
CS 4104: Data and Algorithm Analysis

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Fall 2010

Copyright c© 2010 by Clifford A. Shaffer

CS 4104: Data and Algorithm
Analysis Fall 2010 1 / 306



Selection

How can we find the i th largest value

in a sorted list?

in an unsorted list?

Can we do better with an unsorted list than to sort it?

Assumption: Elements can be ranked.

CS 4104: Data and Algorithm
Analysis Fall 2010 116 / 306



Properties of Relationships (1)

Partial Order: Given a set S and a binary operator R, R
defines a partial order on S if R is:

Antisymmetric: Whenever aRb and bRa, then a = b, for
all a, b ∈ S.
Transitive: Whenever aRb and bRc, then aRc, for all
a, b, c ∈ S.

Think of a relationship as a set of tuples.
A tuple is in the set (in the relation) iff the relation holds
on that tuple.

Example: S is Integers, R is <.

Example: S is the power set of {1, 2, 3}, R is subset.
CS 4104: Data and Algorithm

Analysis Fall 2010 117 / 306



Properties of Relationships (2)

A partial order is also called a poset.

If every pair of elements in S is relatable by R, then we have
a linear order.

CS 4104: Data and Algorithm
Analysis Fall 2010 118 / 306



General Model

For all of our problems on Selection and Sorting:

The poset has a linear ordering. (Usually natural
numbers and a relationship of ≤.)
Cost measure is the number of 3-way element-element
comparisons.

Selection problems:
Find the max or min.
Find the second largest.
Find the median.
Find the i th largest.
Find several ranks simultaneously.

CS 4104: Data and Algorithm
Analysis Fall 2010 119 / 306



Finding the Maximum

int Find_max(int *L, int low, int high) {
max = low;
for(i=low+1; i<= high; i++)

if(L[i] > L[max])
max = i;

return max;
}

What is the cost?

Is this optimal?
CS 4104: Data and Algorithm

Analysis Fall 2010 120 / 306



Proof of Lower Bound (1)

Try #1:

The winner must compare against all other elements, so
there must be n − 1 comparisons.

CS 4104: Data and Algorithm
Analysis Fall 2010 121 / 306



Proof of Lower Bound (1)

Try #1:

The winner must compare against all other elements, so
there must be n − 1 comparisons.

Try #2:

Only the winner does not lose.

There are n − 1 losers.

A single comparison generates (at most) one (new)
loser.

Therefore, there must be n − 1 comparisons.

CS 4104: Data and Algorithm
Analysis Fall 2010 121 / 306



Proof of Lower Bound (2)

Alternative proof:

To find the max, we must build a poset having one max
and n − 1 losers, starting from a poset of n singletons.

We wish to connect the elements of the poset with the
minimum number of links.

This requires at least n − 1 links.

A comparison provides at most one new link.

CS 4104: Data and Algorithm
Analysis Fall 2010 122 / 306



Average Cost

What is the average cost for Find_max?
◮ Since it always does the same number of comparisons,

clearly n − 1 comparisons.

How many assignments to max does it do?

Ignoring the actual values in L, there are n!
permutations for the input.

Find_max does an assignment on the i th iteration iff
L[i ] is the biggest of the first i elements.
Since this event does happen, or does not happen:

◮ Given no information about distribution, the probability of
an assignment after each comparison is 50%.

CS 4104: Data and Algorithm
Analysis Fall 2010 123 / 306



Average Number of Assignments

Find_max does an assignment on the i th iteration iff L[i ] is
the biggest of the first i elements.

Assuming all permutations are equally likely, the probability
of this being true is 1/i .

1 +
n

∑

i=2

1
i
× 1 =

n
∑

i=1

1
i
.

This sum generates the nth harmonic number: Hn.

CS 4104: Data and Algorithm
Analysis Fall 2010 124 / 306



Technique (1)

Since i ≤ 2⌈log i⌉, 1/i ≥ 1/2⌈log i⌉.

Thus, if n = 2k

H2k = 1 +
1
2

+
1
3

+ ... +
1
2k

≥ 1 +
1
2

+
1
4

+
1
4

+
1
8

+
1
8

+
1
8

+
1
8

+... +
1
2k

= 1 +
1
2

+
2
4

+
4
8

+ ...
2k−1

2k

= 1 +
k
2

.

