
CS 4104: Data and Algorithm Analysis

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Fall 2010

Copyright c© 2010 by Clifford A. Shaffer

CS 4104: Data and Algorithm
Analysis Fall 2010 1 / 13



Program Efficiency

Our primary concern is EFFICIENCY.

We want efficient programs. How do we measure the
efficiency of a program? (Assume we are concerned
primarily with time.)

CS 4104: Data and Algorithm
Analysis Fall 2010 14 / 13



Program Efficiency

Our primary concern is EFFICIENCY.

We want efficient programs. How do we measure the
efficiency of a program? (Assume we are concerned
primarily with time.)

On what input?

How do we speed it up?

When do we stop speeding it up?

Should we bother with writing the program in the first
place?

CS 4104: Data and Algorithm
Analysis Fall 2010 14 / 13



Algorithm Efficiency (1)

Since we don’t want to write worthless programs, we will
focus on algorithm efficiency.

We need a yardstick.

CS 4104: Data and Algorithm
Analysis Fall 2010 15 / 13



Algorithm Efficiency (1)

Since we don’t want to write worthless programs, we will
focus on algorithm efficiency.

We need a yardstick.

It should measure something we care about.

It should by quantitative, allowing comparisons.

It should be easy to compute (the measure, not the
program).

It should be a good predictor.

CS 4104: Data and Algorithm
Analysis Fall 2010 15 / 13



Algorithm Efficiency (2)

We need:

A measure for problem size.

A measure for solution effort.

Use key operations as a measure of solution effort.

Total cost is a function of problem size and key
operations.

CS 4104: Data and Algorithm
Analysis Fall 2010 16 / 13



Cost Model (1)

To get a measurement, we need a model.

Example:
Assigning to a variable takes fixed time.
All other operations take no time.

sum = n*n;

CS 4104: Data and Algorithm
Analysis Fall 2010 17 / 13



Cost Model (1)

To get a measurement, we need a model.

Example:
Assigning to a variable takes fixed time.
All other operations take no time.

sum = n*n;

One assignment was made, so the cost is 1.

CS 4104: Data and Algorithm
Analysis Fall 2010 17 / 13



Cost Model (1)

To get a measurement, we need a model.

Example:
Assigning to a variable takes fixed time.
All other operations take no time.

sum = n*n;

One assignment was made, so the cost is 1.

sum = 0;
for (i=1; i<=n; i++)
sum = sum + n;

CS 4104: Data and Algorithm
Analysis Fall 2010 17 / 13



Cost Model (1)

To get a measurement, we need a model.

Example:
Assigning to a variable takes fixed time.
All other operations take no time.

sum = n*n;

One assignment was made, so the cost is 1.

sum = 0;
for (i=1; i<=n; i++)
sum = sum + n;

Assignments made are 1 +
∑n

i=1 1 = n + 1. (Depending on
how you want to deal with loop variables, you might want to
say it is 2n + 1.)

CS 4104: Data and Algorithm
Analysis Fall 2010 17 / 13



Cost Model (2)

sum = 0;
for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
sum = sum + 1;

CS 4104: Data and Algorithm
Analysis Fall 2010 18 / 13



Cost Model (2)

sum = 0;
for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
sum = sum + 1;

Assignments made are 1 +
∑n

i=1

∑n
j=1 1 = n2 + 1.

CS 4104: Data and Algorithm
Analysis Fall 2010 18 / 13



Cost Model (2)

sum = 0;
for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
sum = sum + 1;

Assignments made are 1 +
∑n

i=1

∑n
j=1 1 = n2 + 1.

What makes a model “good”?

Consider string assignment (done by copying). Is this a
good model?

CS 4104: Data and Algorithm
Analysis Fall 2010 18 / 13



Big Issues

How do we create an efficient algorithm?

CS 4104: Data and Algorithm
Analysis Fall 2010 19 / 13



Big Issues

How do we create an efficient algorithm?

Q: How do we recognize a “good” algorithm?

CS 4104: Data and Algorithm
Analysis Fall 2010 19 / 13



Big Issues

How do we create an efficient algorithm?

Q: How do we recognize a “good” algorithm?
A: By the relationship of its performance to the intrinsic
difficulty of the problem.

CS 4104: Data and Algorithm
Analysis Fall 2010 19 / 13



Big Issues

How do we create an efficient algorithm?

