" Analysis

CS 4104: Data and Algorithm Analysis

Clifford A. Shaffer

Department of Computer Science
Virginia Tech
Blacksburg, Virginia

Fall 2010

Copyright © 2010 by Clifford A. Shaffer

Fall 2010 1/238

Fibonacci Revisited (1)

Consider again the recursive function for computing the nth
Fibonacci number.

int Fibr(int n) {
if (n <=1) return 1; /| Base case
return Fibr(n-1) + Fibr(n-2); // Recursive call

}

Cost is Exponential. Why?

" Analysis Fall2010 228/238

Fibonacci Revisited (2)

If we could eliminate redundancy, cost is greatly reduced.

@ Keep a table

int Fibrt(int n, int* Values) {
/'l Assune Val ues has at least n slots, and all
/] slots are initialized to O
if (n <=1) return 1; /| Base case
if (Values[n] == 0) /1 Conmpute and store
Val ues[n] = Fibrt(n-1, Val ues)
+ Fibrt(n-2, Values);
return Val ues[n];

}

Cost?
We don't need table, only last 2 values.
@ Key is working bottom up.

" Analysis

Fall 2010

229 /238

Dynamic Programming (1)

The issue of avoiding recomputation of subproblems comes
up frequently.
@ General solution: Store a table to avoid recomputation.
@ Can work bottom up (fill table from smallest to largest)

@ Can work top down (recursively), remembering any
subproblems that happen to be solved (check table
first).

This approach is called Dynamic Programming
@ Name comes from the field of dynamic control systems

@ There, the act of storing precomputed values is referred
to as “programming”.

" Analysis Fall2010 230/238

Dynamic Programming (2)

Dynamic Programming is an alternative to Divide and
Conquer
@ D&C: Split problem into subproblems, solve
independently, and recombine.
@ DP: Pay bookkeeping costs to remember solutions to
shared subproblems.

" Analysis Fall 2010

231/238

A Knapsack Problem

Problem: Given an integer capacity K and n items such that
item i has integer size k;, find a subset of the n items whose
sizes exactly sum to K, if possible.

Formally: Find S C {1,2,...,n} such that

ZkizK.

Example:
@ K =163
@ 10 items of sizes 4, 9, 15, 19, 27, 44, 54, 68, 73, 101.
@ What if K is 1647
Instead of parameterizing problem just by n, parameterize
with n and K.
@ P(n,K) is the problem with n items and capacity K.

Fall 2010 232/238

" Analysis

Solving the Knapsack Problem
Think about divide and conquer (alternatively, induction).

What if we know how to solve P(n — 1,K)?
@ If P(n — 1,K) has a solution, then it is a solution for
P(n,K).
@ Otherwise, P(n,K) has a solution < P(n — 1,K — k)
has a solution.
What if we know how to solve P(n — 1,k) for0 < k < K?

Cost: T(nN) =2T(n—1) +c.
T(n)=0©(2").

BUT... there are only n(K + 1) subproblems to solve!

Fall 2010 233/238

" Analysis

Solution

Clearly, there are many subproblems being solved
repeatedly.

Store a n x K 4+ 1 matrix to contain the solutions for all
P(i, k).

Fill in the rows from i = 0 to n, left to right.
If P(n — 1,K) hasa solution,
Then P (n,K) has a solution
Elself P(n — 1,K — k,) hasa solution
Then P(n, K) has a solution
Else P(n, K) has no solution.
Cost: ©(nK).

" Analysis Fall 2010

234 /238

Knapsack Example (1)

K =10.

Five items: 9, 2, 7, 4, 1.

01234586 7 8 9 10
k=90 - — — — — — — — 1 -
kk=2|l0O — | — — — — — - 0O -
ks=7|/0 — 0 — — — — | — 1O -
ky=4|/O — 0O — | — 1 O - O -
ks=1/O | O 1 O 1 O1/0O 1 O I

" Analysis

Fall 2010

235/238

Knapsack Example (2)

Key:
-: No solution for P(i, k).
O: Solution(s) for P(i, k) with i omitted.
I: Solution(s) for P (i, k) with i included.
1/O: Solutions for P (i, k) with i included AND omitted.

Example: M(3,9) contains O because P(2,9) has a solution.
It contains | because P(2,2) = P(2,9 — 7) has a solution.

How can we find a solution to P(5, 10)?
How can we find ALL solutions to P (5, 10)?

" Analysis Fall2010 236/238

All Pairs Shortest Paths (1)

For every vertex u,v € V, calculate d(u, v).
Define a k-path from u to v to be any path whose
intermediate vertices all have indices less than k.

" Analysis

Fall 2010

237 /238

All Pairs Shortest Paths (2)

voi d Fl oyd(G aph& G { /] Al-pairs shortest paths
int Gn)][Gn()]; /| Store distances
for (int i=0; i<Gn(); i++) // Initialize D
for (int j=0; j<G n(); |++)
Diil[j] = Gweight(i, j);
for (int k=0; k<G n(); k++) // Conpute all k paths
for (int i=0; i<Gn(); i++)
for (int j=0; j<G n(); j++)
if (DLl > (Dli][k]l + OkI[j]))
Dlil[j] = D0i][k] + DKI[jI;

" Analysis Fall2010 238/238

