverse in Θ(n lg n) time.

20
10

-1
1-

30

CS 4104

Inverse Fourier Transform

Just replace each ω with 1/ω

After substituting 1/ω for ω.

Observe the sharable parts in the matrix.

Fast Polynomial Multiplication

Polynomial multiplication of A and B:

Represent an n − 1-degree polynomial as 2n − 1
coefficients:

[a0, a1, ..., an−1, 0, ..., 0]

Perform DFT on representations for A and B.

Pairwise multiply results to get 2n − 1 values.

Perform inverse DFT on result to get 2n − 1 degree
polynomial AB.

CS 4104: Data and Algorithm
Analysis Fall 2010 226 / 351

Fast Polynomial Multiplication

Polynomial multiplication of A and B:

Represent an n − 1-degree polynomial as 2n − 1
coefficients:

[a0, a1, ..., an−1, 0, ..., 0]

Perform DFT on representations for A and B.

Pairwise multiply results to get 2n − 1 values.

Perform inverse DFT on result to get 2n − 1 degree
polynomial AB.20

10
-1

1-
30

CS 4104

Fast Polynomial Multiplication

Θ(n log n)

Θ(n)

Θ(n log n)

Total time: Θ(n log n).

FFT Algorithm

FFT(n, a0, a1, ..., an-1, omega, var V);
Output: V[0..n-1] of output elements.
begin
if n=1 then V[0] = a0;
else
FFT(n/2, a0, a2, ... an-2, omega^2, U);
FFT(n/2, a1, a3, ... an-1, omega^2, W);
for j=0 to n/2-1 do
V[j] = U[j] + omega^j W[j];
V[j+n/2] = U[j] - omega^j W[j];

end

CS 4104: Data and Algorithm
Analysis Fall 2010 227 / 351

FFT Algorithm

FFT(n, a0, a1, ..., an-1, omega, var V);
Output: V[0..n-1] of output elements.
begin
if n=1 then V[0] = a0;
else
FFT(n/2, a0, a2, ... an-2, omega^2, U);
FFT(n/2, a1, a3, ... an-1, omega^2, W);
for j=0 to n/2-1 do
V[j] = U[j] + omega^j W[j];
V[j+n/2] = U[j] - omega^j W[j];

end

20
10

-1
1-

30

CS 4104

FFT Algorithm

no notes

Fibonacci Revisited (1)

Consider again the recursive function for computing the nth
Fibonacci number.

int Fibr(int n) {
if (n <= 1) return 1; // Base case
return Fibr(n-1) + Fibr(n-2); // Recursive call

}

Cost is Exponential. Why?

CS 4104: Data and Algorithm
Analysis Fall 2010 228 / 351

Fibonacci Revisited (1)

Consider again the recursive function for computing the nth
Fibonacci number.

int Fibr(int n) {
if (n <= 1) return 1; // Base case
return Fibr(n-1) + Fibr(n-2); // Recursive call

}

Cost is Exponential. Why?20
10

-1
1-

30

CS 4104

Fibonacci Revisited (1)

Lots of recomputation.

Fibonacci Revisited (2)

If we could eliminate redundancy, cost is greatly reduced.
Keep a table

int Fibrt(int n, int* Values) {
// Assume Values has at least n slots, and all
// slots are initialized to 0
if (n <= 1) return 1; // Base case
if (Values[n] == 0) // Compute and store
Values[n] = Fibrt(n-1, Values)

+ Fibrt(n-2, Values);
return Values[n];

}

Cost?
We don’t need table, only last 2 values.

Key is working bottom up.
CS 4104: Data and Algorithm

Analysis Fall 2010 229 / 351

Fibonacci Revisited (2)

If we could eliminate redundancy, cost is greatly reduced.
Keep a table

int Fibrt(int n, int* Values) {
// Assume Values has at least n slots, and all
// slots are initialized to 0
if (n <= 1) return 1; // Base case
if (Values[n] == 0) // Compute and store
Values[n] = Fibrt(n-1, Values)

+ Fibrt(n-2, Values);
return Values[n];

}

Cost?
We don’t need table, only last 2 values.

Key is working bottom up.

20
10

-1
1-

30

CS 4104

Fibonacci Revisited (2)

Cost is only linear.
Of course, we can also do this iteratively.

Dynamic Programming (1)

The issue of avoiding recomputation of subproblems comes
up frequently.

General solution: Store a table to avoid recomputation.
Can work bottom up (fill table from smallest to largest)
Can work top down (recursively), remembering any
subproblems that happen to be solved (check table
first).

This approach is called Dynamic Programming
Name comes from the field of dynamic control systems
There, the act of storing precomputed values is referred
to as “programming”.

CS 4104: Data and Algorithm
Analysis Fall 2010 230 / 351

Dynamic Programming (1)

The issue of avoiding recomputation of subproblems comes
up frequently.

General solution: Store a table to avoid recomputation.
Can work bottom up (fill table from smallest to largest)
Can work top down (recursively), remembering any
subproblems that happen to be solved (check table
first).

This approach is called Dynamic Programming
Name comes from the field of dynamic control systems
There, the act of storing precomputed values is referred
to as “programming”.

20
10

-1
1-

30

CS 4104

Dynamic Programming (1)

no notes

Dynamic Programming (2)

Dynamic Programming is an alternative to Divide and
Conquer

D&C: Split problem into subproblems, solve
independently, and recombine.

DP: Pay bookkeeping costs to remember solutions to
shared subproblems.

CS 4104: Data and Algorithm
Analysis Fall 2010 231 / 351

Dynamic Programming (2)

Dynamic Programming is an alternative to Divide and
Conquer

D&C: Split problem into subproblems, solve
independently, and recombine.

DP: Pay bookkeeping costs to remember solutions to
shared subproblems.

20
10

-1
1-

30

CS 4104

Dynamic Programming (2)

no notes

A Knapsack Problem

Problem: Given an integer capacity K and n items such that
item i has integer size ki , find a subset of the n items whose
sizes exactly sum to K , if possible.

Formally: Find S ⊂ {1, 2, ..., n} such that
∑

i∈S

ki = K .

Example:
K = 163
10 items of sizes 4, 9, 15, 19, 27, 44, 54, 68, 73, 101.
What if K is 164?

Instead of parameterizing problem just by n, parameterize
with n and K .

P(n, K) is the problem with n items and capacity K .
CS 4104: Data and Algorithm

Analysis Fall 2010 232 / 351

A Knapsack Problem

Problem: Given an integer capacity K and n items such that
item i has integer size ki , find a subset of the n items whose
sizes exactly sum to K , if possible.

Formally: Find S ⊂ {1, 2, ..., n} such that
∑

i∈S

ki = K .

Example:
K = 163
10 items of sizes 4, 9, 15, 19, 27, 44, 54, 68, 73, 101.
What if K is 164?

Instead of parameterizing problem just by n, parameterize
with n and K .

P(n, K) is the problem with n items and capacity K .

20
10

-1
1-

30

CS 4104

A Knapsack Problem

9, 27, 54, 73.

9, 54,101.
The problem is that there is no necessary relationship between
the answer for n and n + 1.

Solving the Knapsack Problem

Think about divide and conquer (alternatively, induction).

What if we know how to solve P(n − 1, K)?
If P(n − 1, K) has a solution, then it is a solution for
P(n, K).
Otherwise, P(n, K) has a solution ⇔ P(n − 1, K − kn)
has a solution.

What if we know how to solve P(n − 1, k) for 0 ≤ k ≤ K ?

Cost: T (n) = 2T (n − 1) + c.

T (n) = Θ(2n).

BUT... there are only n(K + 1) subproblems to solve!
CS 4104: Data and Algorithm

Analysis Fall 2010 233 / 351

Solving the Knapsack Problem

Think about divide and conquer (alternatively, induction).

What if we know how to solve P(n − 1, K)?
If P(n − 1, K) has a solution, then it is a solution for
P(n, K).
Otherwise, P(n, K) has a solution ⇔ P(n − 1, K − kn)
has a solution.

What if we know how to solve P(n − 1, k) for 0 ≤ k ≤ K ?

Cost: T (n) = 2T (n − 1) + c.

T (n) = Θ(2n).

BUT... there are only n(K + 1) subproblems to solve!

20
10

-1
1-

30

CS 4104

Solving the Knapsack Problem

There are two choices:
The nth item is in the solution OR
The nth item is not in the solution.

What does this mean? Drop the nth item.

Then we can solve P(n − 1, K − kn).
Of course, we don’t know if the nth item is in the solution or not,
so...

= 2(2T (n − 2) + c) + c = 2(2(2T (n − 3) + c) + c) + c, etc.

Solution

Clearly, there are many subproblems being solved
repeatedly.

Store a n × K + 1 matrix to contain the solutions for all
P(i , k).

Fill in the rows from i = 0 to n, left to right.

If P(n − 1, K) has a solution,
Then P(n, K) has a solution
Else If P(n − 1, K − kn) has a solution

Then P(n, K) has a solution
Else P(n, K) has no solution.

Cost: Θ(nK).
CS 4104: Data and Algorithm

Analysis Fall 2010 234 / 351

Solution

Clearly, there are many subproblems being solved
repeatedly.

Store a n × K + 1 matrix to contain the solutions for all
P(i , k).

Fill in the rows from i = 0 to n, left to right.

If P(n − 1, K) has a solution,
Then P(n, K) has a solution
Else If P(n − 1, K − kn) has a solution

Then P(n, K) has a solution
Else P(n, K) has no solution.

Cost: Θ(nK).

20
10

-1
1-

30

CS 4104

Solution

no notes

Knapsack Example (1)

K = 10.

Five items: 9, 2, 7, 4, 1.

0 1 2 3 4 5 6 7 8 9 10
k1 =9 O − − − − − − − − I −
k2 =2 O − I − − − − − − O −
k3 =7 O − O − − − − I − I/O −
k4 =4 O − O − I − I O − O −
k5 =1 O I O I O I O I/O I O I

CS 4104: Data and Algorithm
Analysis Fall 2010 235 / 351

Knapsack Example (1)

K = 10.

Five items: 9, 2, 7, 4, 1.

0 1 2 3 4 5 6 7 8 9 10
k1 =9 O − − − − − − − − I −
k2 =2 O − I − − − − − − O −
k3 =7 O − O − − − − I − I/O −
k4 =4 O − O − I − I O − O −
k5 =1 O I O I O I O I/O I O I20

10
-1

1-
30

CS 4104

Knapsack Example (1)

no notes

Knapsack Example (2)

Key:

-: No solution for P(i , k).
O: Solution(s) for P(i , k) with i omitted.
I: Solution(s) for P(i , k) with i included.
I/O: Solutions for P(i , k) with i included AND omitted.

Example: M(3, 9) contains O because P(2, 9) has a solution.
It contains I because P(2, 2) = P(2, 9 − 7) has a solution.

How can we find a solution to P(5, 10)?
How can we find ALL solutions to P(5, 10)?

CS 4104: Data and Algorithm
Analysis Fall 2010 236 / 351

Knapsack Example (2)

Key:

-: No solution for P(i , k).
O: Solution(s) for P(i , k) with i omitted.
I: Solution(s) for P(i , k) with i included.
I/O: Solutions for P(i , k) with i included AND omitted.

Example: M(3, 9) contains O because P(2, 9) has a solution.
It contains I because P(2, 2) = P(2, 9 − 7) has a solution.

How can we find a solution to P(5, 10)?
How can we find ALL solutions to P(5, 10)?

20
10

-1
1-

30

CS 4104

Knapsack Example (2)

no notes

All Pairs Shortest Paths (1)

For every vertex u, v ∈ V, calculate d(u, v).
Define a k-path from u to v to be any path whose
intermediate vertices all have indices less than k .111 1 740 5 3 31122 121 1

CS 4104: Data and Algorithm
Analysis Fall 2010 237 / 351

All Pairs Shortest Paths (1)

For every vertex u, v ∈ V, calculate d(u, v).
Define a k-path from u to v to be any path whose
intermediate vertices all have indices less than k .111 1 740 5 3 31122 121 1

20
10

-1
1-

30

CS 4104

All Pairs Shortest Paths (1)

First, calculate all direct paths.
Then, calculate all 0 paths: For every i, j, look to see if i,0 + 0,j
is less than i,j in the table.
Then, calculate all 1 paths: For every i, j, look to see if i,1 + 1,j
is less than i,j in the table. And so on.

All Pairs Shortest Paths (3)

void Floyd(Graph& G) { // All-pairs shortest paths
int D[G.n()][G.n()]; // Store distances
for (int i=0; i<G.n(); i++) // Initialize D
for (int j=0; j<G.n(); j++)

D[i][j] = G.weight(i, j);
for (int k=0; k<G.n(); k++) // Compute all k paths
for (int i=0; i<G.n(); i++)

for (int j=0; j<G.n(); j++)
if (D[i][j] > (D[i][k] + D[k][j]))
D[i][j] = D[i][k] + D[k][j];

}

CS 4104: Data and Algorithm
Analysis Fall 2010 238 / 351

All Pairs Shortest Paths (3)

void Floyd(Graph& G) { // All-pairs shortest paths
int D[G.n()][G.n()]; // Store distances
for (int i=0; i<G.n(); i++) // Initialize D
for (int j=0; j<G.n(); j++)
D[i][j] = G.weight(i, j);

for (int k=0; k<G.n(); k++) // Compute all k paths
for (int i=0; i<G.n(); i++)
for (int j=0; j<G.n(); j++)

if (D[i][j] > (D[i][k] + D[k][j]))
D[i][j] = D[i][k] + D[k][j];

}20
10

-1
1-

30

CS 4104

All Pairs Shortest Paths (3)

no notes

Reductions
A reduction is a transformation of one problem to another.

Purposes: To compare the difficulty of two problems.
Use one algorithm to solve another problem (upper
bound).
Compare the relative difficulty of two problems (lower
bound).

Notation: A problem is a mapping of inputs to outputs.
Format looks as follows:
SORTING:

Input: A sequence of integers x0, x1, ..., xn−1.
Output: A permutation y0, y1, ..., yn−1 of the sequence
such that yi ≤ yj whenever i < j .

CS 4104: Data and Algorithm
Analysis Fall 2010 239 / 351

Reductions
A reduction is a transformation of one problem to another.

Purposes: To compare the difficulty of two problems.
Use one algorithm to solve another problem (upper
bound).
Compare the relative difficulty of two problems (lower
bound).

Notation: A problem is a mapping of inputs to outputs.
Format looks as follows:
SORTING:

Input: A sequence of integers x0, x1, ..., xn−1.
Output: A permutation y0, y1, ..., yn−1 of the sequence
such that yi ≤ yj whenever i < j .

20
10

-1
1-

30

CS 4104

Reductions

Its a particular type of transformation, done for a particular
purpose.

“Code reuse.” Remember our transformation for FFT.

Reduction

PAIRING
PAIRING:

Input: Two sequences of integers X = (x0, x1, ..., xn−1)
and Y = (y0, y1, ..., yn−1).
Output: A pairing of the elements in the two sequences
such that the least value in X is paired with the least
value in Y , and so on.

How can we solve this?

One algorithm:
Sort X .
Sort Y .
Now, pair xi with yi for 0 ≤ i < n.

Terminology: We say that PAIRING is reduced to
SORTING, since SORTING is used to solve PAIRING.

CS 4104: Data and Algorithm
Analysis Fall 2010 240 / 351

PAIRING
PAIRING:

Input: Two sequences of integers X = (x0, x1, ..., xn−1)
and Y = (y0, y1, ..., yn−1).
Output: A pairing of the elements in the two sequences
such that the least value in X is paired with the least
value in Y , and so on.

How can we solve this?

One algorithm:
Sort X .
Sort Y .
Now, pair xi with yi for 0 ≤ i < n.