Q: How do we recognize a “good” algorithm?
A: By the relationship of its performance to the intrinsic
difficulty of the problem.

How “hard” is a problem?

CS 4104: Data and Algorithm
Analysis Fall 2010 19 / 13



Big Issues (2)

General Plan:
Define a PROBLEM.
Build MODEL to measure cost of solution to problem.
Design an ALGORITHM to solve the problem.
ANALYZE both the problem and the algorithm under the
model.

◮ Analyze an algorithm to get an UPPER BOUND.
◮ Analyze a problem to get a LOWER BOUND.

COMPARE the bounds to see if our solution is “good
enough”.

◮ Redesign the algorithm.
◮ Tighten the lower bound.
◮ Change the model.
◮ Change the problem.

CS 4104: Data and Algorithm
Analysis Fall 2010 20 / 13



Problems (1)

Our problems must be well-defined enough to be solved on
computers.

A problem is a function (i.e., a mapping of inputs to outputs).

We have different instances (inputs) for the problem, where
each instance has a size .

To solve a problem, we must provide an algorithm, a coding
of problem instances into inputs for the algorithm, and a
coding for outputs into solutions.

CS 4104: Data and Algorithm
Analysis Fall 2010 21 / 13



Problems (2)

An algorithm executes the mapping.

A proposed algorithm must work for ALL instances (give
the correct mapping to the output for that input
instance).

GOAL: Solve problems with as little computational effort per
instance as possible.

CS 4104: Data and Algorithm
Analysis Fall 2010 22 / 13



Categories of Hard Problems (1)

A conceptually hard problem.
◮ If we understood the problem, the algorithm might be

easy. [Natural Language Processing]
◮ Artificial Intelligence.

CS 4104: Data and Algorithm
Analysis Fall 2010 23 / 13



Categories of Hard Problems (1)

A conceptually hard problem.
◮ If we understood the problem, the algorithm might be

easy. [Natural Language Processing]
◮ Artificial Intelligence.

An analytically hard problem.
◮ We have an algorithm, but can’t analyze its cost. [Collatz

sequence]
◮ Complexity Theory.

CS 4104: Data and Algorithm
Analysis Fall 2010 23 / 13



Categories of Hard Problems (2)

A computationally hard problem.
◮ The algorithm is expensive.
◮ Class 1: No inexpensive algorithm is possible. [TOH]
◮ Class 2: We don’t know if an inexpensive algorithm is

possible. [Traveling Salesman]
◮ Complexity Theory

CS 4104: Data and Algorithm
Analysis Fall 2010 24 / 13



Categories of Hard Problems (2)

A computationally hard problem.
◮ The algorithm is expensive.
◮ Class 1: No inexpensive algorithm is possible. [TOH]
◮ Class 2: We don’t know if an inexpensive algorithm is

possible. [Traveling Salesman]
◮ Complexity Theory

A computationally unsolvable problem. [Halting
problem]

◮ Computability Theory.

CS 4104: Data and Algorithm
Analysis Fall 2010 24 / 13



Towers of Hanoi

Given: 3 pegs and n disks of different sizes placed in order
of size on Peg 1.

Problem: Move the disks to Peg 3, given the following
constraints:

A “move” takes the topmost disk from one peg and
places it on another peg (the only action allowed).
A disk may never be on top of a smaller disk.

Model: We will measure the cost of this problem by the
number of moves required.

CS 4104: Data and Algorithm
Analysis Fall 2010 25 / 13



TOH Algorithm

(This is an exercise in the process of problem solving.
Pretend that you have never seen this problem before, and
that you are approaching it for the first time.)

Start by trying to solve the problem for small instances.
0 disks, 1 disk, 2 disks...
When we get to 3 disks, it starts to get harder.
Can we generalize the insight from solving for 3 disks?
4 disks?

CS 4104: Data and Algorithm
Analysis Fall 2010 26 / 13



TOH Algorithm

(This is an exercise in the process of problem solving.
Pretend that you have never seen this problem before, and
that you are approaching it for the first time.)

Start by trying to solve the problem for small instances.
0 disks, 1 disk, 2 disks...
When we get to 3 disks, it starts to get harder.
Can we generalize the insight from solving for 3 disks?
4 disks?