CS 4104: Data and Algorithm
Analysis Fall 2010 125 / 306



Technique (2)

Using similar logic, H2k ≤ k + 1
2k . Thus, Hn = Θ(log n).

More exactly, Hn is close to ln n.

CS 4104: Data and Algorithm
Analysis Fall 2010 126 / 306



Variance (1)

How “reliable” is the average?
How much will a given run of the program deviate from
the average?

Variance: For runs of the program, average square of
differences.

Standard deviation: Square root of variance.

From Čebyšev’s Inequality, 75% of the observations fall
within 2 standard deviations of the average.

For Find_max, the variance is

Hn −
π2

6
= ln n − π2

6
CS 4104: Data and Algorithm

Analysis Fall 2010 127 / 306



Variance (2)

The standard deviation is thus about
√

ln n.

So, 75% of the observations are between ln n − 2
√

ln n
and ln n + 2

√
ln n.

Is this a narrow spread or a wide spread?

CS 4104: Data and Algorithm
Analysis Fall 2010 128 / 306



Finding the Second Best

In a single-elimination tournament, is the second best the
one who loses in the finals? Simple algorithm:

Find the best.

Discard it.

Now, find the second best of the n − 1 remaining
elements.

Cost? Is this optimal?

CS 4104: Data and Algorithm
Analysis Fall 2010 129 / 306



Lower Bound for Second (1)

Lower bound:

Anyone who lost to anyone who is not the max cannot
be second.

So, the only candidates are those who lost to max.

Find_max might compare max to n − 1 others.

Thus, we might need n − 2 additional comparisons to
find second.

Wrong!

CS 4104: Data and Algorithm
Analysis Fall 2010 130 / 306



Lower Bound for Second (2)

The previous argument exhibits the necessity fallacy:
Our algorithm does something, therefore all algorithms
solving the problem must do the same.

Alternative: Divide and conquer
Break the list into two halves.
Run Find_max on each half.
Compare the winners.
Run Find_max on the winner’s half for second.
Compare that second to second winner.

Cost: ⌈3n/2⌉ − 2.
Is this optimal?
What if we break the list into four pieces? Eight?

CS 4104: Data and Algorithm
Analysis Fall 2010 131 / 306



Binomial Trees (1)
Pushing this idea to its extreme, we want each
comparison to be between winners of equal numbers of
comparisons.

The only candidates for second are losers to the
eventual winner.
A binomial tree of height m has 2m nodes organized
as:

◮ a single node, if m = 0, or
◮ two height m − 1 binomial trees with one tree’s root

becoming a child of the other.

CS 4104: Data and Algorithm
Analysis Fall 2010 132 / 306



Binomial Trees (2)

Algorithm:

Build the tree.

Compare the ⌈log n⌉ children of the root for second.

Cost?

CS 4104: Data and Algorithm
Analysis Fall 2010 133 / 306



Binomial Tree Representation

We could store the binomial tree as an explicit tree
structure.
Can also store binomial tree implicitly: In array.
Assume two trees, each with 2k nodes, are in array as:

◮ First tree in positions 1 to 2k .
◮ Second tree in positions 2k + 1 to 2k+1.
◮ The root of a subtree is in the final array position for that

subtree.
To join:

◮ Compare the roots of the subtrees.
◮ If necessary, swap subtrees so larger root element is

second subtree.

Trades space for time.
CS 4104: Data and Algorithm

Analysis Fall 2010 134 / 306



Adversarial Lower Bounds Proof (1)

Many lower bounds proofs use the concept of an adversary.

The adversary’s job is to make an algorithm’s cost as high as
possible.

The algorithm asks the adversary for information about the
input.

The adversary may never lie.

CS 4104: Data and Algorithm
Analysis Fall 2010 135 / 306



Adversarial Lower Bounds Proof (2)

Imagine that the adversary keeps a list of all possible inputs.

When the algorithm asks a question, the adversary
answers, and crosses out all remaining inputs
inconsistent with that answer.

The adversary is permitted to give any answer that is
consistent with at least one remaining input.

Examples:

Hangman.
Search an unordered list.

CS 4104: Data and Algorithm
Analysis Fall 2010 136 / 306



Lower Bound for Second Best

At least n − 1 values must lose at least once.