Terminology: We say that PAIRING is reduced to
SORTING, since SORTING is used to solve PAIRING.

20
10

-1
1-

30

CS 4104

PAIRING

Reduce to the one being used.
Be careful: Most confusion comes with wich direction is meant
on the reduction.

PAIRING Reduction Process

The reduction of PAIRING to SORTING requires 3 steps:

Convert an instance of PAIRING to two instances of
SORTING.

Run SORTING (twice).

CONVERT the output for the two instances of SORTING
to an output for the original PAIRING instance.

What do we require about the transformations to make them
useful?

What is the cost of this algorithm?
CS 4104: Data and Algorithm

Analysis Fall 2010 241 / 351

PAIRING Reduction Process

The reduction of PAIRING to SORTING requires 3 steps:

Convert an instance of PAIRING to two instances of
SORTING.

Run SORTING (twice).

CONVERT the output for the two instances of SORTING
to an output for the original PAIRING instance.

What do we require about the transformations to make them
useful?

What is the cost of this algorithm?

20
10

-1
1-

30

CS 4104

PAIRING Reduction Process

Transformation must be “fast.”

Θ(n log n).
The transformations are linear, so the cost is dominated by
sorting.

PAIRING Lower Bound (1)

We have an upper bound for PAIRING equal to that of
SORTING.

What is the lower bound for PAIRING?

Pretend that there is a O(n) time algorithm for PAIRING.
Consider this algorithm for SORTING:

Transform SORTING to PAIRING with X being the input
sequence for SORTING, and Y a sequence containing
the values 0 through n − 1
Run the O(n) time PAIRING algorithm.
Take the pairs output by PAIRING and use a simple
binsort to order them by the second value of the pair.
The first items of the pair will be the sorted list.

CS 4104: Data and Algorithm
Analysis Fall 2010 242 / 351

PAIRING Lower Bound (1)

We have an upper bound for PAIRING equal to that of
SORTING.

What is the lower bound for PAIRING?

Pretend that there is a O(n) time algorithm for PAIRING.
Consider this algorithm for SORTING:

Transform SORTING to PAIRING with X being the input
sequence for SORTING, and Y a sequence containing
the values 0 through n − 1
Run the O(n) time PAIRING algorithm.
Take the pairs output by PAIRING and use a simple
binsort to order them by the second value of the pair.
The first items of the pair will be the sorted list.

20
10

-1
1-

30

CS 4104

PAIRING Lower Bound (1)

Recall that lower bounds proofs are difficult.
Beware the “necessary fallacy:” There is no reason why a
pairing algorithm must explicitly sort, nor that the resulting list
be sorted.

PAIRING Lower Bound (2)

What is the cost of this algorithm?

What does this say about the existence of an O(n) time
algorithm for PAIRING?

CS 4104: Data and Algorithm
Analysis Fall 2010 243 / 351

PAIRING Lower Bound (2)

What is the cost of this algorithm?

What does this say about the existence of an O(n) time
algorithm for PAIRING?

20
10

-1
1-

30

CS 4104

PAIRING Lower Bound (2)

Θ(n)

It can’t possibly exist, due to our known lower bound on sorting.

This is a proof by contradiction.
The only flaw in the process leading to the contradiction is the
assumption of an O(n) algorithm for PAIRING.

Reduction Process
Consider any two problems for which a suitable reduction
from one to the other can be found.

The first problem P1 takes input instance I and transforms
that to solution S.

The second problem P2 takes input instance I′ and
transforms that to solution S′.

A reduction is the following three-step process:
Transform an arbitrary instance I of problem P1 and
transform it to a (possibly special) instance I′ of P2.
Apply an algorithm for P2 to I′, yielding S′.
Transform S′ to a solution for P1 (S). Note that S MUST
BE THE CORRECT SOLUTION for I!

CS 4104: Data and Algorithm
Analysis Fall 2010 244 / 351

Reduction Process
Consider any two problems for which a suitable reduction
from one to the other can be found.

The first problem P1 takes input instance I and transforms
that to solution S.

The second problem P2 takes input instance I′ and
transforms that to solution S′.

A reduction is the following three-step process:
Transform an arbitrary instance I of problem P1 and
transform it to a (possibly special) instance I′ of P2.
Apply an algorithm for P2 to I′, yielding S′.
Transform S′ to a solution for P1 (S). Note that S MUST
BE THE CORRECT SOLUTION for I!

20
10

-1
1-

30

CS 4104

Reduction Process

It is important that the first transformation take an arbitrary
instance of I. We don’t need to be able to produce every
possible isntance of I′. But we DO need to be able to handle
every possible instance of I.

Reduction Process (Cont.)

Note that reduction is NOT an algorithm for either problem.

It does mean, given “cheap” transformations, that:

The upper bound for P1 is at most the upper bound for
P2.

The lower bound for P2 is at least the lower bound for
P1.

CS 4104: Data and Algorithm
Analysis Fall 2010 245 / 351

Reduction Process (Cont.)

Note that reduction is NOT an algorithm for either problem.

It does mean, given “cheap” transformations, that:

The upper bound for P1 is at most the upper bound for
P2.

The lower bound for P2 is at least the lower bound for
P1.20

10
-1

1-
30

CS 4104

Reduction Process (Cont.)

no notes

General Black Box Diagram

Transform 1

Problem A: I

Problem B

Transform 2

I’

SLN’

SLN

CS 4104: Data and Algorithm
Analysis Fall 2010 246 / 351

General Black Box Diagram

Transform 1

Problem A: I

Problem B

Transform 2

I’

SLN’

SLN20
10

-1
1-

30

CS 4104

General Black Box Diagram

no notes

Notation Summary

Problem A has input I, solution SLN
Problem B has input I’, solution SLN’
Problem A is reduced to Problem B
Problem A is solved by reducing to Problem B (which
has known upper bound)
We prove a lower bound on B by a reduction from
Problem A (which has known lower bound)
Transformations 1 and 2 must be “cheap”
We must be able to accept the full range of inputs I to
Problem A.
However, I’ may be a restricted subset of all possible
inputs to B.

CS 4104: Data and Algorithm
Analysis Fall 2010 247 / 351

Notation Summary

Problem A has input I, solution SLN
Problem B has input I’, solution SLN’
Problem A is reduced to Problem B
Problem A is solved by reducing to Problem B (which
has known upper bound)
We prove a lower bound on B by a reduction from
Problem A (which has known lower bound)
Transformations 1 and 2 must be “cheap”
We must be able to accept the full range of inputs I to
Problem A.
However, I’ may be a restricted subset of all possible
inputs to B.

20
10

-1
1-

30

CS 4104

Notation Summary

no notes

PAIRING Reduction Black Box
I

Transform 2

I’

SLN’

PAIRING

SORTING:

SLN

Transform 1

CS 4104: Data and Algorithm
Analysis Fall 2010 248 / 351

PAIRING Reduction Black Box
I

Transform 2

I’

SLN’

PAIRING

SORTING:

SLN

Transform 1

20
10

-1
1-

30

CS 4104

PAIRING Reduction Black Box

no notes

PAIRING Notation

Transform 1 takes input I and produces output I’.
I is a sequence S.
I’ is two sequences: S and the set of numbers from 0 to
n − 1.
Transform 1 takes a sequence as input, and produces
the two sequences as output.
Transform 2 takes SLN’ as input and produces output
SLN.
SLN’ is a pairing.
SLN is a sorted sequence
Transform 2 takes the pairing and runs a binsort on it to
generate the sorted sequence.

CS 4104: Data and Algorithm
Analysis Fall 2010 249 / 351

PAIRING Notation

Transform 1 takes input I and produces output I’.
I is a sequence S.
I’ is two sequences: S and the set of numbers from 0 to
n − 1.
Transform 1 takes a sequence as input, and produces
the two sequences as output.
Transform 2 takes SLN’ as input and produces output
SLN.
SLN’ is a pairing.
SLN is a sorted sequence
Transform 2 takes the pairing and runs a binsort on it to
generate the sorted sequence.

20
10

-1
1-

30

CS 4104

PAIRING Notation

no notes

Another Reduction Example

How much does it cost to multiply two n-digit numbers?
Naive algorithm requires Θ(n2) single-digit
multiplications.
Faster (but more complicated) algorithms are known,
but none so fast as to be O(n).

Is it faster to square an n-digit number than it is to multiply
two n-digit numbers?

This is a special case, so might go faster.
Answer: No, because

X × Y =
(X + Y)2 − (X − Y)2

4
.

If a fast algorithm can be found for squaring, then it could be
used to make a fast algorithm for multiplying.

CS 4104: Data and Algorithm
Analysis Fall 2010 250 / 351

Another Reduction Example

How much does it cost to multiply two n-digit numbers?
Naive algorithm requires Θ(n2) single-digit
multiplications.
Faster (but more complicated) algorithms are known,
but none so fast as to be O(n).

Is it faster to square an n-digit number than it is to multiply
two n-digit numbers?

This is a special case, so might go faster.
Answer: No, because

X × Y =
(X + Y)2 − (X − Y)2

4
.

If a fast algorithm can be found for squaring, then it could be
used to make a fast algorithm for multiplying.

20
10

-1
1-

30

CS 4104

Another Reduction Example

no notes

Matrix Multiplication

Standard matrix multiplication for two n × n matrices
requires Θ(n3) multiplications.

Faster algorithms are known, but none so fast as to be
O(n2).

A symmetric matrix is one in which Mij = Mji .

Can we multiply symmetric matrices faster than regular
matrices?

[

0 A
AT 0

] [

0 BT

B 0

]

=

[

AB 0
0 ATBT

]

.

CS 4104: Data and Algorithm
Analysis Fall 2010 251 / 351

Matrix Multiplication

Standard matrix multiplication for two n × n matrices
requires Θ(n3) multiplications.

Faster algorithms are known, but none so fast as to be
O(n2).

A symmetric matrix is one in which Mij = Mji .

Can we multiply symmetric matrices faster than regular
matrices?

[

0 A
AT 0

] [

0 BT

B 0

]

=

[

AB 0
0 ATBT

]

.

20
10

-1
1-

30

CS 4104

Matrix Multiplication

no notes

Some Puzzles
1. A hiker leaves at 8:00 AM and hikes over the mountain.
The next day, she again leaves at 8:00 AM and returns to
her starting point along the same path. Prove that there is a
point on the path such that she was at that point at the same
time on both days.

2. Take a chessboard and cover it with dominos (a domino
covers two adjacent squares of the board). Now, remove the
upper left and lower right corners of the board. Now, can it
still be covered with dominos?

These puzzles have the quality that, while their answers may
be hard to FIND, they are easy to CHECK.

3. Is 667 composite or prime?
CS 4104: Data and Algorithm

Analysis Fall 2010 252 / 351

Some Puzzles
1. A hiker leaves at 8:00 AM and hikes over the mountain.
The next day, she again leaves at 8:00 AM and returns to
her starting point along the same path. Prove that there is a
point on the path such that she was at that point at the same
time on both days.

2. Take a chessboard and cover it with dominos (a domino
covers two adjacent squares of the board). Now, remove the
upper left and lower right corners of the board. Now, can it
still be covered with dominos?

These puzzles have the quality that, while their answers may
be hard to FIND, they are easy to CHECK.

3. Is 667 composite or prime?

20
10

-1
1-

30

CS 4104

Some Puzzles

Pretend that she is walking both ways on the same day. She
must meet her self at some point (which means that she at the
same place at the same time).

No. We lost two squares of the same color. A domino covers a
square of each color. So it can only work when there are an
equal number of squares of each color.

If I give you two factors, its easy to check. BUT if I claim the
number is prime, how do you check? How do I prove to you that
its prime? You have to do as much work verifying as I did
solving.

Complexity and Computability (1)

Complexity:

How cheaply can this be computed?

How hard is this to compute?

Computability:

When can this be computed?

Can this be computed at all?

CS 4104: Data and Algorithm
Analysis Fall 2010 253 / 351

Complexity and Computability (1)

Complexity:

How cheaply can this be computed?

How hard is this to compute?

Computability:

When can this be computed?

Can this be computed at all?20
10

-1
1-

30

CS 4104

Complexity and Computability (1)

Upper bound, best algorithm.

Lower bound.

That is, what special cases or preconditions?

Some things are impossible.

Complexity and Computability (2)

Types of “hard” problems:
Hard to understand (or specify) the problem

◮ Software Engineering

Hard to design a solution
◮ Artificial Intelligence

Hard to compute in reasonable time
◮ Complexity Theory

Hard (impossible) to do at all
◮ Computability Theory

CS 4104: Data and Algorithm
Analysis Fall 2010 254 / 351

Complexity and Computability (2)

Types of “hard” problems:
Hard to understand (or specify) the problem

◮ Software Engineering

Hard to design a solution
◮ Artificial Intelligence

Hard to compute in reasonable time
◮ Complexity Theory

Hard (impossible) to do at all
◮ Computability Theory20

10
-1

1-
30

CS 4104

Complexity and Computability (2)

no notes

Hard Problems (1)

We say that a problem is computationally “hard” if the
running time of the best known algorithm is exponential on
the size of its input.

Support:
Polynomials are closed under composition and addition.

◮ Doing polynomial time operations in series is polynomial.
All computers today are polynomially related.

◮ If it takes polynomial time on one computer, it will take
polynomial time on any other computer.

Polynomial time is (generally) feasible, while exponential
time is (generally) infeasible.

◮ An empirical observation: For most polynomial-time
algorithms, the polynomial is of low degree.

CS 4104: Data and Algorithm
Analysis Fall 2010 255 / 351

Hard Problems (1)

We say that a problem is computationally “hard” if the
running time of the best known algorithm is exponential on
the size of its input.

Support:
Polynomials are closed under composition and addition.

◮ Doing polynomial time operations in series is polynomial.
All computers today are polynomially related.

◮ If it takes polynomial time on one computer, it will take
polynomial time on any other computer.

Polynomial time is (generally) feasible, while exponential
time is (generally) infeasible.

◮ An empirical observation: For most polynomial-time
algorithms, the polynomial is of low degree.

20
10

-1
1-

30

CS 4104

Hard Problems (1)

Conversely, polynomial-time algorithms are (relatively) “easy.”

Hard Problems (2)

Note that for a faster machine, the size of problem that can
be run in a fixed amount of time

grows by a multiplicative factor for a polynomial-time
algorithm.

grows by an additive factor for an exponential-time
algorithm.

CS 4104: Data and Algorithm
Analysis Fall 2010 256 / 351

Hard Problems (2)

Note that for a faster machine, the size of problem that can
be run in a fixed amount of time

grows by a multiplicative factor for a polynomial-time
algorithm.

grows by an additive factor for an exponential-time
algorithm.

20
10

-1
1-

30

CS 4104

Hard Problems (2)

no notes

Nondeterminism
Imagine a computer that works by guessing the correct
solution from among all possible solutions to a problem.
Alternative: Super parallel machine that tests all
possible solutions simultaneously.
It might solve some problems more quickly than a
regular computer.
Consider a problem which, when given a proposed
solution, we can check in polynomial time if the solution
is correct.
Even if the number of guesses is exponential, checking
(in this case) is polynomial.
Conversely: if you can’t guess an answer and check in
polynomial time, there can be no polynomial time
algorithm!

CS 4104: Data and Algorithm
Analysis Fall 2010 257 / 351

Nondeterminism
Imagine a computer that works by guessing the correct
solution from among all possible solutions to a problem.
Alternative: Super parallel machine that tests all
possible solutions simultaneously.
It might solve some problems more quickly than a
regular computer.
Consider a problem which, when given a proposed
solution, we can check in polynomial time if the solution
is correct.
Even if the number of guesses is exponential, checking
(in this case) is polynomial.
Conversely: if you can’t guess an answer and check in
polynomial time, there can be no polynomial time
algorithm!