Observation: The largest disk has no effect on the
movements of the other disks. Why?

CS 4104: Data and Algorithm
Analysis Fall 2010 26 / 13



Recursive Solutions (1)

When we generalize the TOH problem to more disks, we end
up with something like:

Move all but the bottom disk to Peg 2.
Move the bottom disk from Peg 1 to Peg 3.
Move the remaining disks from Peg 2 to Peg 3.

CS 4104: Data and Algorithm
Analysis Fall 2010 27 / 13



Recursive Solutions (1)

When we generalize the TOH problem to more disks, we end
up with something like:

Move all but the bottom disk to Peg 2.
Move the bottom disk from Peg 1 to Peg 3.
Move the remaining disks from Peg 2 to Peg 3.

Problem-solving heuristics used:
Get our hands dirty: Try playing with some simple
examples
Go to the extremes: Check the small cases first
Penultimate step: Key insight is that we can’t solve the
problem until we move the bottom disk.

CS 4104: Data and Algorithm
Analysis Fall 2010 27 / 13



Recursive Solutions (1)

When we generalize the TOH problem to more disks, we end
up with something like:

Move all but the bottom disk to Peg 2.
Move the bottom disk from Peg 1 to Peg 3.
Move the remaining disks from Peg 2 to Peg 3.

Problem-solving heuristics used:
Get our hands dirty: Try playing with some simple
examples
Go to the extremes: Check the small cases first
Penultimate step: Key insight is that we can’t solve the
problem until we move the bottom disk.

How do we deal with the n − 1 disks (twice)?
CS 4104: Data and Algorithm

Analysis Fall 2010 27 / 13



Recursive Solutions (2)

Forward-backward strategy: Solve simple special cases and
generalize their solution, then test the generalization on
other special cases.

void TOH(int n, POLE start, POLE goal, POLE temp) {
if (n == 0) return; // Base case
TOH(n-1, start, temp, goal); // Recurse: n-1 rings
move(start, goal); // Move one disk
TOH(n-1, temp, goal, start); // Recurse: n-1 rings

}

CS 4104: Data and Algorithm
Analysis Fall 2010 28 / 13



Algorithm Upper Bounds (1)

Worst case cost (for size n): Maximum cost for the
algorithm over all problem instances of size n.

Best case cost (for size n): Minimum cost for the algorithm
over all problem instances of size n.

A: The algorithm.
In: The set of all possible inputs to A of size n.
fA: Function expressing the resource cost of A.
I is an input in In.

worst cost(A) = max
I∈In

fA(I).

best cost(A) = min
I∈In

fA(I).

CS 4104: Data and Algorithm
Analysis Fall 2010 29 / 13



Algorithm Upper Bounds (2)

Examples:

Factorial: One input of size n, one cost

Find: Various models for number of inputs, n different
costs

Findmax: Various models for number of inputs, all cases
have same cost

CS 4104: Data and Algorithm
Analysis Fall 2010 30 / 13



Average Case

We may want the average case cost. For each input of size
n, we need:

Its frequency.
Its cost.

Given this information, we can calculate the weighted
average.

Q: Can the average cost be worse than the worst cost? Or
better than the best cost?

CS 4104: Data and Algorithm
Analysis Fall 2010 31 / 13



Analysis of TOH

There is only one input instance of size n.

How does this affect the decision to measure worst, best, or
average case cost?

We want to count the number of moves required as a
function of n.

Some facts:
f (1) = 1.
f (2) = 3.
f (3) = 7.
f (n) = f (n − 1) + 1 + f (n − 1) = 2f (n − 1) + 1,∀n ≥ 4.

(Actually, we can simplify our list of facts.)
CS 4104: Data and Algorithm

Analysis Fall 2010 32 / 13



Recurrence Relation

The following is a recurrence relation :

f (n) =

{

1 n = 1
2f (n − 1) + 1 n > 1

How can we find a closed form solution for the recurrence?

It looks like each time we add a disk, we roughly double the
cost – something like 2n.

If we examine some simple cases, we see that they appear
to fit the equation f (n) = 2n − 1.

How do we prove that this ALWAYS works?
CS 4104: Data and Algorithm

Analysis Fall 2010 33 / 13



Proof for Recurrence

Let’s ASSUME that f (n − 1) = 2n−1 − 1, and see what
happens.

