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As a dictionary definition, I’d say that pair 
programming is a technique in which two people 
sit down, literally side by side, and write a pro-
gram at the same computer. When Kent Beck 
originally coined the term, he described two 
programmers working at different levels of ab-
straction.1 Laurie Williams and Robert Kessler 
made this idea more concrete, using the meta-
phor of one programmer being the “driver” and 
the other the “navigator.”2 In this metaphor, the 
driver controls the keyboard and focuses on the 
immediate task of coding, and the navigator acts 
as a reviewer, observing and thinking about more 
strategic architectural issues. 

My own experience as a developer using pair 
programming is that it isn’t just a technique 
where one person programs and the other per-
son watches. Both programmers work closely to-
gether, chatting the whole time, jotting down re-
minders of things to do, and pointing out pieces 
of code on the screen. (One of the clichés of pair 
programming is that if you’re doing it right, your 
screen should be covered with greasy finger-marks 
by the end of the day.) Programmers take turns 

at the keyboard, usually swapping over with a 
phrase like, “No, let me show you what I mean.”

Jan Chong and Tom Hurlbutt confirmed this 
view of successful pair programming after spend-
ing several months on an ethnographic study of 
professional developers who use pair program-
ming in their daily work.3 They found that pro-
grammers tended to work together on the same 
facet of a problem almost the whole time and 
swap between tactical and architectural levels as 
a pair. Similar ethnographic studies by Sallyann 
Bryant and her colleagues4 and Stephan Salinger 
and his colleagues further confirmed this.5

Of course, not all attempts at pair program-
ming have been successful—Matt Stephens and 
Doug Rosenberg, for example, reported unfa-
vorably on their experiences.6 However, what 
they described is a caricature of the driver- 
navigator metaphor, with one programmer firmly 
in control and the other sitting quietly, doing little. 
Such misunderstanding shows that we can’t take 
a claim that developers are pair programming at 
face value; they might not be doing what experi-
enced and effective pair programmers actually do.

P air programming has generated considerable controversy: some developers 
are enthusiastic about it, almost evangelical; others are dubious, even hostile. 
However, a large factor in this controversy is that programmers label a wide 
variety of practices under the “pair programming” umbrella. Thus, before 

our community can sensibly discuss how pair programming works, we first need to es-
tablish exactly what it is.
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This kind of misunderstanding also casts 
doubt on the many attempts to assess pair pro-
gramming’s effectiveness. (Tore Dybå and his 
colleagues provide a very nice summary of this 
experimental work.7) If the subjects of these ex-
periments did different things, can we really com-
pare their results? And if they weren’t doing what 
successful pair programmers do in commercial 
practice, can we apply their findings to commer-
cial development?

In this article, I advance four mechanisms 
prompted by my own experience of pairing in 
both agile and non-agile development. These 
mechanisms explain a large part of what suc-
cessful pair programmers do. Of course, this is 
only the beginning: you might have experiences 
that confirm or contradict my suggestions. What 
have I missed? I hope you’ll contribute to the dis-
cussion of these issues on the Web site (http:// 
computingnow.computer.org/wray).

Mechanism 1:  
Pair Programming Chat
Around 1980, as computer science undergradu-
ate students at the University of Cambridge, my 
friends and I noticed a strange phenomenon that 
we called expert programmer theory. When one 
of us had trouble getting our programs to work, 
we’d describe the nonfunctioning state of our code 
to each other over coffee. Quite often, we’d real-
ize in a flash what was wrong and how to solve 
it. These epiphanies were quite independent of the 
other person having any real understanding of our 
problems—the listener often seemed little wiser 
about the subject.

Since then, I’ve found this phenomenon is well 
known to professional developers, and sometimes 
described in textbooks and research papers. For 
example, Brian Kernighan and Rob Pike recom-
mended explaining problems aloud, even to a 
stuffed toy,8 a practice that John Sturdy called the 
rubber-plant effect.9 Part of pair programming’s 
effectiveness is presumably due to this effect be-
ing continually triggered: as one programmer gets 
stuck, the back-and-forth chat serves to unstick 
them in the same way as solo programmers talk-
ing about their problems out loud. However, this 
raises the question of whether any type of speak-
ing will help or whether something specific is 
needed.