20
10

-1
1-

30

CS 4104

Nondeterminism

This might appear to be irrelevent, but it turns out to be a
practical classification tool!

This turns out to be a key question – one which we still don’t
know the answer to!

Nondeterministic Algorithm

An algorithm is nondeterministic if it works by guessing the
right answer from among a finite number of choices.

Alternatively, imagine a tree of choices, polynomial levels
deep.

A super parallel machine follows all branches of the tree
in parallel.
If any single branch reaches a solution, the problem is
solved.

A problem that can be solved in polynomial time by a
nondeterministic machine is said to be “in NP.”

Is Towers of Hanoi in NP?
CS 4104: Data and Algorithm

Analysis Fall 2010 258 / 351

Nondeterministic Algorithm

An algorithm is nondeterministic if it works by guessing the
right answer from among a finite number of choices.

Alternatively, imagine a tree of choices, polynomial levels
deep.

A super parallel machine follows all branches of the tree
in parallel.
If any single branch reaches a solution, the problem is
solved.

A problem that can be solved in polynomial time by a
nondeterministic machine is said to be “in NP.”

Is Towers of Hanoi in NP?

20
10

-1
1-

30

CS 4104

Nondeterministic Algorithm

Finite, but possibly large.

Nondeterministic Polynomial

No. Its too hard – can’t verify answer in polynomial time.

Problems solvable in polynomial time by a “normal” computer
are said to be in P.

Traveling Salesman Problem

TRAVELING SALESMAN (1):

Input: A complete, directed graph G with distances
assigned to each edge in the graph.

Output: Shortest simple cycle that includes every vertex.

Problem: How to tell if a proposed solution is shortest?

2

A

3

E

2

3 6

8
4

1

1
D

1

B

C

CS 4104: Data and Algorithm
Analysis Fall 2010 259 / 351

Traveling Salesman Problem

TRAVELING SALESMAN (1):

Input: A complete, directed graph G with distances
assigned to each edge in the graph.

Output: Shortest simple cycle that includes every vertex.

Problem: How to tell if a proposed solution is shortest?

2

A

3

E

2

3 6

8
4

1

1
D

1

B

C20
10

-1
1-

30

CS 4104

Traveling Salesman Problem

You can’t. You can verify that a proposed solution is a tour, and
is of claimed cost. But, that’s not necessarily shortest.

Traveling Salesman (Cont.)

Decision problem : A problem with a YES or NO answer.

TRAVELING SALESMAN (2):

Input: A complete, directed graph G with distances
assigned to each edge in the graph, and an integer K .

Output: YES if there is a simple cycle with total distance
≤ K containing every vertex in G, and NO otherwise.

In NP: We can guess a cycle, and quickly check if it meets
the requirements.

CS 4104: Data and Algorithm
Analysis Fall 2010 260 / 351

Traveling Salesman (Cont.)

Decision problem : A problem with a YES or NO answer.

TRAVELING SALESMAN (2):

Input: A complete, directed graph G with distances
assigned to each edge in the graph, and an integer K .

Output: YES if there is a simple cycle with total distance
≤ K containing every vertex in G, and NO otherwise.

In NP: We can guess a cycle, and quickly check if it meets
the requirements.

20
10

-1
1-

30

CS 4104

Traveling Salesman (Cont.)

no notes

NP-complete Problems (1)

Many problems are like traveling salesman:
They are in NP.
Nobody knows a polynomial time algorithm.
Is there any relationship between them?

A problem X is said to be NP-hard if ANY problem in NP
can be reduced to X in polynomial time.

X is AS HARD AS any problem in NP.

A problem X is said to be NP-complete if
1 It is in NP.
2 It is NP-hard.

CS 4104: Data and Algorithm
Analysis Fall 2010 261 / 351

NP-complete Problems (1)

Many problems are like traveling salesman:
They are in NP.
Nobody knows a polynomial time algorithm.
Is there any relationship between them?

A problem X is said to be NP-hard if ANY problem in NP
can be reduced to X in polynomial time.

X is AS HARD AS any problem in NP.

A problem X is said to be NP-complete if
1 It is in NP.
2 It is NP-hard.

20
10

-1
1-

30

CS 4104

NP-complete Problems (1)

But also cannot prove that there is no polynomial-time
algorithm.

Note that X can be outside (harder than) NP. But that’s not
useful.

NP-complete Problems (2)

To start the process we need to prove just one problem H is
NP-complete.

To show that X is NP-hard, just reduce H to X .

DON’T GET IT BACKWARDS!

CS 4104: Data and Algorithm
Analysis Fall 2010 262 / 351

NP-complete Problems (2)

To start the process we need to prove just one problem H is
NP-complete.

To show that X is NP-hard, just reduce H to X .

DON’T GET IT BACKWARDS!

20
10

-1
1-

30

CS 4104

NP-complete Problems (2)

no notes

Why Care about NP-Completeness?

Your boss asks you to write a fast program for TRAVELING
SALESMAN.

Its obviously an easy problem to understand.
She can easily see some algorithm to solve the problem.
It must be easy to speed up!

If you can’t do the job, what do you tell her?
I can’t do it.
I can’t find evidence that anyone can do it.
Nobody has been able to do it, despite the fact that
many people have tried. Furthermore, if anyone solved
any of this long list of problems, then they would be able
to do this problem too.

CS 4104: Data and Algorithm
Analysis Fall 2010 263 / 351

Why Care about NP-Completeness?

Your boss asks you to write a fast program for TRAVELING
SALESMAN.

Its obviously an easy problem to understand.
She can easily see some algorithm to solve the problem.
It must be easy to speed up!

If you can’t do the job, what do you tell her?
I can’t do it.
I can’t find evidence that anyone can do it.
Nobody has been able to do it, despite the fact that
many people have tried. Furthermore, if anyone solved
any of this long list of problems, then they would be able
to do this problem too.

20
10

-1
1-

30

CS 4104

Why Care about NP-Completeness?

no notes

Satisfiability

Let E be a Boolean expression over variables x1, x2, ..., xn in
Conjunctive Normal form:

E = (x5 + x7 + x8 + x10) · (x2 + x3) · (x1 + x3 + x6).

SATISFIABILITY (SAT):
INPUT: A Boolean expression E over variables x1, x2, ...
in Conjunctive Normal Form.
OUTPUT: YES if there is an assignment to the variables
that makes E true, NO otherwise.

This is the “grand-daddy” NP-complete problem.

Cook’s Theorem: SAT is NP-complete.
CS 4104: Data and Algorithm

Analysis Fall 2010 264 / 351

Satisfiability

Let E be a Boolean expression over variables x1, x2, ..., xn in
Conjunctive Normal form:

E = (x5 + x7 + x8 + x10) · (x2 + x3) · (x1 + x3 + x6).

SATISFIABILITY (SAT):
INPUT: A Boolean expression E over variables x1, x2, ...
in Conjunctive Normal Form.
OUTPUT: YES if there is an assignment to the variables
that makes E true, NO otherwise.

This is the “grand-daddy” NP-complete problem.

Cook’s Theorem: SAT is NP-complete.

20
10

-1
1-

30

CS 4104

Satisfiability

no notes

NP-completeness Proof Model

Implication: If a polynomial time algorithm can be found for
ANY problem that is NP-complete, then by a chain of
polynomial time reductions, ALL NP-complete problems can
be solved in polynomial time.

To show that a decision problem X is NP-complete:
1 Show that X is in NP.

◮ Give a polynomial-time, nondeterministic algorithm.
2 Show that X is NP-hard.

◮ Choose a known NP-complete problem, A.
◮ Describe a polynomial-time transformation that takes an

ARBITRARY instance I of A to an instance I′ of X .
◮ Describe a polynomial-time transformation from S′ to S

such that S is the solution for I.
CS 4104: Data and Algorithm

Analysis Fall 2010 265 / 351

NP-completeness Proof Model

Implication: If a polynomial time algorithm can be found for
ANY problem that is NP-complete, then by a chain of
polynomial time reductions, ALL NP-complete problems can
be solved in polynomial time.

To show that a decision problem X is NP-complete:
1 Show that X is in NP.

◮ Give a polynomial-time, nondeterministic algorithm.
2 Show that X is NP-hard.

◮ Choose a known NP-complete problem, A.
◮ Describe a polynomial-time transformation that takes an

ARBITRARY instance I of A to an instance I′ of X .
◮ Describe a polynomial-time transformation from S′ to S

such that S is the solution for I.

20
10

-1
1-

30

CS 4104

NP-completeness Proof Model

no notes

Cook’s Proof Outline
1 Any decision problem can be recast as a language

acceptance problem: F (I) = YES ⇔ L(I ′) = ACCEPT.
2 Turing machines are a simple model of computation for

writing programs that are language acceptors.
3 There is a “universal” Turing machine that can take as

input a description for a Turing machine, and an input
string, and return the result of the execution of that
machine on that string.

4 This in turn can be cast as a boolean expression such
that the expression is satisfiable if and only if the Turing
machine yields ACCEPT for that string.

5 Thus, any decision problem that is performable by the
Turing machine is transformable to SAT: This is
NP-hard.

CS 4104: Data and Algorithm
Analysis Fall 2010 266 / 351

Cook’s Proof Outline
1 Any decision problem can be recast as a language

acceptance problem: F (I) = YES ⇔ L(I ′) = ACCEPT.
2 Turing machines are a simple model of computation for

writing programs that are language acceptors.
3 There is a “universal” Turing machine that can take as

input a description for a Turing machine, and an input
string, and return the result of the execution of that
machine on that string.

4 This in turn can be cast as a boolean expression such
that the expression is satisfiable if and only if the Turing
machine yields ACCEPT for that string.

5 Thus, any decision problem that is performable by the
Turing machine is transformable to SAT: This is
NP-hard.

20
10

-1
1-

30

CS 4104

Cook’s Proof Outline

no notes

The World of Exponential-time(?)
Problems

Question: Does P = NP?

CS 4104: Data and Algorithm
Analysis Fall 2010 267 / 351

The World of Exponential-time(?)
Problems

Question: Does P = NP?

20
10

-1
1-

30

CS 4104

The World of Exponential-time(?) Problems

no notes

3-SATISFIABILITY (3 SAT)

Input : Boolean expression E in CNF such that each clause
contains exactly 3 literals.
Output : YES if expression can be satisfied, NO otherwise.

A special case of SAT.
Is 3 SAT easier than SAT?

Theorem : 3 SAT is NP-complete.
Proof :

3 SAT is in NP.
◮ Guess (nondeterministically) values for the variables.
◮ The correctness of the guess can be verified in

polynomial time.
3 SAT is NP-hard, by a reduction from SAT to 3 SAT.

CS 4104: Data and Algorithm
Analysis Fall 2010 268 / 351

3-SATISFIABILITY (3 SAT)

Input : Boolean expression E in CNF such that each clause
contains exactly 3 literals.
Output : YES if expression can be satisfied, NO otherwise.

A special case of SAT.
Is 3 SAT easier than SAT?

Theorem : 3 SAT is NP-complete.
Proof :

3 SAT is in NP.
◮ Guess (nondeterministically) values for the variables.
◮ The correctness of the guess can be verified in

polynomial time.
3 SAT is NP-hard, by a reduction from SAT to 3 SAT.

20
10

-1
1-

30

CS 4104

3-SATISFIABILITY (3 SAT)

2-SAT is polynomial.

3 SAT is NP-hard

Find a polynomial time reduction from SAT to 3 SAT.

Let E = C1 · C2 · ... · Ck by any instance of SAT.

Strategy: Replace any clause Ci that does not have exactly
3 literals with two or more clauses having exactly 3 literals.

Let Ci = x1 + x2 + ... + xj where x1, ..., xj are literals.

CS 4104: Data and Algorithm
Analysis Fall 2010 269 / 351

3 SAT is NP-hard

Find a polynomial time reduction from SAT to 3 SAT.

Let E = C1 · C2 · ... · Ck by any instance of SAT.

Strategy: Replace any clause Ci that does not have exactly
3 literals with two or more clauses having exactly 3 literals.

Let Ci = x1 + x2 + ... + xj where x1, ..., xj are literals.20
10

-1
1-

30

CS 4104

3 SAT is NP-hard

no notes

Replacement (1)

1 j = 1, so Ci = x1. Replace Ci with

(x1 + v + w) · (x1 + v + w) · (x1 + v + w) · (x1 + v + w)

where v and w are new variables.
2 j = 2, so Ci = (x1 + x2). Replace Ci with

(x1 + x2 + z) · (x1 + x2 + z)

where z is a new variable.
3 j > 3. Replace Ci with

(x1 + x2 + z1) · (x3 + z1 + z2) · (x4 + z2 + z3) · ...
·(xj−2 + zj−4 + zj−3) · (xj−1 + xj + zj−3)

where z1, ..., zj−3 are new variables.
CS 4104: Data and Algorithm

Analysis Fall 2010 270 / 351

Replacement (1)

1 j = 1, so Ci = x1. Replace Ci with

(x1 + v + w) · (x1 + v + w) · (x1 + v + w) · (x1 + v + w)

where v and w are new variables.
2 j = 2, so Ci = (x1 + x2). Replace Ci with

(x1 + x2 + z) · (x1 + x2 + z)

where z is a new variable.
3 j > 3. Replace Ci with

(x1 + x2 + z1) · (x3 + z1 + z2) · (x4 + z2 + z3) · ...
·(xj−2 + zj−4 + zj−3) · (xj−1 + xj + zj−3)

where z1, ..., zj−3 are new variables.

20
10

-1
1-

30

CS 4104

Replacement (1)

no notes

Replacement (2)

After appropriate replacements have been made for each Ci ,
a Boolean expression results that is an instance of 3 SAT.

Each replacement is satisfiable if and only if the original
clause is satisfiable.

The reduction is clearly polynomial time.

CS 4104: Data and Algorithm
Analysis Fall 2010 271 / 351

Replacement (2)

After appropriate replacements have been made for each Ci ,
a Boolean expression results that is an instance of 3 SAT.

Each replacement is satisfiable if and only if the original
clause is satisfiable.

The reduction is clearly polynomial time.20
10

-1
1-

30

CS 4104

Replacement (2)

no notes

Third Case
If E is satisfiable, then E ′ is satisfiable:

Assume xm is assigned true.
Assign zt , t ≤ m − 2 as true and zk , t ≥ m − 1 as false.
Then all clauses in Case (3) are satisfied.

If E ′ is satisfiable, then E is satisfiable:
Proof by contradiction.
If x1, x2, ..., xj are all false, then z1, z2, ..., zj−3 are all true.
But then (xj−1 + xj−2 + zj−3) is false, a contradiction.

(Not necessary for proof, but may help insight.)
Conversely, if E is not satisfiable, then E ′ is not satisfiable.

E not satisfiable means all xi are false.
This leaves E ′ as

(z1) · (z1 + z2) · ... · (zj−4 + zj−3) · (zj−3)

which is NOT satisfiable.
CS 4104: Data and Algorithm

Analysis Fall 2010 272 / 351

Third Case
If E is satisfiable, then E ′ is satisfiable:

Assume xm is assigned true.
Assign zt , t ≤ m − 2 as true and zk , t ≥ m − 1 as false.
Then all clauses in Case (3) are satisfied.

If E ′ is satisfiable, then E is satisfiable:
Proof by contradiction.
If x1, x2, ..., xj are all false, then z1, z2, ..., zj−3 are all true.
But then (xj−1 + xj−2 + zj−3) is false, a contradiction.

(Not necessary for proof, but may help insight.)
Conversely, if E is not satisfiable, then E ′ is not satisfiable.