At least n − 1 compares.

In addition, at least k − 1 values must lose to the second
best.

I.e., k direct losers to the winner must be compared.

There must be at least n + k − 2 comparisons.

How low can we make k?

CS 4104: Data and Algorithm
Analysis Fall 2010 137 / 306



Adversarial Lower Bound

Call the strength of element L[i ] the number of elements L[i ]
is (known to be) bigger than.

If L[i ] has strength a, and L[j ] has strength b, then the winner
has strength a + b + 1.

What should the adversary do?

Minimize the rate at which any element improves.

Do this by making the stronger element always win.

Is this legal?

CS 4104: Data and Algorithm
Analysis Fall 2010 138 / 306



Lower Bound (Cont.)

What should the algorithm do?

If a ≥ b, then 2a ≥ a + b.

From the algorithm’s point of view, the best outcome is
that an element doubles in strength.

This happens when a = b.

All strengths begin at zero, so the winner must make at
least k comparisons for 2k−1 < n ≤ 2k .

Thus, there must be at least n + ⌈log n⌉ − 2 comparisons.

CS 4104: Data and Algorithm
Analysis Fall 2010 139 / 306



Find Min and Max (1)

Find them independantly: 2n − 2.

Can easily modify to get 2n − 3.

Should be able to do better(?)

Try divide and conquer.

CS 4104: Data and Algorithm
Analysis Fall 2010 140 / 306



Find Min and Max (2)

Find_Max_Min(ELEM *L, int lower, int upper) {
if (upper == lower) return lower, lower; // n=1
if (upper == lower+1) // n=2
return max(L[upper], L[lower]),

min(L[upper], L[lower]); // 1 compare
mid = (lower + upper)/2; // n>2
max1, min1 = Find_Max_Min(L, lower, mid);
max2, min2 = Find_Max_Min(L, mid+1, upper);
return max(L[max1], L[max2]),

min(L[min1], L[min2]);
}

Recurrence:

f (n) =

{

2f (n/2) + 2 n > 2
1 n = 2

CS 4104: Data and Algorithm
Analysis Fall 2010 141 / 306



Solving the Recurrence (1)

Assume n = 2k .
Let’s expand the recurrence a bit.

f (n) = 2f (n/2) + 2

= 2[2f (n/4) + 2] + 2

= 4f (n/4) + 4 + 2

= 4[2f (n/8) + 2] + 4 + 2

= 8f (n/8) + 8 + 4 + 2

= 2i f (n/2i) +
i

∑

j=1

2j

CS 4104: Data and Algorithm
Analysis Fall 2010 142 / 306



Solving the Recurrence (2)

f (n) = 2k−1f (n/2k−1) +
k−1
∑

j=1

2j

= 2k−1f (2) +
k−1
∑

j=1

2j

= 2k−1 +
k−1
∑

j=1

2j

= n/2 + 2k − 2

= 3n/2 − 2

CS 4104: Data and Algorithm
Analysis Fall 2010 143 / 306



Looking Closer (1)

But its not always true that n = 2k .
The true cost recurrence is:

f (n) =







0 n = 1
1 n = 2
f (⌊n/2⌋) + f (⌈n/2⌉) + 2 n > 2

Here is what really happens:

n 2 3 4 5 6 7 8 9 10 11
f (n) 1 2 4 6 8 9 10 12 14 16
3n/2 − 2 1 2.5 4 5.5 7 8.5 10 11.5 13 14.5

The true cost for f (n) ranges between 3n/2 − 2 and
5n/3 − 2.

For what sort of input does the algorithm work best?
CS 4104: Data and Algorithm

Analysis Fall 2010 144 / 306



Finding a Better Algorithm

What is the cost with six values?

What if we divide into a group of 4 and a group of 2?

With divide and conquer, we seek to minimize the work, not
necessarily balance the input sizes.

When does the algorithm do its best?

What about 12? 24?

Lesson: For divide and conquer, pay attention to what
happens for small n.