Research on “self-explanation” by Michelene 
Chi and others throws some light on this ques-
tion. Chi and her colleagues described a study that 
tested a control group of students before and after 
they received a textbook explanation to read.10 

They tested another group in the same way, but 
encouraged the students to explain the textbook 
out loud and “fill in the gaps” for themselves. The 
self-explainers learned significantly more than the 
control group, and those who explained the most 
improved the most. The researchers also prompted 
the students for their explanations; they weren’t just 
left to their own devices. In particular, they were 
“prompted for further clarification by the experi-
menter if what they stated was vague.”10

This brings me back to an often-neglected as-
pect of the expert programmer theory. When we 
coined that term, we noticed that although real un-
derstanding wasn’t necessary on the listener’s part, 
a belief that the listener really was an expert seemed 
to significantly improve the outcome (hence our 
choice of name). 

But why would believing that you were talk-
ing to experts make any difference when they 
didn’t need to understand your explanation? Re-
cent work by Rod Roscoe and Chi showed that 
prompting questions seems to be the key.11 In their 
study, one student (the tutor) explained material to 
another student (the tutee). As expected, the tutor 
actually learned more than the tutee, but the ques-
tions the tutee asked made a dramatic difference in 
the quality of the tutor’s explanations. Most ques-
tions were shallow, and could be satisfied by mere 
repetition of facts, but some questions were deep 
and often prompted deep answers that included 
novel inferences or self-monitoring statements.

So perhaps this is how expert programmer the-
ory really works: an expert is more likely to ask a 
deep question, which prompts the novel inference 
from the stuck programmer. It also seems possible 
that merely thinking that you’re talking to an ex-
pert—or pretending—will help the stuck program-
mer produce the sort of deep questions that experts 
have asked them in the past. 

As an explanation for expert programmer the-
ory, this is almost satisfactory, but is student learn-
ing a good analogy for what happens to stuck 
programmers? After all, the students in these ex-
periments had to master basic science, and their ex-
planations helped them work out what they didn’t 
understand. Stuck programmers must already have 
all the information somehow hidden in their heads 
and then realize the answer in a moment of epiph-
any. How’s that possible? 

It’s widely accepted that cognitive abilities are 
divided into a variety of largely separate mental 
modules, each dealing with a different ability 
such as intuitive grasp of small numbers, predict-
ing other people’s actions, facial recognition, and 
so on. Less well known is the role of the language 
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module in integrating other modules’ knowledge. 
Experiments by Linda Hermer-Vazquez and her 
colleagues on integrating knowledge about ge-
ometry and color12 and by Ashley Newton and 
Jill de Villiers on false-belief reasoning13 showed 
that adults perform as poorly as young children 
when their linguistic abilities are occupied with 
a verbal shadowing task. The language mod-
ule seems crucial to combining knowledge from 
other modules.

This isn’t to say that we integrate the outputs 
of several mental modules by talking to ourselves. 
Rather, Peter Carruthers suggested that because 
speech is uniquely both an input and output brain 
medium, the language module is the only one 
with a strong connection to all the other mod-
ules.14 The mechanisms underlying the logical 
form of language might thus be redeployed at a 
level beneath conscious awareness to integrate in-
formation from other modules. The logical form 
must be able to represent objects with properties 
derived from several modules because this is the 
basis for noun-phrases in speech.

As programmers, we clearly use visual imagi-
nation to help design and debug our programs 
(although the diagrams we use bear little rela-
tion to our programs’ texts). This visual informa-
tion can be spread across several mental modules, 
and the other information we require to under-
stand our programs can be in yet other modules. 
For example, it seems that our understanding of  
object-oriented (OO) programs is supported by 
the folk psychology module that supplies intu-
itions about other people’s actions. (We think of 
objects as having intentions, wanting to do things, 
and sending each other messages.) We therefore 
need to integrate information from separate mod-
ules when thinking about our programs. Why 
can’t we always integrate it straightaway?