E not satisfiable means all xi are false.
This leaves E ′ as

(z1) · (z1 + z2) · ... · (zj−4 + zj−3) · (zj−3)

which is NOT satisfiable.

20
10

-1
1-

30

CS 4104

Third Case

no notes

Two Problems (1)

VERTEX COVER:
Input : An undirected graph G and an integer k .
Output : YES if there is a subset of vertices in G of size k or
less such that every edge in the graph has at least one of its
ends in the subset; NO otherwise.

K-CLIQUE :
Input : An undirected graph G and an integer k .
Output : YES if there is a subset of the vertices of size k or
greater that is a complete graph (a clique).

CS 4104: Data and Algorithm
Analysis Fall 2010 273 / 351

Two Problems (1)

VERTEX COVER:
Input : An undirected graph G and an integer k .
Output : YES if there is a subset of vertices in G of size k or
less such that every edge in the graph has at least one of its
ends in the subset; NO otherwise.

K-CLIQUE :
Input : An undirected graph G and an integer k .
Output : YES if there is a subset of the vertices of size k or
greater that is a complete graph (a clique).20

10
-1

1-
30

CS 4104

Two Problems (1)

no notes

Two Problems (2)

We can reduce either problem to the other by switching G to
its inverse G′.

If edge (i , j) is in G, it is NOT in G′.

If edge (i , j) is NOT in G, it IS in G′.

CS 4104: Data and Algorithm
Analysis Fall 2010 274 / 351

Two Problems (2)

We can reduce either problem to the other by switching G to
its inverse G′.

If edge (i , j) is in G, it is NOT in G′.

If edge (i , j) is NOT in G, it IS in G′.

20
10

-1
1-

30

CS 4104

Two Problems (2)

Given a VC in G of size k , there is an (n − k)-sized clique in G′

using the vertices not in the original vertex cover (and vice
versa).
[The vertices not in the match cannot be connected, otherwise
their connector edge would not be covered. So, the inverse
graph must be a clique on those vertices.]

K CLIQUE is NP-Complete (1)

procedure nd-CLIQUE(Graph G, int K) {
VertexSet S = EMPTY; int size = 0;
for (v in G.V)

if (nd-choice(YES, NO) == YES) then {
S = union(S, v);
size = size + 1;

}
if (size < K) then

REJECT; // S is too small
for (u in S)

for (v in S)
if ((u <> v) && ((u, v) not in E))

REJECT; // S is missing an edge
ACCEPT;

}
CS 4104: Data and Algorithm

Analysis Fall 2010 275 / 351

K CLIQUE is NP-Complete (1)

procedure nd-CLIQUE(Graph G, int K) {
VertexSet S = EMPTY; int size = 0;
for (v in G.V)
if (nd-choice(YES, NO) == YES) then {

S = union(S, v);
size = size + 1;

}
if (size < K) then
REJECT; // S is too small

for (u in S)
for (v in S)

if ((u <> v) && ((u, v) not in E))
REJECT; // S is missing an edge

ACCEPT;
}

20
10

-1
1-

30

CS 4104

K CLIQUE is NP-Complete (1)

Guess a group of vertices and check that they form a complete
graph.

K CLIQUE is NP-Complete (2)

Now show that K CLIQUE is NP-hard.

Reduce SAT to K CLIQUE.

An instance of SAT is a Boolean expression

B = C1 · C2 · ... · Cm

where
Ci = y [i , 1] + y [i , 2] + ... + y [i , ki].

Transform this to an instance of K CLIQUE as follows.

V = {v [i , j]|1 ≤ i ≤ m, 1 ≤ j ≤ ki}.

CS 4104: Data and Algorithm
Analysis Fall 2010 276 / 351

K CLIQUE is NP-Complete (2)

Now show that K CLIQUE is NP-hard.

Reduce SAT to K CLIQUE.

An instance of SAT is a Boolean expression

B = C1 · C2 · ... · Cm

where
Ci = y [i , 1] + y [i , 2] + ... + y [i , ki].

Transform this to an instance of K CLIQUE as follows.

V = {v [i , j]|1 ≤ i ≤ m, 1 ≤ j ≤ ki}.

20
10

-1
1-

30

CS 4104

K CLIQUE is NP-Complete (2)

A vertex for every literal in every clause.

K CLIQUE is NP-Complete (3)

All vertices v [i1, j1] and v [i2, j2] have an edge between them
UNLESS they are two literals within the same clause (i1 = i2)
OR they are opposite values for the same variable.

Set k = m.

CS 4104: Data and Algorithm
Analysis Fall 2010 277 / 351

K CLIQUE is NP-Complete (3)

All vertices v [i1, j1] and v [i2, j2] have an edge between them
UNLESS they are two literals within the same clause (i1 = i2)
OR they are opposite values for the same variable.

Set k = m.

20
10

-1
1-

30

CS 4104

K CLIQUE is NP-Complete (3)

no notes

Example

B = (y1 + y2) · (y1 + y2 + y3).

B is satisfiable if and only if G has a clique of size ≥ k .
B satisfiable implies there is a truth assignment such
that y [i , ji] is true for each i .
But then, v [i , ji] must be in a clique of size k = m.
If G has clique of size ≥ k , then clique must have size
exactly k with one vertex v [i , ji] in clique for each i .
There is a truth assignment making each y [i , ji] true.
That truth assignment satisfies B.

Conclude that K CLIQUE is NP-hard, therefore
NP-complete.

CS 4104: Data and Algorithm
Analysis Fall 2010 278 / 351

Example

B = (y1 + y2) · (y1 + y2 + y3).

B is satisfiable if and only if G has a clique of size ≥ k .
B satisfiable implies there is a truth assignment such
that y [i , ji] is true for each i .
But then, v [i , ji] must be in a clique of size k = m.
If G has clique of size ≥ k , then clique must have size
exactly k with one vertex v [i , ji] in clique for each i .
There is a truth assignment making each y [i , ji] true.
That truth assignment satisfies B.

Conclude that K CLIQUE is NP-hard, therefore
NP-complete.

20
10

-1
1-

30

CS 4104

Example

Need graph here

Co-NP

Note the asymmetry in the definition of NP.
◮ The non-determinism can identify a clique, and you can

verify it.
◮ But what if the correct answer is “NO”? How do you

verify that?

Co-NP: The complements of problems in NP.
◮ Is a boolean expression always false?
◮ Is there no clique of size k?

It seems unlikely that NP= co-NP.

CS 4104: Data and Algorithm
Analysis Fall 2010 279 / 351

Co-NP

Note the asymmetry in the definition of NP.
◮ The non-determinism can identify a clique, and you can

verify it.
◮ But what if the correct answer is “NO”? How do you

verify that?

Co-NP: The complements of problems in NP.
◮ Is a boolean expression always false?
◮ Is there no clique of size k?

It seems unlikely that NP= co-NP.20
10

-1
1-

30

CS 4104

Co-NP

Co-NPmight be a bigger (“harder”) class that includes NP.

Is Everything in NP Either P or
NP-complete?

The following problems are not known to be in P or
NP-complete, but seem to be of a type that makes them
unlikely to be in NP-complete.

GRAPH ISOMORPHISM: Are two graphs isomorphic?

COMPOSITE NUMBERS: For positive integer K , are
there integers m, n > 1 such that K = mn?

LINEAR PROGRAMMING

CS 4104: Data and Algorithm
Analysis Fall 2010 280 / 351

Is Everything in NP Either P or
NP-complete?

The following problems are not known to be in P or
NP-complete, but seem to be of a type that makes them
unlikely to be in NP-complete.

GRAPH ISOMORPHISM: Are two graphs isomorphic?

COMPOSITE NUMBERS: For positive integer K , are
there integers m, n > 1 such that K = mn?

LINEAR PROGRAMMING20
10

-1
1-

30

CS 4104

Is Everything in NP Either P or NP-complete?

These problems seem easier than typical NP-complete
problems, but are still probably harder than P. They are
obviously in NP, but don’t appear to be “hard” enough to solve
any NP-complete problem.

Subgraph Isomorphism (is a graph A isomorphic to some
subgraph in graph B) is NP-complete. But it is understandable
how this might be a harder problem (there are so many
subgraphs to choose from).

Coping with NP-Completeness

1 Organize to reduce costs.
◮ Dynamic programming.
◮ Backtracking.
◮ Branch and Bounds.

2 Find subproblems of the original problem that have
polynomial-time solutions.

◮ Significant special cases that are useful to answer.
3 Approximation algorithms.
4 Randomized algorithms.
5 Use heuristics.

◮ Greedy algorithms.
◮ Simulated Annealing.
◮ Genetic Algorithms.

CS 4104: Data and Algorithm
Analysis Fall 2010 281 / 351

Coping with NP-Completeness

1 Organize to reduce costs.
◮ Dynamic programming.
◮ Backtracking.
◮ Branch and Bounds.

2 Find subproblems of the original problem that have
polynomial-time solutions.

◮ Significant special cases that are useful to answer.
3 Approximation algorithms.
4 Randomized algorithms.
5 Use heuristics.

◮ Greedy algorithms.
◮ Simulated Annealing.
◮ Genetic Algorithms.

20
10

-1
1-

30

CS 4104

Coping with NP-Completeness

See next slide.

Discussed later.

Knapsack Analysis Revisited

Fact: Knapsack is NP-complete.
But we have a Θ(nK) algorithm!!

Question: How big is K ?
Input size is typically O(n log K) since the item sizes are
smaller than K .
Thus, Θ(nK) is exponential on input size.

This algorithm is tractable if the numbers are “reasonable.”
nK can be thousands.
This is different from TRAVELING SALESMAN which
cannot handle n = 100.

Such an algorithm is called a pseudo-polynomial time
algorithm.

CS 4104: Data and Algorithm
Analysis Fall 2010 282 / 351

Knapsack Analysis Revisited

Fact: Knapsack is NP-complete.
But we have a Θ(nK) algorithm!!

Question: How big is K ?
Input size is typically O(n log K) since the item sizes are
smaller than K .
Thus, Θ(nK) is exponential on input size.

This algorithm is tractable if the numbers are “reasonable.”
nK can be thousands.
This is different from TRAVELING SALESMAN which
cannot handle n = 100.

Such an algorithm is called a pseudo-polynomial time
algorithm.

20
10

-1
1-

30

CS 4104

Knapsack Analysis Revisited

> 2n is quite possible.

Subproblems and Special Cases

Some restricted cases of NP-complete problems are useful,
and not NP-complete.

VERTEX COVER and K CLIQUE have polynomial time
algorithms for bipartite graphs.

2-SATISFIABILITY has a polynomial time solution.

Several geometric problems are polynomial-time in two
dimensions, but not in three or more.

KNAPSACK is polynomial if the numbers are “small.”

CS 4104: Data and Algorithm
Analysis Fall 2010 283 / 351

Subproblems and Special Cases

Some restricted cases of NP-complete problems are useful,
and not NP-complete.

VERTEX COVER and K CLIQUE have polynomial time
algorithms for bipartite graphs.

2-SATISFIABILITY has a polynomial time solution.

Several geometric problems are polynomial-time in two
dimensions, but not in three or more.

KNAPSACK is polynomial if the numbers are “small.”20
10

-1
1-

30

CS 4104

Subproblems and Special Cases

Example: Vertex cover on a bipartite graph. Best to pick the
side with the greater number of vertices.

Approximation Algorithms

Seek algorithms for optimization problems with a guaranteed
bound on quality of the solution.

For VERTEX COVER:
Let M be a maximal (not necessarily maximum)
matching in G.

◮ A matching pairs vertices (with connecting edges) so
that no vertex is paired with more than one match.

◮ Maximal means pick as many pairs as possible.
If OPT is the size of a minimum vertex cover, then

|M| ≤ 2 · OPT

because at least one endpoint of every matched edge
must be in ANY vertex cover.

CS 4104: Data and Algorithm
Analysis Fall 2010 284 / 351

Approximation Algorithms

Seek algorithms for optimization problems with a guaranteed
bound on quality of the solution.

For VERTEX COVER:
Let M be a maximal (not necessarily maximum)
matching in G.

◮ A matching pairs vertices (with connecting edges) so
that no vertex is paired with more than one match.

◮ Maximal means pick as many pairs as possible.
If OPT is the size of a minimum vertex cover, then

|M| ≤ 2 · OPT

because at least one endpoint of every matched edge
must be in ANY vertex cover.

20
10

-1
1-

30

CS 4104

Approximation Algorithms

And, M is a vertex cover since no edge is free.

BIN PACKING

INPUT: Numbers x1, x2, ..., xn between 0 and 1, and an
unlimited supply of bins of size 1.

OUTPUT: An assignment of numbers to bins that requires
the fewest possible number of bins (no bin can hold numbers
whose sum exceeds 1).

This problem is NP-complete.

Example: Numbers 3/4, 1/3, 1/2, 1/8, 2/3, 1/2, 1/4.

Optimal solution: [3/4, 1/8], [1/2, 1/3], [1/2, 1/4], [2/3].
CS 4104: Data and Algorithm

Analysis Fall 2010 285 / 351

BIN PACKING

INPUT: Numbers x1, x2, ..., xn between 0 and 1, and an
unlimited supply of bins of size 1.

OUTPUT: An assignment of numbers to bins that requires
the fewest possible number of bins (no bin can hold numbers
whose sum exceeds 1).

This problem is NP-complete.

Example: Numbers 3/4, 1/3, 1/2, 1/8, 2/3, 1/2, 1/4.

Optimal solution: [3/4, 1/8], [1/2, 1/3], [1/2, 1/4], [2/3].

20
10

-1
1-

30

CS 4104

BIN PACKING

Optimal in that the sum is 3 1/8, and we packed into 4 bins.
There is another optimal solution with the first 3 bins packed,
but this is more than we need to solve the problem.

First Fit Algorithm

Place x1 into the first bin.

For each i , 2 ≤ i ≤ n, place xi in the first bin that will contain
it.

No more than 1 bin can be left less than half full.
The number of bins used is no more than twice the sum of
the numbers.

The sum of the numbers is a lower bound on the number of
bins in the optimal solution.

Therefore, first fit is no more than twice the optimal number
of bins.

CS 4104: Data and Algorithm
Analysis Fall 2010 286 / 351

First Fit Algorithm

Place x1 into the first bin.

For each i , 2 ≤ i ≤ n, place xi in the first bin that will contain
it.

No more than 1 bin can be left less than half full.
The number of bins used is no more than twice the sum of
the numbers.

The sum of the numbers is a lower bound on the number of
bins in the optimal solution.

Therefore, first fit is no more than twice the optimal number
of bins.

20
10

-1
1-

30

CS 4104

First Fit Algorithm

Otherwise, the items in the second half-full bin would be put
into the first!

First Fit Does Poorly

Let ǫ be very small, e.g., ǫ = .00001.
Numbers (in this order):

6 of (1/7 + ǫ).
6 of (1/3 + ǫ).
6 of (1/2 + ǫ).

First fit returns:
1 bin of [6 of 1/7 + ǫ]
3 bins of [2 of 1/3 + ǫ]
6 bins of [1/2 + ǫ]

Optimal solution is 6 bins of [1/7 + ǫ, 1/3 + ǫ, 1/2 + ǫ].

First fit is 5/3 larger than optimal.
CS 4104: Data and Algorithm

Analysis Fall 2010 287 / 351

First Fit Does Poorly

Let ǫ be very small, e.g., ǫ = .00001.
Numbers (in this order):

6 of (1/7 + ǫ).
6 of (1/3 + ǫ).
6 of (1/2 + ǫ).

First fit returns:
1 bin of [6 of 1/7 + ǫ]
3 bins of [2 of 1/3 + ǫ]
6 bins of [1/2 + ǫ]

Optimal solution is 6 bins of [1/7 + ǫ, 1/3 + ǫ, 1/2 + ǫ].

