CS 4104: Data and Algorithm Analysis

Clifford A. Shaffer

Department of Computer Science Virginia Tech Blacksburg, Virginia

Fall 2010

Copyright © 2010 by Clifford A. Shaffer

(ロ) (回) (回) (目) (目) (目) (の)

S 4104. Data and Algorithm
Analysis Fall 2010 1 / 351

A General Model

Want a general model of computation that is as simple as possible.

- Wish to be able to reason about the model.
- "State machines" are simple.

Necessary features:

- Read
- Write
- Compute

Analysis

Fall 2010

Turing Machines (1)

A tape, divided into squares.

"States"

A single I/O head:

- Read current symbol
- Change current symbol

Control Unit Actions:

- Put the control unit into a new state.
- Either:
 - Write a symbol in current tape square.
 - Move I/O head one square left or right.

. Data and Algorithm
Analysis Fall 2010 337 / 351

Turing Machines (2)

Tape has a fixed left end, infinite right end.

- Machine ceases to operate if head moves off left end.
- By convention, input is placed on left end of tape.

A **halt** state (*h*) signals end of computation.

"#" indicates a blank tape square.

Formal definition of Turing Machine

A **Turing Machine** is a quadruple (K, Σ , δ , s) where

- *K* is a finite set of **states** (not including *h*).
- Σ is an alphabet (containing #, not L or R).
- $s \in K$ is the **initial** state.
- δ is a function from $K \times \Sigma$ to $(K \cup \{h\}) \times (\Sigma \cup \{L, R\})$.

If $q \in K$, $a \in \Sigma$ and $\delta(q, a) = (p, b)$, then when in state q and scanning a, enter state p and

- If $b \in \Sigma$ then replace a with b.
- 2 Else (b is L or R): move head.

(ロ) (団) (巨) (巨) (巨) (の)

Analysis Fall 2010 339 / 351

Turing Machine Example 1

 $M = (K, \Sigma, \delta, s)$ where

•
$$K = \{q_0, q_1\},\$$

•
$$\Sigma = \{a, \#\},$$

•
$$s = q_0$$
,

- 4 ロ ト 4 週 ト 4 恵 ト 4 恵 - 夕 Q C

Analysis Fall 2010 340 / 351

Turing Machine Example 2

 $M = (K, \Sigma, \delta, s)$ where

- $K = \{q_0\},$
- $\Sigma = \{a, \#\},$
- $s = q_0$,

$$\bullet \ \delta = \begin{array}{c|cccc} \hline q & \sigma & \delta(q,\sigma) \\ \hline q_0 & a & (q_0,L) \\ q_0 & \# & (h,\#) \end{array}$$

- 4 ロ ト 4 週 ト 4 恵 ト 4 恵 - 夕 Q C

Analysis Fall 2010 341 / 351

Notation

Configuration: (q, aaba# # a)

Halted configuration: q is h.

Hanging configuration: Move left from leftmost square.

A **computation** is a sequence of configurations for some $n \ge 0$. Such a computation is of **length** n.

4□ > 4□ > 4 = > 4 = > = 900

342 / 351

Execution

Execution on first machine example.

$$(q_0, \underline{a}aaa)$$
 \vdash_M $(q_1, \underline{\#}aaa)$
 \vdash_M $(q_0, \#\underline{a}aa)$
 \vdash_M $(q_1, \#\underline{\#}aa)$
 \vdash_M $(q_0, \#\#\underline{a}a)$
 \vdash_M $(q_1, \#\#\underline{\#}a)$
 \vdash_M $(q_0, \#\#\#\underline{a})$
 \vdash_M $(q_1, \#\#\#\underline{\#})$
 \vdash_M $(q_0, \#\#\#\#\underline{\#})$
 \vdash_M $(q_0, \#\#\#\#\#\underline{\#})$
 \vdash_M $(h, \#\#\#\#\#)$

Analysis Fall 2010 343 / 351

Computations

- M is said to **halt on input** w iff $(s, \#w \underline{\#})$ yields some halted configuration.
- M is said to **hang on input** w if $(s, \#w \underline{\#})$ yields some hanging configuration.
- Turing machines compute functions from strings to strings.
- Formally: Let f be a function from Σ_0^* to Σ_1^* . Turing machine M is said to **compute** f if for any $w \in \Sigma_0^*$, if f(w) = u then

$$(s, \#w\underline{\#}) \vdash_{M}^{*} (h, \#u\underline{\#}).$$

- *f* is said to be a **Turing-computable function**.
- Multiple parameters: $f(w_1, ..., w_k) = u$, $(s, \#w_1 \# w_2 \# ... \# w_k \#) \vdash_M^* (h, \# u \#)$.