Carruthers suggested that we must rely on the 
language module posing the right question and 
that the other modules don’t usually present in-
formation spontaneously. However, when we 
hear the right question, our brains make the nec-
essary information available, and the language 
module can then perform rudimentary inference 
and draw the obvious conclusions. Carruthers 
suggested that the key is posing a question that’s 
“both relevant and fruitful.”14 The right question 
draws forth the crucial knowledge, and in a mo-
ment of epiphany, the answer becomes obvious

This first mechanism would therefore lead us 
to predict that programmers who chat about their 
programs more should be more productive and 
that those who pose occasional deep questions for 

each other should be most productive of all. 

Mechanism 2: Pair  
Programmers Notice More Details
Research on change blindness and inattentional 
blindness illustrates something that stage magi-
cians have known for a long time: if we don’t know 
what to look for, we can stare right at it and still 
miss it. What we notice depends on what we ex-
pect to see and what we unconsciously consider 
salient. So, although successful pair programmers 
will concentrate mostly on the same things, they 
might notice different things.

Research on change blindness shows that peo-
ple are remarkably poor at detecting changes, not 
only in 2D images under laboratory conditions but 
in real-life situations such as noticing the substitu-
tion of one person with another.15 It appears that 
people remember something they saw as belonging 
to a particular mental category, then fail to notice 
substitution by another member of that category. 
A large portion of experts’ proficiency is probably 
in their more detailed and extensive array of men-
tal categories in their particular fields.16 Research 
on inattentional blindness has similarly shown that 
when our attention is focused on a particular task, 
we can miss something that would otherwise be 
so obvious that it would just pop out. For exam-
ple, it might seem unlikely that people would miss 
a woman in a gorilla suit walking into the shot in 
a video, but that’s what half the subjects did in a 
study by Daniel Simons and Christopher Chabris.17 
(They’d been instructed to pay close attention to an-
other aspect of the video.)

So, two people programming together won’t 
have the same prior knowledge or categorization: 
one will presumably spot some things faster and 
the other different things faster. Where their rate of 
working is limited by the rate they can find things 
by just looking, two heads must be better than one. 
And in fact, one of the earliest observations that 
people make when they start to pair program is that 
the person who isn’t typing code always picks up ty-
pos quicker: “Oh, you’ve left out the comma here.” 

Of course, the compiler would pick up such 
small slips easily, so in this case the early catch 
isn’t very important. However, it’s crucial to catch 
problems early when the slip is more subtle—for 
example, if the code is syntactically correct but se-
mantically wrong, or where there’s a fault in the 
design itself. Such slips can easily cause hours of 
problems at a later date. The ability to catch mis-
takes early in an online code review is only one 
benefit of two pairs of eyes: perhaps even more im-
portant is looking at old code with a fresh eye and 
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a different set of expectations, reading what it re-
ally says, not what it ought to say.

This second mechanism also partially explains 
the phenomenon of pair fatigue, which I’ve noticed 
in myself and others. When two programmers pair 
together, the things they notice and fail to notice 
become more similar. Eventually, the benefit from 
two pairs of eyes becomes negligible. Beck sug-
gested that pairs should rotate at frequent intervals, 
perhaps once or twice a day.1 Arlo Belshee found 
that in a jelled team, rotating after two hours was 
optimal.18 Some pair programmers regard rota-
tion as an optional part of the practice, and on a 
small team, or with few programmers willing to 
pair, there might be little alternative. However, 
pair fatigue means they’ll ultimately be much less 
productive.

On the other hand, because a great deal of ex-
pert knowledge is probably in the form of catego-
ries in long-term memory, a novice might be un-
able to distinguish between events experienced at 
different times. Experts really can see things that 
novices can’t. We could therefore predict that this 
second mechanism will bring the maximum ben-
efit to novice pairs; indeed, the most extensive ex-
periment with novice pairs and experts found that 
novice pairs benefited the most.19

Mechanism 3:  
Fighting Poor Practices
As programmers, we don’t always use the best 
practices. An advantage of pair programming is 
said to be pair pressure, the feeling of not wanting 
to let your partner down.20 But why is this nec-
essary? Why do we persist in poor programming 
practices when we know they’re poor? Is there 
something special about programming that makes 
it more difficult to do the right thing? It appears 
that there is.