First fit is 5/3 larger than optimal.

20
10

-1
1-

30

CS 4104

First Fit Does Poorly

no notes

Decreasing First Fit

It can be proved that the worst-case performance of first-fit is
17/10 times optimal.

Use the following heuristic:

Sort the numbers in decreasing order.

Apply first fit.

This is called decreasing first fit .

The worst case performance of decreasing first fit is close to
11/9 times optimal.

CS 4104: Data and Algorithm
Analysis Fall 2010 288 / 351

Decreasing First Fit

It can be proved that the worst-case performance of first-fit is
17/10 times optimal.

Use the following heuristic:

Sort the numbers in decreasing order.

Apply first fit.

This is called decreasing first fit .

The worst case performance of decreasing first fit is close to
11/9 times optimal.

20
10

-1
1-

30

CS 4104

Decreasing First Fit

no notes

Summary

The theory of NP-completeness gives a technique for
separating tractable from (probably) untractable problems.

When faced with a new problem, we might alternate
between:

Check if it is tractable (find a fast solution).

Check if it is intractable (prove the problem is
NP-complete).

If the problem is in NP-complete, then use one of the
“coping” strategies.

CS 4104: Data and Algorithm
Analysis Fall 2010 289 / 351

Summary

The theory of NP-completeness gives a technique for
separating tractable from (probably) untractable problems.

When faced with a new problem, we might alternate
between:

Check if it is tractable (find a fast solution).

Check if it is intractable (prove the problem is
NP-complete).

If the problem is in NP-complete, then use one of the
“coping” strategies.

20
10

-1
1-

30

CS 4104

Summary

no notes

Countable vs. Uncountably Infinite
Sets

Two sets have the same cardinality if there is a bijection
between them.

Notation: |A| = |B|.

This concept can also be applied to infinite sets.

Example: Let Odd and Even be the sets of odd and even
natural numbers, respectively.
Then, |Odd| = |Even| because the function f : |Odd→ Even|
defined by f (x) = x − 1 is a bijection.

How about |Even| = |N|?
CS 4104: Data and Algorithm

Analysis Fall 2010 290 / 351

Countable vs. Uncountably Infinite
Sets

Two sets have the same cardinality if there is a bijection
between them.

Notation: |A| = |B|.

This concept can also be applied to infinite sets.

Example: Let Odd and Even be the sets of odd and even
natural numbers, respectively.
Then, |Odd| = |Even| because the function f : |Odd→ Even|
defined by f (x) = x − 1 is a bijection.

How about |Even| = |N|?

20
10

-1
1-

30

CS 4104

Countable vs. Uncountably Infinite Sets

no notes

Counting Infinite Sets

A set C is countable if it is finite or if |C| = |N|.

If a set is not countable, then it is uncountable .

If A is a finite alphabet, then A∗ is countably infinite.

Proof: Arrange the strings in order by length, and within a
given length by alphabetical order. This provides a bijection.

As a corollary, the set of all computer programs is countable.

CS 4104: Data and Algorithm
Analysis Fall 2010 291 / 351

Counting Infinite Sets

A set C is countable if it is finite or if |C| = |N|.

If a set is not countable, then it is uncountable .

If A is a finite alphabet, then A∗ is countably infinite.

Proof: Arrange the strings in order by length, and within a
given length by alphabetical order. This provides a bijection.

As a corollary, the set of all computer programs is countable.20
10

-1
1-

30

CS 4104

Counting Infinite Sets

Basically, any set that you can “put into an order” is countable.

More Functions than Programs

Consider set of functions f (x) = y for x , y natural
numbers.

The set of such functions is uncountable.

Diagonalization argument

Not all functions on natural numbers are computable.

61 2 3 4 5 23121423456 111111 123456 123456 123456 7911131517 15171327 fnew(x)x f1(x) f2(x) f4(x)x x f3(x)1 123456xx12345
CS 4104: Data and Algorithm

Analysis Fall 2010 292 / 351

More Functions than Programs

Consider set of functions f (x) = y for x , y natural
numbers.

The set of such functions is uncountable.

Diagonalization argument

Not all functions on natural numbers are computable.

61 2 3 4 5 23121423456 111111 123456 123456 123456 7911131517 15171327 fnew(x)x f1(x) f2(x) f4(x)x x f3(x)1 123456xx1234520
10

-1
1-

30

CS 4104

More Functions than Programs

We are taking the i th value from function i and changing it to
create our new function. Which means that our new function is
not the same as function i . And since we do this to every
function, our new function is not any of the other functions.

Halting Problem for Programs

Does the following terminate?

while (n > 1)
if (ODD(n))
n = 3 * n + 1;

else
n = n / 2;

Can a C++ program be written to solve the following
problem?

Halting Problem :
Input: A program P and input X .
Output: “Halts” if P halts when run with X as input.
“Does not Halt” otherwise.

CS 4104: Data and Algorithm
Analysis Fall 2010 293 / 351

Halting Problem for Programs

Does the following terminate?

while (n > 1)
if (ODD(n))
n = 3 * n + 1;

else
n = n / 2;

Can a C++ program be written to solve the following
problem?

Halting Problem :
Input: A program P and input X .
Output: “Halts” if P halts when run with X as input.
“Does not Halt” otherwise.

20
10

-1
1-

30

CS 4104

Halting Problem for Programs

It is interesting “in theory” that not all functions can have
programs. But does this limit anything of interest in practice?
After all, we are only interested in functions that we can
somehow “describe”, not functions with effectively no
meaningful relationship between input and output.

Halting Problem Proof

Theorem : There is no program to solve the Halting Problem.

Proof : (by contradiction).

Assumption: There is a C++ program that solves the Halting
Problem.

bool halt(char* prog, char* input)
{
Code to solve halting problem
if (prog does halt on input) then
return(TRUE);

else
return(FALSE);

}

CS 4104: Data and Algorithm
Analysis Fall 2010 294 / 351

Halting Problem Proof

Theorem : There is no program to solve the Halting Problem.

Proof : (by contradiction).

Assumption: There is a C++ program that solves the Halting
Problem.

bool halt(char* prog, char* input)
{

Code to solve halting problem
if (prog does halt on input) then
return(TRUE);

else
return(FALSE);

}

20
10

-1
1-

30

CS 4104

Halting Problem Proof

no notes

Two More Procedures

bool selfhalt(char *prog) {
// Return TRUE if program halts
// when given itself as input.
if (halt(prog, prog))
return(TRUE);

else
return(FALSE);

}

void contrary(char *prog) {
if (selfhalt(prog))
while(TRUE); // Go into an infinite loop

}
CS 4104: Data and Algorithm

Analysis Fall 2010 295 / 351

Two More Procedures

bool selfhalt(char *prog) {
// Return TRUE if program halts
// when given itself as input.
if (halt(prog, prog))
return(TRUE);

else
return(FALSE);

}

void contrary(char *prog) {
if (selfhalt(prog))
while(TRUE); // Go into an infinite loop

}

20
10

-1
1-

30

CS 4104

Two More Procedures

Clearly these are real functions (because here they are!).

The Punchline

What happens when function contrary is run on itself?
Case 1: selfhalt returns TRUE.

◮ contrary will go into an infinite loop.
◮ This contradicts the result from selfhalt.

selfhalt returns FALSE.
◮ contrary will halt.
◮ This contradicts the result from selfhalt.

Either result is impossible.

The only flaw in this argument is the assumption that
halt exists.

Therefore, halt cannot exist.

CS 4104: Data and Algorithm
Analysis Fall 2010 296 / 351

The Punchline

What happens when function contrary is run on itself?
Case 1: selfhalt returns TRUE.

◮ contrary will go into an infinite loop.
◮ This contradicts the result from selfhalt.

selfhalt returns FALSE.
◮ contrary will halt.
◮ This contradicts the result from selfhalt.

Either result is impossible.

The only flaw in this argument is the assumption that
halt exists.

Therefore, halt cannot exist.

20
10

-1
1-

30

CS 4104

The Punchline

no notes

Computability Reduction Proof

Given arbitrary program M, does it halt on the EMPTY input?

This is uncomputable. Proof:
Suppose that program M0 determines if M halts on the
EMPTY input.
Given arbitrary program M and string w , we can create
a new program Mw that operates as follows on empty
input:

◮ Write w into a static variable.
◮ Simulate the execution of M.

So, we can take arbitrary program M and string w ,
create Mw , and invoke M0 on Mw (with empty input) to
solve the original halting problem.
Thus, M0 must not exist.

CS 4104: Data and Algorithm
Analysis Fall 2010 297 / 351

Computability Reduction Proof

Given arbitrary program M, does it halt on the EMPTY input?

This is uncomputable. Proof:
Suppose that program M0 determines if M halts on the
EMPTY input.
Given arbitrary program M and string w , we can create
a new program Mw that operates as follows on empty
input:

◮ Write w into a static variable.
◮ Simulate the execution of M.

So, we can take arbitrary program M and string w ,
create Mw , and invoke M0 on Mw (with empty input) to
solve the original halting problem.
Thus, M0 must not exist.

20
10

-1
1-

30

CS 4104

Computability Reduction Proof

no notes

Another Reduction Proof
Does there exist SOME input for which an arbitrary program
halts?
Proof that this is uncomputable:

Suppose that program M0 could decide if arbitrary
program M halts on SOME input.
We can take an arbitrary program M and string w , and
modify it so that it ignores its input before proceeding.
Thus, arbitrary program M is modified to be M ′ that
effectively is M operating on the empty input.
Thus, we can take arbitrary program M and string w ,
modify it to become M ′ and feed that to M0 to solve the
problem of deciding if M halts on the empty input.
We already know that is undecidable.
Thus, M0 cannot exist.

CS 4104: Data and Algorithm
Analysis Fall 2010 298 / 351

Another Reduction Proof
Does there exist SOME input for which an arbitrary program
halts?
Proof that this is uncomputable:

Suppose that program M0 could decide if arbitrary
program M halts on SOME input.
We can take an arbitrary program M and string w , and
modify it so that it ignores its input before proceeding.
Thus, arbitrary program M is modified to be M ′ that
effectively is M operating on the empty input.
Thus, we can take arbitrary program M and string w ,
modify it to become M ′ and feed that to M0 to solve the
problem of deciding if M halts on the empty input.
We already know that is undecidable.
Thus, M0 cannot exist.

20
10

-1
1-

30

CS 4104

Another Reduction Proof

no notes

Other Noncomputable Functions

1 Does a program halt on EVERY input?
2 Do two programs compute the SAME function?
3 Does a particular line in a program get executed?
4 Does a program compute a particular function?

pause
5 Does a program contain a “computer virus”?

CS 4104: Data and Algorithm
Analysis Fall 2010 299 / 351

Other Noncomputable Functions

1 Does a program halt on EVERY input?
2 Do two programs compute the SAME function?
3 Does a particular line in a program get executed?
4 Does a program compute a particular function?

pause
5 Does a program contain a “computer virus”?

20
10

-1
1-

30

CS 4104

Other Noncomputable Functions

1. EVERY: If I knew it always halted, then I would be able to
answer if it halted on a specific input (the orginal halting
problem)

2. SAME: Fix one program to perform the function “infinite loop”

3. Lines: Fix one program to loop on the selected line.

4. Functions: Fix the function to be “halts”.

5. Virus: This is essentially a complex behavior, an even vaguer
problem than determining if a particular function is performed.

Parallel Algorithms

Running time : T (n, p) where n is the problem size, p is
number of processors.
Speedup : S(p) = T (n, 1)/T (n, p).

◮ A comparison of the time for a (good) sequential
algorithm vs. the parallel algorithm in question.

Problem: Best sequential algorithm may not be the
same as the best algorithm for p processors, which may
not be the best for ∞ processors.
Efficiency: E(n, p) = S(p)/p = T (n, 1)/(pT (n, p)).
Ratio of the time taken for 1 processor vs. the total time
required for p processors.

◮ Measure of how much the p processors are used (not
wasted).

◮ Optimal efficiency = 1 = speedup by factor of p.
CS 4104: Data and Algorithm

Analysis Fall 2010 300 / 351

Parallel Algorithms

Running time : T (n, p) where n is the problem size, p is
number of processors.
Speedup : S(p) = T (n, 1)/T (n, p).

◮ A comparison of the time for a (good) sequential
algorithm vs. the parallel algorithm in question.

Problem: Best sequential algorithm may not be the
same as the best algorithm for p processors, which may
not be the best for ∞ processors.
Efficiency: E(n, p) = S(p)/p = T (n, 1)/(pT (n, p)).
Ratio of the time taken for 1 processor vs. the total time
required for p processors.

◮ Measure of how much the p processors are used (not
wasted).

◮ Optimal efficiency = 1 = speedup by factor of p.

20
10

-1
1-

30

CS 4104

Parallel Algorithms

As opposed to T (n) for sequential algorithms.

Question: What algorithms should be compared?

pT (n, p) is total amount of “processor power” put into the
problem.

If E(n, p) > 1 then the sequential form of the parallel algorithm
would be faster than the sequential algorithm being compared
against – very suspicious!

So there are differing goals possible: Absolute fastest speedup
vs. efficiency.

Parallel Algorithm Design

Approach (1): Pick p and write best algorithm.

Would need a new algorithm for every p!

Approach (2): Pick best algorithm for p = ∞, then convert to
run on p processors.

Hopefully, if T (n, p) = X , then T (n, p/k) ≈ kX for k > 1.

Using one processor to emulate k processors is called the
parallelism folding principle .

CS 4104: Data and Algorithm
Analysis Fall 2010 301 / 351

Parallel Algorithm Design

Approach (1): Pick p and write best algorithm.

Would need a new algorithm for every p!

Approach (2): Pick best algorithm for p = ∞, then convert to
run on p processors.

Hopefully, if T (n, p) = X , then T (n, p/k) ≈ kX for k > 1.

Using one processor to emulate k processors is called the
parallelism folding principle .

20
10

-1
1-

30

CS 4104

Parallel Algorithm Design

no notes

Parallel Algorithm Design (2)

Some algorithms are only good for a large number of
processors.

T (n, 1) = n

T (n, n) = log n

S(n) = n/ log n

E(n, n) = 1/ log n

For p = 256, n = 1024.
T (1024, 256) = 4 log 1024 = 40.
For p = 16, running time = (1024/16) ∗ log 1024 = 640.
Speedup < 2, efficiency = 1024/(16 ∗ 640) = 1/10.

CS 4104: Data and Algorithm
Analysis Fall 2010 302 / 351

Parallel Algorithm Design (2)

Some algorithms are only good for a large number of
processors.

T (n, 1) = n

T (n, n) = log n

S(n) = n/ log n

E(n, n) = 1/ log n

For p = 256, n = 1024.
T (1024, 256) = 4 log 1024 = 40.
For p = 16, running time = (1024/16) ∗ log 1024 = 640.
Speedup < 2, efficiency = 1024/(16 ∗ 640) = 1/10.

20
10

-1
1-

30

CS 4104

Parallel Algorithm Design (2)

Good in terms of speedup.

1024/256, assuming one processor emulates 4 in 4 times the
time.
E(1024, 256) = 1024/(256 ∗ 40) = 1/10.

But note that efficiency goes down as the problem size grows.

Amdahl’s Law
Think of an algorithm as having a parallelizable section and
a serial section.

Example: 100 operations.
80 can be done in parallel, 20 must be done in
sequence.

Then, the best speedup possible leaves the 20 in sequence,
or a speedup of 100/20 = 5.

Amdahl’s law:

Speedup = (S + P)/(S + P/N)

= 1/(S + P/N) ≤ 1/S,

for S = serial fraction, P = parallel fraction, S + P = 1.
CS 4104: Data and Algorithm

Analysis Fall 2010 303 / 351

Amdahl’s Law
Think of an algorithm as having a parallelizable section and
a serial section.