4. Data and Algorithm

Functions on Natural Numbers

- Represent numbers in <u>unary</u> notation on symbol / (zero is represented by the empty string).
- $f: \mathbb{N} \to \mathbb{N}$ is computed by M if M computes $f': \{I\}^* \to \{I\}^*$ where $f'(I^n) = I^{f(n)}$ for each $n \in \mathbb{N}$.
- Example: f(n) = n + 1 for each $n \in \mathbb{N}$.

$$egin{array}{cccc} q & \sigma & \delta(q,\sigma) \\ q_0 & I & (h,R) \\ q_0 & \# & (q_0,I) \end{array}$$

$$(q_0, \#II\underline{\#}) \vdash_M (q_0, \#II\underline{I}) \vdash_M (h, \#III\underline{\#}).$$

- In general, $(q_0, \#I^n\#) \vdash_M^* (h, \#I^{n+1}\#)$.
- What about n = 0?

345 / 351

4104. Data and Algorithm
Analysis Fall 2010

Turing-decidable Languages

A language $L \subset \Sigma_0^*$ is **Turing-decidable** iff function $\chi_L : \Sigma_0^* \to \{Y, N\}$ is Turing-computable, where for each $w \in \Sigma_0^*$,

$$\chi_L(w) = \begin{cases} Y & \text{if } w \in L \\ N & \text{otherwise} \end{cases}$$

Ex: Let $\Sigma_0 = \{a\}$, and let $L = \{w \in \Sigma_0^* : |w| \text{ is even}\}.$

M erases the marks from right to left, with current parity encode by state. Once blank at left is reached, mark Y or N as appropriate.

◄□▶
□▶
□▶
▼□▶
▼□▶
▼□▶
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□
▼□

Turing-acceptable Languages

M accepts a string *w* if *M* halts on input *w*.

- M accepts a language iff M halts on w iff $w \in L$.
- A language is <u>Turing-acceptable</u> if there is some Turing machine that accepts it.

Ex:
$$\Sigma_0 = \{a, b\}$$
, $L = \{w \in \Sigma_0^* : w \text{ contains at least one } a\}$.

Every Turing-decidable language is Turing-acceptable.

Combining Turing Machines

Lemma: If

$$(q_1, w_1\underline{a_1}u_1) \vdash_M^* (q_2, ww_2\underline{a_2}u_2)$$

for string w and

$$(q_2, w_2\underline{a_2}u_2) \vdash_M^* (q_3, w_3\underline{a_3}u_3),$$

then

$$(q_1, w_1\underline{a_1}u_1) \vdash_M^* (q_3, ww_3\underline{a_3}u_3).$$

Insight: Since $(q_2, w_2a_2u_2) \vdash_M^* (q_3, w_3a_3u_3)$, this computation must take place without moving the head left of w_2

The machine cannot "sense" the left end of the tape

348 / 351

Combining Turing Machines (Cont)

Thus, the head won't move left of w_2 even if it is not at the left end of the tape.

This means that Turing machine computations can be combined into larger machines:

- M_2 prepares string as input to M_1 .
- M_2 passes control to M_1 with I/O head at end of input.
- M_2 retrieves control when M_1 has completed.

◆ロ > ◆回 > ◆ 豆 > ◆豆 > ・ 豆 ・ 夕 Q ○

Some Simple Machines

Basic machines:

- $|\Sigma|$ symbol-writing machines (one for each symbol).
- Head-moving machines R and L move the head appropriately.

More machines:

- First do M_1 , then do M_2 or M_3 depending on current symbol.
- (For $\Sigma = \{a, b, c\}$) Move head to the right until a blank is found.
- Find first blank square to left: L#
- Copy Machine: Transform #w# into #w#w#.
- Shift a string left or right.

F. Data and Angonom
Analysis
Fall 2010 350 / 351

Extensions

The following extensions do not increase the power of Turing Machines.

- 2-way infinite tape
- Multiple tapes
- Multiple heads on one tape
- Two-dimensional "tape"
- Non-determinism

10 + 4 A + 4 B + 4 B + 900