From the recurrence,

f (n) = 2f (n − 1) + 1 = 2(2n−1 − 1) + 1 = 2n − 1.

Implication: if there is EVER an n for which f (n) = 2n − 1,
then for all greater values of n, f conforms to this rule.

This is the essence of proof by induction .

CS 4104: Data and Algorithm
Analysis Fall 2010 34 / 13



Proof by Induction

To prove by induction, we need to show two things:
We can get started (base case ).
Being true for k implies that it is true also for k + 1.

Here again is the proof for TOH:
For n = 1, f (1) = 1, so f (1) = 21 − 1.
Assume f (k) = 2k − 1, for k < n.

◮ Then, from the recurrence we have

f (n) = 2f (n − 1) + 1

= 2(2n−1 − 1) + 1 = 2n − 1

◮ Thus, being true for k − 1 implies that it is also true for k .
Thus, we conclude that formula is correct for all n ≥ 1.

Is this a good algorithm?
CS 4104: Data and Algorithm

Analysis Fall 2010 35 / 13



Lower Bound of a Problem (1)

To decide if the algorithm is good, we need a lower bound on
the cost of the PROBLEM.

We can measure the lower bound (over all possible
algorithms) for the {worst case, best case, or average case}.

Consider a graph of cost for each possible algorithm.

For a given problem size n, the graph shows the costs
for all problem instances of size n.

The worst case lower bound is the LEAST of all the
HIGHEST points on all the graphs.

CS 4104: Data and Algorithm
Analysis Fall 2010 36 / 13



Lower Bound of a Problem (2)

AM is the set of algorithms within model M that solve the
problem. Lower Bound on Problem P

= min
A∈AM

{max
I∈In

fA(I)}

CS 4104: Data and Algorithm
Analysis Fall 2010 37 / 13



Growth Rate vs. In
Note the important difference between a growth rate graph
for a given problem, and a graph showing all the In’s (for a
given n) of that problem.

Examples: Consider the graphs for each of these
Find: Best, average, and worst cases as n grows
Find: Cost for all inputs of a given size n
Findmax: Cost as n grows (same for best, average,
worst cases)
Findmax: Cost for all inputs of a given size n

The fact that (for some problems) different Is in In can have
different costs is the reason why we must use the qualifier of
“best” “worst” or “average” cases.

CS 4104: Data and Algorithm
Analysis Fall 2010 38 / 13



Lower Bound (cont.)

Lower bounds (of problems) are harder than upper
bounds (of algorithms) because we must consider ALL
of the possible algorithms – including the ones we don’t
know!

◮ Upper bound: How bad is the algorithm?
◮ Lower bound: How hard is the problem?

Lower bounds don’t give you a good algorithm. They
only help you know when to stop looking.
If the lower bound for the problem matches the upper
bound for the algorithm (within a constant factor), then
we know that we can find an algorithm that is better only
by a constant factor.
Can a lower bound tell us if an algorithm is NOT
optimal?

CS 4104: Data and Algorithm
Analysis Fall 2010 39 / 13



Lower Bounds for TOH

Try #1: We must move each disk at least twice, except
for the largest we move once.

◮ f (n) = 2n − 1.
Is this a good match to the cost of our algorithm?
Where is the problem: the lower bound or the algorithm?
Insight #1: f (n) > f (n − 1).

◮ Seems obvious, but why?
◮ Is this true for all problems?

Try #2: To move the bottom disk to Peg 3, we MUST
move n − 1 disks to Peg 2. Then, we MUST move n − 1
disks back to Peg 3.

f (n) ≥ 2f (n − 1) + 1.

Thus, TOH is optimal (for our model).
CS 4104: Data and Algorithm

Analysis Fall 2010 40 / 13



New Models

New model #1: We can move a stack of disks in one move.

New model #2: Not all disks start on Peg 1.

CS 4104: Data and Algorithm
Analysis Fall 2010 41 / 13



Problem Solving Algorithm

If the upper and lower bounds match,
then stop,
else if close or problem isn’t important,

then stop,
else if model focuses on wrong thing,

then restate it,
else if the algorithm is too fat,

then generate slimmer algorithm,
else if lower bound is too weak,

then generate stronger bound.

Repeat until done.
CS 4104: Data and Algorithm

Analysis Fall 2010 42 / 13