Example: 100 operations.
80 can be done in parallel, 20 must be done in
sequence.

Then, the best speedup possible leaves the 20 in sequence,
or a speedup of 100/20 = 5.

Amdahl’s law:

Speedup = (S + P)/(S + P/N)

= 1/(S + P/N) ≤ 1/S,

for S = serial fraction, P = parallel fraction, S + P = 1.

20
10

-1
1-

30

CS 4104

Amdahl’s Law

See John L. Gustafson “Reevaluating Amdahl’s Law,” CACM
5/88 and follow-up technical correspondance in CACM 8/89.

Speedup is Serial / Parallel.
Draw graph, speed up is Y axis, Sequential is X axis. You will
see a nonlinear curve going down.

Amdahl’s Law Revisited
However, this version of Amdahl’s law applies to a fixed
problem size.

What happens as the problem size grows?
Hopefully, S = f (n) with S shrinking as n grows.

Instead of fixing problem size, fix execution time for
increasing number N processors (and thus, increasing
problem size).

Scaled Speedup= (S + P × N)/(S + P)

= S + P × N

= S + (1 − S) × N

= N + (1 − N) × S.
CS 4104: Data and Algorithm

Analysis Fall 2010 304 / 351

Amdahl’s Law Revisited
However, this version of Amdahl’s law applies to a fixed
problem size.

What happens as the problem size grows?
Hopefully, S = f (n) with S shrinking as n grows.

Instead of fixing problem size, fix execution time for
increasing number N processors (and thus, increasing
problem size).

Scaled Speedup= (S + P × N)/(S + P)

= S + P × N

= S + (1 − S) × N

= N + (1 − N) × S.

20
10

-1
1-

30

CS 4104

Amdahl’s Law Revisited

How long sequential process would take / How long for N
processors.

Since S + P = 1 and P = 1 − S.

The point is that this equation drops off much less slowly in N:
Graphing (sequential fraction for fixed N) vs. speedup, you get
a line with slope 1 − N.

All of this seems to assume the same algorithm for sequential
and parallel. But that’s OK – we want to see how much
parallelism is possible for the parallel algorithm.

Models of Parallel Computation

Single Instruction Multiple Data (SIMD)

All processors operate the same instruction in step.

Example: Vector processor.

Pipelined Processing:

Stream of data items, each pushed through the same
sequence of several steps.

Multiple Instruction Multiple Data (MIMD)

Processors are independent.

CS 4104: Data and Algorithm
Analysis Fall 2010 305 / 351

Models of Parallel Computation

Single Instruction Multiple Data (SIMD)

All processors operate the same instruction in step.

Example: Vector processor.

Pipelined Processing:

Stream of data items, each pushed through the same
sequence of several steps.

Multiple Instruction Multiple Data (MIMD)

Processors are independent.

20
10

-1
1-

30

CS 4104

Models of Parallel Computation

Vector: IBM 3090, Cray

Pipelined: Graphics coprocessor boards

MIMD: Modern clusters.

MIMD Communications (1)

Interconnection network:

Each processor is connected to a limited number of
neighbors.
Can be modeled as (undirected) graph.
Examples: Array, mesh, N-cube.
It is possible for the cost of communications to dominate
the algorithm (and in fact to limit parallelism).
Diameter : Maximum over all pairwise distances
between processors.
Tradeoff between diameter and number of connections.

CS 4104: Data and Algorithm
Analysis Fall 2010 306 / 351

MIMD Communications (1)

Interconnection network:

Each processor is connected to a limited number of
neighbors.
Can be modeled as (undirected) graph.
Examples: Array, mesh, N-cube.
It is possible for the cost of communications to dominate
the algorithm (and in fact to limit parallelism).
Diameter : Maximum over all pairwise distances
between processors.
Tradeoff between diameter and number of connections.20

10
-1

1-
30

CS 4104

MIMD Communications (1)

no notes

MIMD Communications (2)

Shared memory:

Random access to global memory such that any
processor can access any variable with unit cost.
In practice, this limits number of processors.
Exclusive Read/Exclusive Write (EREW).
Concurrent Read/Exclusive Write (CREW).
Concurrent Read/Concurrent Write (CRCW).

CS 4104: Data and Algorithm
Analysis Fall 2010 307 / 351

MIMD Communications (2)

Shared memory:

Random access to global memory such that any
processor can access any variable with unit cost.
In practice, this limits number of processors.
Exclusive Read/Exclusive Write (EREW).
Concurrent Read/Exclusive Write (CREW).
Concurrent Read/Concurrent Write (CRCW).

20
10

-1
1-

30

CS 4104

MIMD Communications (2)

no notes

Addition

Problem: Find the sum of two n-bit binary numbers.

Sequential Algorithm:

Start at the low end, add two bits.

If necessary, carry bit is brought forward.

Can’t do i th step until i − 1 is complete due to
uncertainty of carry bit (?).

Induction: (Going from n − 1 to n implies a sequential
algorithm)

CS 4104: Data and Algorithm
Analysis Fall 2010 308 / 351

Addition

Problem: Find the sum of two n-bit binary numbers.

Sequential Algorithm:

Start at the low end, add two bits.

If necessary, carry bit is brought forward.

Can’t do i th step until i − 1 is complete due to
uncertainty of carry bit (?).

Induction: (Going from n − 1 to n implies a sequential
algorithm)

20
10

-1
1-

30

CS 4104

Addition

no notes

Parallel Addition

Divide and conquer to the rescue:

Do the sum for top and bottom halves.

What about the carry bit?

Strengthen induction hypothesis:

Find the sum of the two numbers with or without the
carry bit.

After solving for n/2, we have L, Lc, R, and Rc.

Can combine pieces in constant time.
CS 4104: Data and Algorithm

Analysis Fall 2010 309 / 351

Parallel Addition

Divide and conquer to the rescue:

Do the sum for top and bottom halves.

What about the carry bit?

Strengthen induction hypothesis:

Find the sum of the two numbers with or without the
carry bit.

After solving for n/2, we have L, Lc, R, and Rc.

Can combine pieces in constant time.

20
10

-1
1-

30

CS 4104

Parallel Addition

Two possibilities: carry or not carry.

Also, for each a boolean indicating if it returns a carry.

If right has carry then
Sum = Lc |R

Else
Sum = L|R

If Sum has carry then
Carry = TRUE

For Sumc

Do the same using Rc since it is computing value having
received carry.

Parallel Addition (2)

The n/2-size problems are independent.
Given enough processors,

T (n, n) = T (n/2, n/2) + O(1) = O(log n).

We need only the EREW memory model.

CS 4104: Data and Algorithm
Analysis Fall 2010 310 / 351

Parallel Addition (2)

The n/2-size problems are independent.
Given enough processors,

T (n, n) = T (n/2, n/2) + O(1) = O(log n).

We need only the EREW memory model.

20
10

-1
1-

30

CS 4104

Parallel Addition (2)

Not 2T (n/2, n/2) because done in parallel!

Maximum-finding Algorithm: EREW

“Tournament” algorithm:
Compare pairs of numbers, the “winner” advances to
the next level.
Initially, have n/2 pairs, so need n/2 processors.
Running time is O(log n).

That is faster than the sequential algorithm, but what about
efficiency?

E(n, n/2) ≈ 1/ log n.

Why is the efficiency so low?
CS 4104: Data and Algorithm

Analysis Fall 2010 311 / 351

Maximum-finding Algorithm: EREW

“Tournament” algorithm:
Compare pairs of numbers, the “winner” advances to
the next level.
Initially, have n/2 pairs, so need n/2 processors.
Running time is O(log n).

That is faster than the sequential algorithm, but what about
efficiency?

E(n, n/2) ≈ 1/ log n.

Why is the efficiency so low?

20
10

-1
1-

30

CS 4104

Maximum-finding Algorithm: EREW

Since T (n,1)
nT (n,n) = n

n log n

Lots of idle processors after the first round.

More Efficient EREW Algorithm

Divide the input into n/ log n groups each with log n items.

Assign a group to each of n/ log n processors.

Each processor finds the maximum (sequentially) in log n
steps.

Now we have n/ log n “winners”.

Finish tournament algorithm.
T (n, n/ log n) = O(log n).
E(n, n/ log n) = O(1).

CS 4104: Data and Algorithm
Analysis Fall 2010 312 / 351

More Efficient EREW Algorithm

Divide the input into n/ log n groups each with log n items.

Assign a group to each of n/ log n processors.

Each processor finds the maximum (sequentially) in log n
steps.

Now we have n/ log n “winners”.

Finish tournament algorithm.
T (n, n/ log n) = O(log n).
E(n, n/ log n) = O(1).

20
10

-1
1-

30

CS 4104

More Efficient EREW Algorithm

In log n time.

More Efficient EREW Algorithm (2)

But what could we do with more processors?
A parallel algorithm is static if the assignment of processors
to actions is predefined.

We know in advance, for each step i of the algorithm
and for each processor pj , the operation and operands
pj uses at step i .

This maximum-finding algorithm is static.

All comparisons are pre-arranged.

CS 4104: Data and Algorithm
Analysis Fall 2010 313 / 351

More Efficient EREW Algorithm (2)

But what could we do with more processors?
A parallel algorithm is static if the assignment of processors
to actions is predefined.

We know in advance, for each step i of the algorithm
and for each processor pj , the operation and operands
pj uses at step i .

This maximum-finding algorithm is static.

All comparisons are pre-arranged.20
10

-1
1-

30

CS 4104

More Efficient EREW Algorithm (2)

Cannot improve time past O(log n).

Doesn’t depend on a specific input value.

As an analogy to help understand the concept of static:
Bubblesort and Mergesort are static in this way. We always
know the positions to be copmared next.
In contrast, Insertion Sort is not static.

Brent’s Lemma
Lemma 12.1 : If there exists an EREW static algorithm with
T (n, p) ∈ O(t), such that the total number of steps (over all
processors) is s, then there exists an EREW static algorithm
with T (n, s/t) ∈ O(t).

Proof:
Let ai , 1 ≤ i ≤ t , be the total number of steps performed
by all processors in step i of the algorithm.
∑t

i=1 ai = s.
If ai ≤ s/t , then there are enough processors to perform
this step without change.
Otherwise, replace step i with ⌈ai/(s/t)⌉ steps, where
the s/t processors emulate the steps taken by the
original p processors.

CS 4104: Data and Algorithm
Analysis Fall 2010 314 / 351

Brent’s Lemma
Lemma 12.1 : If there exists an EREW static algorithm with
T (n, p) ∈ O(t), such that the total number of steps (over all
processors) is s, then there exists an EREW static algorithm
with T (n, s/t) ∈ O(t).

Proof:
Let ai , 1 ≤ i ≤ t , be the total number of steps performed
by all processors in step i of the algorithm.
∑t

i=1 ai = s.
If ai ≤ s/t , then there are enough processors to perform
this step without change.
Otherwise, replace step i with ⌈ai/(s/t)⌉ steps, where
the s/t processors emulate the steps taken by the
original p processors.

20
10

-1
1-

30

CS 4104

Brent’s Lemma

Note that we are using t as the actual number of steps, as well
as the variable in the big-Oh analysis, which is a bit informal.

Brent’s Lemma (2)

The total number of steps is now
t

∑

i=1

⌈ai/(s/t)⌉ ≤
t

∑

i=1

(ai t/s + 1)

= t + (t/s)
t

∑

i=1

ai = 2t .

Thus, the running time is still O(t).

Intuition: You have to split the s work steps across the t time
steps somehow; things can’t always be bad!

CS 4104: Data and Algorithm
Analysis Fall 2010 315 / 351

Brent’s Lemma (2)

The total number of steps is now
t

∑

i=1

⌈ai/(s/t)⌉ ≤
t

∑

i=1

(ai t/s + 1)

= t + (t/s)
t

∑

i=1

ai = 2t .

Thus, the running time is still O(t).

Intuition: You have to split the s work steps across the t time
steps somehow; things can’t always be bad!

20
10

-1
1-

30

CS 4104

Brent’s Lemma (2)

If s is sequential complexity, then the modified algorithm has
O(1) efficiency.

Maximum-finding: CRCW

Allow concurrent writes to a variable only when each
processor writes the same thing.
Associate each element xi with a variable vi , initially “1”.
For each of n(n − 1)/2 processors, processor pij

compares elements i and j .
First step: Each processor writes “0” to the v variable of
the smaller element.

◮ Now, only one v is “1”.
Second step: Look at all vi , 1 ≤ i ≤ n.

◮ The processor assigned to the max element writes that
value to MAX.

Efficiency of this algorithm is very poor!
“Divide and crush.”

CS 4104: Data and Algorithm
Analysis Fall 2010 316 / 351

Maximum-finding: CRCW

Allow concurrent writes to a variable only when each
processor writes the same thing.
Associate each element xi with a variable vi , initially “1”.
For each of n(n − 1)/2 processors, processor pij

compares elements i and j .
First step: Each processor writes “0” to the v variable of
the smaller element.

◮ Now, only one v is “1”.
Second step: Look at all vi , 1 ≤ i ≤ n.

◮ The processor assigned to the max element writes that
value to MAX.

Efficiency of this algorithm is very poor!
“Divide and crush.”

20
10

-1
1-

30

CS 4104

Maximum-finding: CRCW

Need O(n2)processors
Need only constant time.
Efficiency is 1/n.

Maximum-finding: CRCW (2)

More efficient (but slower) algorithm:

Given: n processors.
Find maximum for each of n/2 pairs in constant time.
Find max for n/8 groups of 4 elements (using 8
proc/group) each in constant time.
Square the group size each time.
Total time: O(log log n).

CS 4104: Data and Algorithm
Analysis Fall 2010 317 / 351

Maximum-finding: CRCW (2)

More efficient (but slower) algorithm:

Given: n processors.
Find maximum for each of n/2 pairs in constant time.
Find max for n/8 groups of 4 elements (using 8
proc/group) each in constant time.
Square the group size each time.
Total time: O(log log n).

20
10

-1
1-

30

CS 4104

Maximum-finding: CRCW (2)

n/2 processors
n processors, using previous “divide and crush” algorithm.

This leaves n/8 elements which can be broken into n/128
groups of 16 elements with 128 processors assigned to each
group. And so on.

Efficiency is 1/ log log n.

Parallel Prefix

Let · be any associative binary operation.
◮ Ex: Addition, multiplication, minimum.

Problem: Compute x1 · x2 · . . . · xk for all k , 1 ≤ k ≤ n.
Define PR(i, j) = xi · xi+1 · . . . · xj.
We want to compute PR(1, k) for 1 ≤ k ≤ n.
Sequential alg: Compute each prefix in order

◮ O(n) time required (using previous prefix)

Approach: Divide and Conquer
◮ IH: We know how to solve for n/2 elements.

1 PR(1, k) and PR(n/2 + 1, n/2 + k) for 1 ≤ k ≤ n/2.
2 PR(1, m) for n/2 < m ≤ n comes from

PR(1, n/2) · PR(n/2 + 1, m) – from IH.
CS 4104: Data and Algorithm

Analysis Fall 2010 318 / 351

Parallel Prefix

Let · be any associative binary operation.
◮ Ex: Addition, multiplication, minimum.

Problem: Compute x1 · x2 · . . . · xk for all k , 1 ≤ k ≤ n.
Define PR(i, j) = xi · xi+1 · . . . · xj.
We want to compute PR(1, k) for 1 ≤ k ≤ n.
Sequential alg: Compute each prefix in order

◮ O(n) time required (using previous prefix)

Approach: Divide and Conquer
◮ IH: We know how to solve for n/2 elements.