Let’s look at a particular example of worst 
practice: the code-and-fix style of programming 
most often used by novices (and sadly, often used 
by more experienced programmers). Programmers 
write some code that they hope will do a particu-
lar thing and then run it to see what happens. If 
it appears to work, they press on with other code, 
without systematically searching for flaws. When 
it fails, which is often the case, they tinker with the 
code haphazardly until it appears to work. Why 
is this style of programming so compelling and so 
easy to discover independently? 

Traditional behavioral psychology offers a very 
plausible explanation, although more modern 
work on the neuroscience of learning and addic-
tion also points in the same direction. One form 

of learning explored by behavioral psychologists, 
called operant conditioning, involves learning to 
perform some action spontaneously. This is the 
way that animals learn to perform tricks in circus 
acts or domestic dogs are taught obedience. An 
animal has a variety of behaviors that it engages 
in occasionally, and with operant conditioning, we 
can supply the animal with a reward after we ob-
serve it doing what we want (which reinforces the 
behavior). As this reinforcement process continues, 
the desired behavior becomes more likely to hap-
pen spontaneously, even when no reward is given. 

Of course, if the rewards stop entirely, the be-
havior diminishes and finally ceases, a process 
known as extinction (which happens quite slowly). 
If we supply a further reinforcement before the be-
havior has entirely ceased, we can easily restore it 
to full strength. In fact, learning happens quickest 
if the reward pattern is unpredictable, with a so-
called variable ratio (VR) schedule of reinforce-
ment. Henry Gleitman and his colleagues explain:

In a VR schedule, there is no way for the ani-
mal to know which of its responses will bring 
the next reward. Perhaps one response will 
do the trick, or perhaps it will take a hundred 
more. This uncertainty helps explain why 
VR schedules produce such high levels of 
responding in humans and other creatures. 
Although this is easily demonstrated in 
the laboratory, more persuasive evidence 
comes from any gambling casino. There, slot 
machines pay off on a VR schedule, with the 
‘reinforcement schedule’ adjusted so that the 
‘responses’ occur at a very high rate, ensuring 
that the casino will be lucrative for its owners 
and not for its patrons.21

This learning is unconscious: we need not realize 
that it’s happening to us, and in the case of the ca-
sino, a machine instead of a real person is condi-
tioning the slot-machine patrons. In our habitual 
patterns of software development, we too can be 
conditioned by our machines. This is the special 
property of interactive programming that makes 
it difficult to do the right thing. With code and 
fix, we tinker haphazardly with our programs, ef-
fectively putting a coin into the slot machine each 
time we run our code. Slot machines are known 
as the most addictive form of gambling, and the 
similarly unpredictable rewards from code-and-
fix programming mean that it could be equally 
addictive.

How can we resist this addiction? Perhaps 
we can try to “just say no” and choose a differ-
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ent development pattern. Some development pro-
cesses attempt to remove temptation by being less 
interactive. Edsger Dijkstra suggested that stu-
dents shouldn’t be allowed near a computer un-
til they’d learned to write programs away from 
one.22 Such ideas might have once had merit, but 
it seems foolish to turn our backs on the orders-of- 
magnitude increase in computer power available 
to us. 

Pair programmers might be less susceptible to 
poor practices because they can promise to write 
code in a particular way and ensure that each 
other’s promises are kept. The prevalence of two- 
people working in jobs where human fallibility is 
a serious problem should lead us to seriously con-
sider that pair pressure might be the solution for 
us, too. However, you can only keep a promise if 
you made one in the first place. We should there-
fore expect that to benefit from the third mecha-
nism, programmers must agree in advance how 
they’re going to write and test their code.

Mechanism 4: Sharing  
and Judging Expertise 
Even within a single development team, conven-
tional wisdom says that some programmers are 
up to 10 times more productive than others.23 
Certainly we see a wide range of expertise, but 
how confident can we be in saying who contrib-
utes most to overall productivity? Assigning credit 
for success is difficult in team activities because 
there are so many variables. 