CS 4104: Data and Algorithm
Analysis Fall 2010 145 / 306



Algorithms from Recurrences (1)

What does this model?

f (n) =







0 n = 1
1 n = 2
min1≤k≤n−1{f (k) + f (n − k)} + 2 n > 2

n 1 2 3 4 5 6 7 8
3 3 3
4 5 4 5
5 7 6 6 7
6 9 7 8 7 9
7 11 9 9 9 9 11
8 13 10 11 10 11 10 13
9 15 12 12 12 12 12 12 15

k = 2 looks promising.
CS 4104: Data and Algorithm

Analysis Fall 2010 146 / 306



Algorithms from Recurrences (1)

f (n) =







0 n = 1
1 n = 2
f (2) + f (n − 2) + 2 n > 2

Cost: What is the corresponding algorithm?

CS 4104: Data and Algorithm
Analysis Fall 2010 147 / 306



The Lower Bound (1)

Is ⌈3n/2⌉ − 2 optimal?

Consider all states that a successful algorithm must go
through: The state space lower bound.

At any given instant, track the following four categories:

Novices: not tested.

Winners: Won at least once, never lost.

Losers: Lost at least once, never won.

Moderates: Both won and lost at least once.

CS 4104: Data and Algorithm
Analysis Fall 2010 148 / 306



The Lower Bound (2)

Who can get ignored?

What is the initial state?

What is the final state?

How is this relevant?

CS 4104: Data and Algorithm
Analysis Fall 2010 149 / 306



Lower Bound (3)

Every algorithm must go from (n, 0, 0, 0) to (0, 1, 1, n − 2).

There are 10 types of comparison.

Comparing with a moderate cannot be more efficient than
other comparisons, so ignore them.

CS 4104: Data and Algorithm
Analysis Fall 2010 150 / 306



Lower Bound (3)

If we are in state (i , j , k , l) and we have a comparison, then:
N : N (i − 2, j + 1, k + 1, l)
W : W (i , j − 1, k , l + 1)
L : L (i , j , k − 1, l + 1)
L : N (i − 1, j + 1, k , l)

or (i − 1, j , k , l + 1)
W : N (i − 1, j , k + 1, l)

or (i − 1, j , k , l + 1)
W : L (i , j , k , l)

or (i , j − 1, k − 1, l + 2)

CS 4104: Data and Algorithm
Analysis Fall 2010 151 / 306



Adversarial Argument

What should an adversary do?
Comparing a winner to a loser is of no value.

Only the following five transitions are of interest:
N : N (i − 2, j + 1, k + 1, l)
L : N (i − 1, j + 1, k , l)
W : N (i − 1, j , k + 1, l)
W : W (i , j − 1, k , l + 1)
L : L (i , j , k − 1, l + 1)

Only the last two types increase the number of moderates,
so there must be n − 2 of these.

The number of novices must go to 0, and the first is the most
efficient way to do this: ⌈n/2⌉ are required.

CS 4104: Data and Algorithm
Analysis Fall 2010 152 / 306



Finding the ith Best

We need to find the following poset:

We don’t care about the relative order within the upper
and lower groups.

Can we do better than sorting? (Θ(n log n))

Can we tighten the lower bound beyond n?

What if we want to find the median element?
CS 4104: Data and Algorithm

Analysis Fall 2010 153 / 306



Splitting a List

Given an arbitrary element, partition the list into those
elements less and those elements greater.

// Initially, l and r are one position to left and
// right of the subarray, respectively
int partition(Elem A[], int l, int r, Elem pivot) {
do { // Move bounds inward to meet
while (A[++l] < pivot); // Move l right and
while ((l < r) && (A[--r] > pivot)); // r left
swap(A, l, r); // Swap values

} while (l < r); // Stop when they cross
return l; // Return first position on right

}

If the pivot position is i th best, we are done.
If not, solve the subproblem recursively.

CS 4104: Data and Algorithm
Analysis Fall 2010 154 / 306



Cost (1)

What is the worst case cost of this algorithm?
Under what circumstances?
What is average case cost if we pick pivots at random?

Let f (n, i) be average time to find i th best of n elements.
Array bounds go from 1 to n
Call j the position of the pivot

f (n, i) = (n − 1) +
1
n

n
∑

j=i+1

f (j − 1, i) +
1
n

0

+
1
n

i−1
∑

j=1

f (n − j , i − j).