1 PR(1, k) and PR(n/2 + 1, n/2 + k) for 1 ≤ k ≤ n/2.
2 PR(1, m) for n/2 < m ≤ n comes from

PR(1, n/2) · PR(n/2 + 1, m) – from IH.

20
10

-1
1-

30

CS 4104

Parallel Prefix

We don’t just want the sum or min of all – we want all the
partials as well.

We have the lower half done, and the upper half values are
each missing the contribution from the lower half.

Parallel Prefix (2)

Complexity : (2) requires n/2 processors and CREW for
parallelism (all read middle position).

T (n, n) = O(log n); E(n, n) = O(1/ log n).
Brent’s lemma no help: O(n log n) total steps.

CS 4104: Data and Algorithm
Analysis Fall 2010 319 / 351

Parallel Prefix (2)

Complexity : (2) requires n/2 processors and CREW for
parallelism (all read middle position).

T (n, n) = O(log n); E(n, n) = O(1/ log n).
Brent’s lemma no help: O(n log n) total steps.

20
10

-1
1-

30

CS 4104

Parallel Prefix (2)

That is – no processors are “excessively” idle. This is because
we needed to copy PR(1, n/2) into n/2 positions on the last
step.

E =
n

n · log n
=

1
logn

Better Parallel Prefix

E is the set of all xis with i even.
If we know PR(1, 2i) for 1 ≤ i ≤ n/2 then
PR(1, 2i + 1) = PR(1, 2i) · x2i+1.
Algorithm:

◮ Compute in parallel x2i = x2i−1 · x2i for 1 ≤ i ≤ n/2.
◮ Solve for E (by induction).
◮ Compute in parallel x2i+1 = x2i · x2i+1.

Complexity:
T (n, n) = O(log n).
S(n) = S(n/2) + n − 1, so S(n) = O(n) for S(n) the

total number of steps required to process n elements.
So, by Brent’s Lemma, we can use O(n/ log n)
processors for O(1) efficiency.

CS 4104: Data and Algorithm
Analysis Fall 2010 320 / 351

Better Parallel Prefix

E is the set of all xis with i even.
If we know PR(1, 2i) for 1 ≤ i ≤ n/2 then
PR(1, 2i + 1) = PR(1, 2i) · x2i+1.
Algorithm:

◮ Compute in parallel x2i = x2i−1 · x2i for 1 ≤ i ≤ n/2.
◮ Solve for E (by induction).
◮ Compute in parallel x2i+1 = x2i · x2i+1.

Complexity:
T (n, n) = O(log n).
S(n) = S(n/2) + n − 1, so S(n) = O(n) for S(n) the

total number of steps required to process n elements.
So, by Brent’s Lemma, we can use O(n/ log n)
processors for O(1) efficiency.

20
10

-1
1-

30

CS 4104

Better Parallel Prefix

Since the E’s already include their left neighbors, all info is
available to get the odds.

There is only one recursive call, instead of two in the previous
algorithm.

Need EREW model for Brent’s Lemma.

Routing on a Hypercube

Goal: Each processor Pi simultaneously sends a message
to processor Pσ(i) such that no processor is the destination
for more than one message.

Problem:

In an n-cube, each processor is connected to n other
processors.

At the same time, each processor can send (or receive)
only one message per time step on a given connection.

So, two messages cannot use the same edge at the
same time – one must wait.

CS 4104: Data and Algorithm
Analysis Fall 2010 321 / 351

Routing on a Hypercube

Goal: Each processor Pi simultaneously sends a message
to processor Pσ(i) such that no processor is the destination
for more than one message.

Problem:

In an n-cube, each processor is connected to n other
processors.

At the same time, each processor can send (or receive)
only one message per time step on a given connection.

So, two messages cannot use the same edge at the
same time – one must wait.

20
10

-1
1-

30

CS 4104

Routing on a Hypercube

Need a figure

Randomizing Switching Algorithm

It can be shown that any deterministic algorithm is Ω(2na
) for

some a > 0, where 2n is the number of messages.

A node i (and its corresponding message) has binary
representation i1i2 · · · in.

Randomization approach:

(a) Route each message from i to j to a random processor
r (by a randomly selected route).

(b) Continue the message from r to j by the shortest route.

CS 4104: Data and Algorithm
Analysis Fall 2010 322 / 351

Randomizing Switching Algorithm

It can be shown that any deterministic algorithm is Ω(2na
) for

some a > 0, where 2n is the number of messages.

A node i (and its corresponding message) has binary
representation i1i2 · · · in.

Randomization approach:

(a) Route each message from i to j to a random processor
r (by a randomly selected route).

(b) Continue the message from r to j by the shortest route.20
10

-1
1-

30

CS 4104

Randomizing Switching Algorithm

n-dimensional hypercube has 2n nodes.

Remember that we want parallel algorithms with cost log n, not
cost na!
The distance from any processor i to another processor j is
only log n steps.

Randomized Switching (2)

Phase (a):
for (each message at i)
cobegin
for (k = 1 to n)

T[i, k] = RANDOM(0, 1);
for (k = 1 to n)

if (T[i, k] = 1)
Transmit i along dimension k;

coend;

CS 4104: Data and Algorithm
Analysis Fall 2010 323 / 351

Randomized Switching (2)

Phase (a):
for (each message at i)
cobegin

for (k = 1 to n)
T[i, k] = RANDOM(0, 1);

for (k = 1 to n)
if (T[i, k] = 1)

Transmit i along dimension k;
coend;20

10
-1

1-
30

CS 4104

Randomized Switching (2)

no notes

Randomized Switching (3)

Phase (b):
for (each message i)
cobegin
for (k = 1 to n)

T[i, k] =
Current[i, k] EXCLUSIVE_OR Dest[i, k];

for (k = 1 to n)
if (T[i, k] = 1)
Transmit i along dimension k;

coend;

CS 4104: Data and Algorithm
Analysis Fall 2010 324 / 351

Randomized Switching (3)

Phase (b):
for (each message i)
cobegin

for (k = 1 to n)
T[i, k] =

Current[i, k] EXCLUSIVE_OR Dest[i, k];
for (k = 1 to n)
if (T[i, k] = 1)

Transmit i along dimension k;
coend;20

10
-1

1-
30

CS 4104

Randomized Switching (3)

no notes

Randomized Switching (4)

With high probability, each phase completes in O(log n)
time.

It is possible to get a really bad random routing, but this
is unlikely (by chance).

In contrast, it is very possible for any correlated group of
messages to generate a bottleneck.

CS 4104: Data and Algorithm
Analysis Fall 2010 325 / 351

Randomized Switching (4)

With high probability, each phase completes in O(log n)
time.

It is possible to get a really bad random routing, but this
is unlikely (by chance).

In contrast, it is very possible for any correlated group of
messages to generate a bottleneck.

20
10

-1
1-

30

CS 4104

Randomized Switching (4)

no notes

Sorting on an array

Given: n processors labeled P1, P2, · · · , Pn with processor Pi

initially holding input xi .

Pi is connected to Pi−1 and Pi+1 (except for P1 and Pn).
Comparisons/exchanges possible only for adjacent
elements.

Algorithm ArraySort(X, n) {
do in parallel ceil(n/2) times {

Exchange-compare(P[2i-1], P[2i]); // Odd
Exchange-compare(P[2i], P[2i+1]); // Even

}
}

A simple algorithm, but will it work?
CS 4104: Data and Algorithm

Analysis Fall 2010 326 / 351

Sorting on an array

Given: n processors labeled P1, P2, · · · , Pn with processor Pi

initially holding input xi .

Pi is connected to Pi−1 and Pi+1 (except for P1 and Pn).
Comparisons/exchanges possible only for adjacent
elements.

Algorithm ArraySort(X, n) {
do in parallel ceil(n/2) times {
Exchange-compare(P[2i-1], P[2i]); // Odd
Exchange-compare(P[2i], P[2i+1]); // Even

}
}

A simple algorithm, but will it work?

20
10

-1
1-

30

CS 4104

Sorting on an array

Any algorithm that correctly sorts 1’s and 0’s by comparisons
will also correctly sort arbitrary numbers.

Parallel Array Sort

7 3 6 5 8 1 4 2

4

3 5

423 7 5 6 1 8

3 5 7 1 6 2 8 4

3 5 1 7 2 6 8

3 1 5 2 7 4 6 8

1 2 4 7 6 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

CS 4104: Data and Algorithm
Analysis Fall 2010 327 / 351

Parallel Array Sort

7 3 6 5 8 1 4 2

4

3 5

423 7 5 6 1 8

3 5 7 1 6 2 8 4

3 5 1 7 2 6 8

3 1 5 2 7 4 6 8

1 2 4 7 6 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

20
10

-1
1-

30

CS 4104

Parallel Array Sort

Manber Figure 12.8.

Correctness of Odd-Even Transpose

Theorem 12.2: When Algorithm ArraySort terminates, the
numbers are sorted.

Proof: By induction on n.

Base Case: 1 or 2 elements are sorted with one
comparison/exchange.

Induction Step:
Consider the maximum element, say xm.
Assume m odd (if even, it just won’t exchange on first
step).
This element will move one step to the right each step
until it reaches the rightmost position.

CS 4104: Data and Algorithm
Analysis Fall 2010 328 / 351

Correctness of Odd-Even Transpose

Theorem 12.2: When Algorithm ArraySort terminates, the
numbers are sorted.

Proof: By induction on n.

Base Case: 1 or 2 elements are sorted with one
comparison/exchange.

Induction Step:
Consider the maximum element, say xm.
Assume m odd (if even, it just won’t exchange on first
step).
This element will move one step to the right each step
until it reaches the rightmost position.

20
10

-1
1-

30

CS 4104

Correctness of Odd-Even Transpose

no notes

Correctness (2)

The position of xm follows a diagonal in the array of
element positions at each step.

Remove this diagonal, moving comparisons in the upper
triangle one step closer.

The first row is the nth step; the right column holds the
greatest value; the rest is an n − 1 element sort (by
induction).

CS 4104: Data and Algorithm
Analysis Fall 2010 329 / 351

Correctness (2)

The position of xm follows a diagonal in the array of
element positions at each step.

Remove this diagonal, moving comparisons in the upper
triangle one step closer.

The first row is the nth step; the right column holds the
greatest value; the rest is an n − 1 element sort (by
induction).

20
10

-1
1-

30

CS 4104

Correctness (2)

Map the execution of n to an execution of n − 1 elements.

See Manber Figure 12.9.

Sorting Networks

When designing parallel algorithms, need to make the steps
independent.

Ex: Mergesort split step can be done in parallel, but the join
step is nearly serial.

To parallelize mergesort, we must parallelize the merge.

CS 4104: Data and Algorithm
Analysis Fall 2010 330 / 351

Sorting Networks

When designing parallel algorithms, need to make the steps
independent.

Ex: Mergesort split step can be done in parallel, but the join
step is nearly serial.

To parallelize mergesort, we must parallelize the merge.

20
10

-1
1-

30

CS 4104

Sorting Networks

no notes

Batcher’s Algorithm

For n a power of 2, assume a1, a2, · · · , an and b1, b2, · · · , bn

are sorted sequences.

Let x1, x2, · · · , x2n be the final merged order.

Need to merge disjoint parts of these sequences in parallel.

Split a, b into odd- and even- index elements.

Merge aodd with bodd , aeven with beven, yielding
o1, o2, · · · , on and e1, e2, · · · , en respectively.

CS 4104: Data and Algorithm
Analysis Fall 2010 331 / 351

Batcher’s Algorithm

For n a power of 2, assume a1, a2, · · · , an and b1, b2, · · · , bn

are sorted sequences.

Let x1, x2, · · · , x2n be the final merged order.

Need to merge disjoint parts of these sequences in parallel.

Split a, b into odd- and even- index elements.

Merge aodd with bodd , aeven with beven, yielding
o1, o2, · · · , on and e1, e2, · · · , en respectively.20

10
-1

1-
30

CS 4104

Batcher’s Algorithm

No notes

Batcher’s Sort Image
x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

n/2
sort

sort
n/2

network
merge
n/2

network
merge
n/2

CS 4104: Data and Algorithm
Analysis Fall 2010 332 / 351

Batcher’s Sort Image
x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

n/2
sort

sort
n/2

network
merge
n/2

network
merge
n/220

10
-1

1-
30

CS 4104

Batcher’s Sort Image

No notes

Batcher’s Algorithm Correctness

Theorem 12.3 : For all i such that 1 ≤ i ≤ n − 1, we have
x2i = min(oi+1, ei) and x2i+1 = max(oi+1, ei).

Proof :
Since ei is the i th element in the sorted even sequence,
it is ≥ at least i even elements.
For each even element, ei is also ≥ an odd element.
So, ei ≥ 2i elements, or ei ≥ x2i .
In the same way, oi+1 ≥ i + 1 odd elements, ≥ at least
2i elements all together.
So, oi+1 ≥ x2i .
By the pigeonhole principle, ei and oi+1 must be x2i and
x2i+1 (in either order).

CS 4104: Data and Algorithm
Analysis Fall 2010 333 / 351

Batcher’s Algorithm Correctness

Theorem 12.3 : For all i such that 1 ≤ i ≤ n − 1, we have
x2i = min(oi+1, ei) and x2i+1 = max(oi+1, ei).

Proof :
Since ei is the i th element in the sorted even sequence,
it is ≥ at least i even elements.
For each even element, ei is also ≥ an odd element.
So, ei ≥ 2i elements, or ei ≥ x2i .
In the same way, oi+1 ≥ i + 1 odd elements, ≥ at least
2i elements all together.
So, oi+1 ≥ x2i .
By the pigeonhole principle, ei and oi+1 must be x2i and
x2i+1 (in either order).

20
10

-1
1-

30

CS 4104

Batcher’s Algorithm Correctness

See Manber Figure 12.11.

Batcher Sort Complexity

Total number of comparisons for merge:

TM(2n) = 2TM(n) + n − 1; TM(1) = 1.

Total number of comparisons is O(n log n), but the depth
of recursion (parallel steps) is O(log n).
Total number of comparisons for the sort is:

TS(2n) = 2TS(n) + O(n log n), TS(2) = 1.

So, TS(n) = O(n log2 n).
The circuit requires n processors in each column, with
depth O(log2 n), for a total of O(n log2 n) processors and
O(log2 n) time.
The processors only need to do comparisons with two
inputs and two outputs.

CS 4104: Data and Algorithm
Analysis Fall 2010 334 / 351

Batcher Sort Complexity

Total number of comparisons for merge:

TM(2n) = 2TM(n) + n − 1; TM(1) = 1.

Total number of comparisons is O(n log n), but the depth
of recursion (parallel steps) is O(log n).
Total number of comparisons for the sort is:

TS(2n) = 2TS(n) + O(n log n), TS(2) = 1.

So, TS(n) = O(n log2 n).
The circuit requires n processors in each column, with
depth O(log2 n), for a total of O(n log2 n) processors and
O(log2 n) time.
The processors only need to do comparisons with two
inputs and two outputs.

20
10

-1
1-

30

CS 4104

Batcher Sort Complexity

O(log n) sort steps, with each associated merge step counting
O(log n).

Matrix-Vector Multiplication

Problem : Find the product x = Ab of an m by n matrix A
with a column vector b of size n.

Systolic solution:

Use n processor elements arranged in an array, with
processor Pi initially containing element bi .

Each processor takes a partial computation from its left
neighbor and a new element of A from above,
generating a partial computation for its right neighbor.

Cost: O(n + m)

CS 4104: Data and Algorithm
Analysis Fall 2010 335 / 351

Matrix-Vector Multiplication

Problem : Find the product x = Ab of an m by n matrix A
with a column vector b of size n.

Systolic solution:

Use n processor elements arranged in an array, with
processor Pi initially containing element bi .