In some fields, it’s easy to recognize experts 
because individual contributions are simple to 
measure. Chess players have numerical rankings; 
golfers have handicaps. These are good predic-
tors of their likely success against other players. 
But in team activities, so many factors contribute 
to success or failure that we simply can’t under-
stand the causal relationships without a detailed 
scientific investigation, so we usually select one or 
two arbitrary factors to simplify the analysis.24 In 
software development, “lines of code written per 
day” often gets elevated above all others, simply 
because it’s easy to measure. But selecting such 
arbitrary factors tends to promote “star players” 
who demonstrate those qualities but don’t signifi-
cantly contribute to the team’s success. 

Unfortunately, more detailed scientific analysis 
is seldom practical. So how can we assign individ-
ual credit (or blame) for team performance? Paul 
Graham said that when an expert programmer 
works alongside another programmer on the same 
problem, the expert can judge the other program-
mer’s skill. But that’s the only way: he or she can’t 

tell just by meeting them. “I can’t tell, even now,” he 
wrote. “You also can’t tell from their résumés.”25

This is my experience, too: it isn’t enough to 
talk with someone about programming; you have 
to work on a problem with them to gauge their ex-
pertise. A weak version of this technique is stan-
dard practice in programming interviews. After 
the preliminary discussion centered on the appli-
cant’s résumé, the interview proceeds to a series of 
successively more difficult programming exercises 
that the applicant has to talk through at a white-
board. I’m frequently surprised by how a very 
plausible-sounding candidate, when challenged 
in this way, completely fails to produce even the 
most basic evidence of the knowledge that he or 
she earlier claimed. 

Sadly, these poor candidates seem blissfully 
unaware of their own lack of expertise. They’re 
so bad that they don’t realize how bad they are, 
probably because, in the words of Justin Kruger 
and David Dunning, “the same knowledge that 
underlies the ability to produce correct judgments 
is also the knowledge that underlies the ability to 
recognize correct judgment.”26 In a field where 
expertise is hard to measure, this is a serious prob-
lem, because as Kruger and Dunning observed, 
the less competent are often more confident of 
their own ability than their more expert peers.

The most competent, on the other hand, suffer 
from the opposite problem, the false consensus ef-
fect, in which they believe that their own abilities 
are typical. This happens for the same reason: it’s 
hard to accurately assess others’ competence, so 
the most competent have no reason to believe that 
they’re extraordinary—unless they work closely 
with another programmer on the same problem. 

Most programmers work on problems on their 
own, so no one knows how good (or bad) they re-
ally are. But with pair programming, people con-
tinually work together. Because they keep swapping 
pairs, everyone on the team learns who’s the most 
expert at particular things. From this comparison, 
they also realize their own level of expertise. We 
should therefore expect more accurate estimates 
of time and difficulty by a pair programming team 
than from a solo programming team. From my ex-
perience, this does appear to be the case.

W e’re no longer in the first flush of 
pair programming, yet the gulf be-
tween enthusiasts and critics seems 

as wide as ever. Experimental evidence has been 
equivocal. How can we advance our understand-
ing? I believe the mechanisms I describe here are 
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among the fundamental properties shared by all 
instances of successful pair programming, but 
other mechanisms are important, too: for ex-
ample, team jelling appears to have a significant 
effect. What other mechanisms are significant? 
Although I believe that pairing works the same 
in agile and non-agile settings, this has yet to 
be established. In addition, there might be anti- 
mechanisms: poor practices that lead to unsuc-
cessful pair programming and that aren’t merely 
the absence of the beneficial mechanisms. To in-
vestigate all of these, we could solicit suggestions 
from working developers; ethnographic research-
ers could reexamine their records for evidence for 
or against the mechanisms.

We also need some form of objective check-
list to compare results across experiments, so that 
experimenters can agree how much a particular 
programming team uses a particular mechanism. 
With such a checklist, we could then reexamine 
the experiments that Dybå described7 and attempt 
to establish the extent to which the teams used cer-
tain mechanisms. However, such post hoc analysis 
could still give equivocal results. To clearly estab-
lish the mechanisms’ impact, we must design new 
experiments that properly control for them. 

Perhaps you have some other questions—or 
even some answers—in mind right now. If so, 
I invite you to share your comments on the Web 
site (http://computingnow.computer.org/wray). In 
any case, I hope that thinking about these mecha-
nisms will help you apply pair programming more  
effectively.
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