CS 4104: Data and Algorithm
Analysis Fall 2010 155 / 306



Cost (2)

Let f (n) be the cost averaged over all i .

f (n) =
1
n

n
∑

i=1

f (n, i).

Note: Even if we just want to analyze for median-finding, still
need to be able to solve for arbitrary i on recursive calls.

CS 4104: Data and Algorithm
Analysis Fall 2010 156 / 306



Technique (1)

nf (n) =
n

∑

i=1

f (n, i)

= n2 − n +
1
n

n
∑

i=1







n
∑

j=i+1

f (j − 1, i)+

i−1
∑

j=1

f (n − j , i − j)







.

It turns out that the two double sums are the same (just
going from different directions).

CS 4104: Data and Algorithm
Analysis Fall 2010 157 / 306



Technique (2)

nf (n) = n2 − n +
2
n

n−1
∑

j=1

j
∑

i=1

f (j , i)

= n2 − n +
2
n

n−1
∑

j=1

jf (j)

Therefore,

n2f (n) = n3 − n2 + 2
n−1
∑

j=1

jf (j).

This is an example of a full history recurrence.
CS 4104: Data and Algorithm

Analysis Fall 2010 158 / 306



Solving the Recurrence (1)

If we subtract the appropriate form of f (n − 1), most of the
terms will cancel out.

n2f (n) − (n − 1)2f (n − 1)

= n3 − n2 + 2
n−1
∑

j=1

jf (j)

−(n − 1)3 + (n − 1)2 − 2
n−2
∑

j=1

jf (j)

= 3n2 − 5n + 2 + 2(n − 1)f (n − 1)

⇒ n2f (n) = (n2 − 1)f (n − 1) + 3n2 − 5n + 2.

CS 4104: Data and Algorithm
Analysis Fall 2010 159 / 306



Solving the Recurrence (2)

Estimate:

n2f (n) = (n2 − 1)f (n − 1) + 3n2 − 5n + 2

< n2f (n − 1) + 3n2

⇒ f (n) < f (n − 1) + 3

⇒ f (n) < 3n

Therefore, f (n) is in O(n).

Does this mean that the worst case is linear?

CS 4104: Data and Algorithm
Analysis Fall 2010 160 / 306



Improving the Worst Case

Want worst case linear algorithm.

Goal: Pick a pivot that guarentees discarding a fixed
proportion of the elements.

Can’t just choose a pivot at random.

Median would be ideal – too expensive.

Choose a constant c, pick the median of a sample of size
n/c elements.

Will discard at least n/2c elements.
CS 4104: Data and Algorithm

Analysis Fall 2010 161 / 306



Selecting an Approximate Median

Algorithm:
Choose the n/5 medians for groups of 5 elements of L.
Recursively, select the median of the n/5 elements.
Use SPLIT to partition the list into large and small
elements around the “median.”

For 5, discard at least 2
For 15, discard at least 5
For 25, discard at least 8
In general, discard at least (3n + 5)/10

CS 4104: Data and Algorithm
Analysis Fall 2010 162 / 306



Constructive Induction (1)

Is the following recurrence linear?
f (n) ≤ f (⌈n/5⌉) + f (⌈(7n − 5)/10⌉) + 6⌈n/5⌉ + n − 1.

To answer this, assume it is true for some constant r such
that f (n) ≤ rn for all n greater than some bound.

f (n) ≤ f (⌈n
5
⌉) + f (⌈7n − 5

10
⌉) + 6⌈n

5
⌉ + n − 1

≤ r(
n
5

+ 1) + r(
7n − 5

10
+ 1) + 6(

n
5

+ 1) + n − 1

≤ (
r
5

+
7r
10

+
11
5

)n +
3r
2

+ 5

≤ 9r + 22
10

n +
3r + 10

2
≤ rn.

CS 4104: Data and Algorithm
Analysis Fall 2010 163 / 306



Constructive Induction (2)

Try r = 1: 3.1n + 7.5 ≤ n which doesn’t work.
Try r = 23: Get 22.9n + 39.5 ≤ 23n.
This is true for n ≥ 395.

Thus, we can use induction to prove that,

∀n ≥ 395, f (n) ≤ 23n.

This algorithm is not practical. Better to rely on “luck.”

CS 4104: Data and Algorithm
Analysis Fall 2010 164 / 306