Each processor takes a partial computation from its left
neighbor and a new element of A from above,
generating a partial computation for its right neighbor.

Cost: O(n + m)

20
10

-1
1-

30

CS 4104

Matrix-Vector Multiplication

See Manber Figure 12.17.

A General Model

Want a general model of computation that is as simple as
possible.

Wish to be able to reason about the model.

“State machines” are simple.

Necessary features:

Read

Write

Compute

CS 4104: Data and Algorithm
Analysis Fall 2010 336 / 351

A General Model

Want a general model of computation that is as simple as
possible.

Wish to be able to reason about the model.

“State machines” are simple.

Necessary features:

Read

Write

Compute20
10

-1
1-

30

CS 4104

A General Model

Our key concern now is ability not efficiency.

Turing Machines (1)

A tape, divided into squares.

“States”

A single I/O head:
Read current symbol
Change current symbol

Control Unit Actions:
Put the control unit into a new state.
Either:

1 Write a symbol in current tape square.
2 Move I/O head one square left or right.

CS 4104: Data and Algorithm
Analysis Fall 2010 337 / 351

Turing Machines (1)

A tape, divided into squares.

“States”

A single I/O head:
Read current symbol
Change current symbol

Control Unit Actions:
Put the control unit into a new state.
Either:

1 Write a symbol in current tape square.
2 Move I/O head one square left or right.

20
10

-1
1-

30

CS 4104

Turing Machines (1)

Cook used Turing machines to prove that Satisfiability is
NP-complete.

A Turing machine is sufficiently complex that a Turing machine
can be built that can take as input a coding for an arbitrary
Turing machine, along with an input, and simulate its execution
on that input.

Turing Machines (2)

Tape has a fixed left end, infinite right end.

Machine ceases to operate if head moves off left end.

By convention, input is placed on left end of tape.

A halt state (h) signals end of computation.

“#” indicates a blank tape square.

CS 4104: Data and Algorithm
Analysis Fall 2010 338 / 351

Turing Machines (2)

Tape has a fixed left end, infinite right end.

Machine ceases to operate if head moves off left end.

By convention, input is placed on left end of tape.

A halt state (h) signals end of computation.

“#” indicates a blank tape square.20
10

-1
1-

30

CS 4104

Turing Machines (2)

no notes

Formal definition of Turing Machine

A Turing Machine is a quadruple (K , Σ, δ, s) where

K is a finite set of states (not including h).

Σ is an alphabet (containing #, not L or R).

s ∈ K is the initial state.

δ is a function from K × Σ to (K ∪ {h}) × (Σ ∪ {L, R}).

If q ∈ K , a ∈ Σ and δ(q, a) = (p, b), then when in state q and
scanning a, enter state p and

1 If b ∈ Σ then replace a with b.
2 Else (b is L or R): move head.

CS 4104: Data and Algorithm
Analysis Fall 2010 339 / 351

Formal definition of Turing Machine

A Turing Machine is a quadruple (K , Σ, δ, s) where

K is a finite set of states (not including h).

Σ is an alphabet (containing #, not L or R).

s ∈ K is the initial state.

δ is a function from K × Σ to (K ∪ {h}) × (Σ ∪ {L, R}).

If q ∈ K , a ∈ Σ and δ(q, a) = (p, b), then when in state q and
scanning a, enter state p and

1 If b ∈ Σ then replace a with b.
2 Else (b is L or R): move head.

20
10

-1
1-

30

CS 4104

Formal definition of Turing Machine

is “space.” Note including # in the language is for
convenience only! We want to be able to read our
specifications without being confused.

Turing Machine Example 1

M = (K , Σ, δ, s) where

K = {q0, q1},

Σ = {a, #},

s = q0,

δ =

q σ δ(q, σ)
q0 a (q1, #)
q0 # (h, #)
q1 a (q0, a)
q1 # (q0, R)

CS 4104: Data and Algorithm
Analysis Fall 2010 340 / 351

Turing Machine Example 1

M = (K , Σ, δ, s) where

K = {q0, q1},

Σ = {a, #},

s = q0,

δ =

q σ δ(q, σ)
q0 a (q1, #)
q0 # (h, #)
q1 a (q0, a)
q1 # (q0, R)20

10
-1

1-
30

CS 4104

Turing Machine Example 1

State (q1, a) cannot happen if the start state is q0. This is
included only for completness (to make δ a total function).

Scan right, changing a’s to #’s. When we hit first #, halt.

Turing Machine Example 2

M = (K , Σ, δ, s) where

K = {q0},

Σ = {a, #},

s = q0,

δ =
q σ δ(q, σ)
q0 a (q0, L)
q0 # (h, #)

CS 4104: Data and Algorithm
Analysis Fall 2010 341 / 351

Turing Machine Example 2

M = (K , Σ, δ, s) where

K = {q0},

Σ = {a, #},

s = q0,

δ =
q σ δ(q, σ)
q0 a (q0, L)
q0 # (h, #)20

10
-1

1-
30

CS 4104

Turing Machine Example 2

Scan left to #. Then halt.

Notation

Configuration: (q, aaba##a)

Halted configuration : q is h.

Hanging configuration : Move left from leftmost square.

A computation is a sequence of configurations for some
n ≥ 0. Such a computation is of length n.

CS 4104: Data and Algorithm
Analysis Fall 2010 342 / 351

Notation

Configuration: (q, aaba##a)

Halted configuration : q is h.

Hanging configuration : Move left from leftmost square.

A computation is a sequence of configurations for some
n ≥ 0. Such a computation is of length n.20

10
-1

1-
30

CS 4104

Notation

First symbol after the comma is the leftmost square of the tape.
The underscore shows placement of the head. After the last
symbol is an infinte series of spaces.

Execution
Execution on first machine example.

(q0, aaaa) ⊢M (q1, #aaa)

⊢M (q0, #aaa)

⊢M (q1, ##aa)

⊢M (q0, ##aa)

⊢M (q1, ###a)

⊢M (q0, ###a)

⊢M (q1, ####)

⊢M (q0, #####)

⊢M (h, #####)

CS 4104: Data and Algorithm
Analysis Fall 2010 343 / 351

Execution
Execution on first machine example.

(q0, aaaa) ⊢M (q1, #aaa)

⊢M (q0, #aaa)

⊢M (q1, ##aa)

⊢M (q0, ##aa)

⊢M (q1, ###a)

⊢M (q0, ###a)

⊢M (q1, ####)

⊢M (q0, #####)

⊢M (h, #####)

20
10

-1
1-

30

CS 4104

Execution

No notes

Computations

M is said to halt on input w iff (s, #w#) yields some
halted configuration.
M is said to hang on input w if (s, #w#) yields some
hanging configuration.
Turing machines compute functions from strings to
strings.
Formally: Let f be a function from Σ∗

0 to Σ∗
1. Turing

machine M is said to compute f if for any w ∈ Σ∗
0, if

f (w) = u then

(s, #w#) ⊢∗
M (h, #u#).

f is said to be a Turing-computable function .
Multiple parameters: f (w1, ..., wk) = u,
(s, #w1#w2#...#wk#) ⊢∗

M (h, #u#).
CS 4104: Data and Algorithm

Analysis Fall 2010 344 / 351

Computations

M is said to halt on input w iff (s, #w#) yields some
halted configuration.
M is said to hang on input w if (s, #w#) yields some
hanging configuration.
Turing machines compute functions from strings to
strings.
Formally: Let f be a function from Σ∗

0 to Σ∗
1. Turing

machine M is said to compute f if for any w ∈ Σ∗
0, if

f (w) = u then

(s, #w#) ⊢∗
M (h, #u#).

f is said to be a Turing-computable function .
Multiple parameters: f (w1, ..., wk) = u,
(s, #w1#w2#...#wk#) ⊢∗

M (h, #u#).

20
10

-1
1-

30

CS 4104

Computations

These are the conventions.

Specify input conditions. Behavior is undefined for other initial
conditions.

Either move left from left end or infinite loop.

Functions on Natural Numbers

Represent numbers in unary notation on symbol I (zero
is represented by the empty string).

f : N → N is computed by M if M computes
f ′ : {I}∗ → {I}∗ where f ′(In) = I f (n) for each n ∈ N.

Example: f (n) = n + 1 for each n ∈ N.
q σ δ(q, σ)
q0 I (h, R)
q0 # (q0, I)

(q0, #II#) ⊢M (q0, #III) ⊢M (h, #III#).

In general, (q0, #In#) ⊢∗
M (h, #In+1#).

What about n = 0?
CS 4104: Data and Algorithm

Analysis Fall 2010 345 / 351

Functions on Natural Numbers

Represent numbers in unary notation on symbol I (zero
is represented by the empty string).

f : N → N is computed by M if M computes
f ′ : {I}∗ → {I}∗ where f ′(In) = I f (n) for each n ∈ N.

Example: f (n) = n + 1 for each n ∈ N.
q σ δ(q, σ)
q0 I (h, R)
q0 # (q0, I)

(q0, #II#) ⊢M (q0, #III) ⊢M (h, #III#).

In general, (q0, #In#) ⊢∗
M (h, #In+1#).

What about n = 0?

20
10

-1
1-

30

CS 4104

Functions on Natural Numbers

Works OK.

Turing-decidable Languages

A language L ⊂ Σ∗
0 is Turing-decidable iff function

χL : Σ∗
0 → { Y , N } is Turing-computable, where for each

w ∈ Σ∗
0,

χL(w) =

{

Y if w ∈ L
N otherwise

Ex: Let Σ0 = {a}, and let L = {w ∈ Σ∗
0 : |w | is even}.

M erases the marks from right to left, with current parity
encode by state. Once blank at left is reached, mark Y or
N as appropriate.

CS 4104: Data and Algorithm
Analysis Fall 2010 346 / 351

Turing-decidable Languages

A language L ⊂ Σ∗
0 is Turing-decidable iff function

χL : Σ∗
0 → { Y , N } is Turing-computable, where for each

w ∈ Σ∗
0,

χL(w) =

{

Y if w ∈ L
N otherwise

Ex: Let Σ0 = {a}, and let L = {w ∈ Σ∗
0 : |w | is even}.

M erases the marks from right to left, with current parity
encode by state. Once blank at left is reached, mark Y or
N as appropriate.

20
10

-1
1-

30

CS 4104

Turing-decidable Languages

There are many views of computation. One is functions
mapping input to output (N → N, or strings to strings, for
examples). Another is deciding if a string is in a language.

Turing-acceptable Languages

M accepts a string w if M halts on input w .
M accepts a language iff M halts on w iff w ∈ L.
A language is Turing-acceptable if there is some Turing
machine that accepts it.

Ex: Σ0 = {a, b}, L = {w ∈ Σ∗
0 : w contains at least one a}.

q σ δ(q, σ)
q0 a (h, a)
q0 b (q0, L)
q0 # (q0, L)

Every Turing-decidable language is Turing-acceptable.
CS 4104: Data and Algorithm

Analysis Fall 2010 347 / 351

Turing-acceptable Languages

M accepts a string w if M halts on input w .
M accepts a language iff M halts on w iff w ∈ L.
A language is Turing-acceptable if there is some Turing
machine that accepts it.

Ex: Σ0 = {a, b}, L = {w ∈ Σ∗
0 : w contains at least one a}.

q σ δ(q, σ)
q0 a (h, a)
q0 b (q0, L)
q0 # (q0, L)

Every Turing-decidable language is Turing-acceptable.

20
10

-1
1-

30

CS 4104

Turing-acceptable Languages

Is this language Turing decidable? Of course. Instead of just
running left, invoke another state that means “seen an a,” and
print Y if we reach # in that state, N otherwise.

If we would have printed Y , then halt.
If we would have printed N , then hang left.

Is every Turing-acceptible language Turing decidable? This is
the Halting Problem.

Of course, if the TA language would halt, we write Y . But if the
TA lang would hang, can we always replace it with logic to write
N instead? Ex: Collatz function.

Combining Turing Machines

Lemma : If
(q1, w1a1u1) ⊢∗

M (q2, ww2a2u2)

for string w and

(q2, w2a2u2) ⊢∗
M (q3, w3a3u3),

then
(q1, w1a1u1) ⊢∗

M (q3, ww3a3u3).

Insight: Since (q2, w2a2u2) ⊢∗
M (q3, w3a3u3), this computation

must take place without moving the head left of w2

The machine cannot “sense” the left end of the tape
CS 4104: Data and Algorithm

Analysis Fall 2010 348 / 351

Combining Turing Machines

Lemma : If
(q1, w1a1u1) ⊢∗

M (q2, ww2a2u2)

for string w and

(q2, w2a2u2) ⊢∗
M (q3, w3a3u3),

then
(q1, w1a1u1) ⊢∗

M (q3, ww3a3u3).

Insight: Since (q2, w2a2u2) ⊢∗
M (q3, w3a3u3), this computation

must take place without moving the head left of w2

The machine cannot “sense” the left end of the tape

20
10

-1
1-

30

CS 4104

Combining Turing Machines

And if it had moved left, it would have hung.

Combining Turing Machines (Cont)

Thus, the head won’t move left of w2 even if it is not at the
left end of the tape.

This means that Turing machine computations can be
combined into larger machines:

M2 prepares string as input to M1.

M2 passes control to M1 with I/O head at end of input.

M2 retrieves control when M1 has completed.

CS 4104: Data and Algorithm
Analysis Fall 2010 349 / 351

Combining Turing Machines (Cont)

Thus, the head won’t move left of w2 even if it is not at the
left end of the tape.

This means that Turing machine computations can be
combined into larger machines:

M2 prepares string as input to M1.

M2 passes control to M1 with I/O head at end of input.

M2 retrieves control when M1 has completed.20
10

-1
1-

30

CS 4104

Combining Turing Machines (Cont)

no notes

Some Simple Machines

Basic machines:
|Σ| symbol-writing machines (one for each symbol).
Head-moving machines R and L move the head
appropriately.

More machines:
First do M1, then do M2 or M3 depending on current
symbol.
(For Σ = {a, b, c}) Move head to the right until a blank is
found.
Find first blank square to left: L#

Copy Machine: Transform #w# into #w#w#.
Shift a string left or right.

CS 4104: Data and Algorithm
Analysis Fall 2010 350 / 351

Some Simple Machines

Basic machines:
|Σ| symbol-writing machines (one for each symbol).
Head-moving machines R and L move the head
appropriately.

More machines:
First do M1, then do M2 or M3 depending on current
symbol.
(For Σ = {a, b, c}) Move head to the right until a blank is
found.
Find first blank square to left: L#

Copy Machine: Transform #w# into #w#w#.
Shift a string left or right.

20
10

-1
1-

30

CS 4104

Some Simple Machines

Show shift left machine and copy machine.

We know how to increment. How do we decrement? Add?
Multiply?

Extensions

The following extensions do not increase the power of Turing
Machines.

2-way infinite tape

Multiple tapes

Multiple heads on one tape

Two-dimensional “tape”

Non-determinism
CS 4104: Data and Algorithm

Analysis Fall 2010 351 / 351

Extensions

The following extensions do not increase the power of Turing
Machines.

2-way infinite tape

Multiple tapes

Multiple heads on one tape

Two-dimensional “tape”

Non-determinism

20
10

-1
1-

30

CS 4104

Extensions

Show figures for these.

Just bend infinite tape in the middle to get back to one-way
tape, but with two layers. Now, expand the language. The new
language is ordered pairs of the old language, to encode two
levels of tape.

Again, expanded alphabet collapses multipe symbols to 1.

Encode the heads onto the tape, and simulate moving them
around.

Convert to 1D, by diagonals.

Simulate nondeterministic behavior in sequence, doing all
length −1 computations, then length −2, etc., until we reach a
halt state for one of the non-deteriministic choices.
Non-determinism gives us speed, not ability.

