
CS 4104: Data and Algorithm Analysis

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Fall 2010

Copyright c© 2010 by Clifford A. Shaffer

CS 4104: Data and Algorithm
Analysis Fall 2010 1 / 238



Fibonacci Revisited (1)

Consider again the recursive function for computing the nth
Fibonacci number.

int Fibr(int n) {
if (n <= 1) return 1; // Base case
return Fibr(n-1) + Fibr(n-2); // Recursive call

}

Cost is Exponential. Why?

CS 4104: Data and Algorithm
Analysis Fall 2010 228 / 238



Fibonacci Revisited (2)

If we could eliminate redundancy, cost is greatly reduced.
Keep a table

int Fibrt(int n, int* Values) {
// Assume Values has at least n slots, and all
// slots are initialized to 0
if (n <= 1) return 1; // Base case
if (Values[n] == 0) // Compute and store
Values[n] = Fibrt(n-1, Values)

+ Fibrt(n-2, Values);
return Values[n];

}

Cost?
We don’t need table, only last 2 values.

Key is working bottom up.
CS 4104: Data and Algorithm

Analysis Fall 2010 229 / 238



Dynamic Programming (1)

The issue of avoiding recomputation of subproblems comes
up frequently.

General solution: Store a table to avoid recomputation.
Can work bottom up (fill table from smallest to largest)
Can work top down (recursively), remembering any
subproblems that happen to be solved (check table
first).

This approach is called Dynamic Programming
Name comes from the field of dynamic control systems
There, the act of storing precomputed values is referred
to as “programming”.

CS 4104: Data and Algorithm
Analysis Fall 2010 230 / 238



Dynamic Programming (2)

Dynamic Programming is an alternative to Divide and
Conquer

D&C: Split problem into subproblems, solve
independently, and recombine.

DP: Pay bookkeeping costs to remember solutions to
shared subproblems.

CS 4104: Data and Algorithm
Analysis Fall 2010 231 / 238



A Knapsack Problem

Problem: Given an integer capacity K and n items such that
item i has integer size ki , find a subset of the n items whose
sizes exactly sum to K , if possible.

Formally: Find S ⊂ {1, 2, ..., n} such that
∑

i∈S

ki = K .

Example:
K = 163
10 items of sizes 4, 9, 15, 19, 27, 44, 54, 68, 73, 101.
What if K is 164?

Instead of parameterizing problem just by n, parameterize
with n and K .

P(n, K ) is the problem with n items and capacity K .
CS 4104: Data and Algorithm

Analysis Fall 2010 232 / 238



Solving the Knapsack Problem

Think about divide and conquer (alternatively, induction).

What if we know how to solve P(n − 1, K )?
If P(n − 1, K ) has a solution, then it is a solution for
P(n, K ).
Otherwise, P(n, K ) has a solution ⇔ P(n − 1, K − kn)
has a solution.

What if we know how to solve P(n − 1, k) for 0 ≤ k ≤ K ?

Cost: T (n) = 2T (n − 1) + c.

T (n) = Θ(2n).

BUT... there are only n(K + 1) subproblems to solve!
CS 4104: Data and Algorithm

Analysis Fall 2010 233 / 238



Solution

Clearly, there are many subproblems being solved
repeatedly.

Store a n × K + 1 matrix to contain the solutions for all
P(i , k).

Fill in the rows from i = 0 to n, left to right.

If P(n − 1, K ) has a solution,
Then P(n, K ) has a solution
Else If P(n − 1, K − kn) has a solution

Then P(n, K ) has a solution
Else P(n, K ) has no solution.

Cost: Θ(nK ).
CS 4104: Data and Algorithm

Analysis Fall 2010 234 / 238



Knapsack Example (1)

K = 10.

Five items: 9, 2, 7, 4, 1.

0 1 2 3 4 5 6 7 8 9 10
k1 =9 O − − − − − − − − I −
k2 =2 O − I − − − − − − O −
k3 =7 O − O − − − − I − I/O −
k4 =4 O − O − I − I O − O −
k5 =1 O I O I O I O I/O I O I

CS 4104: Data and Algorithm
Analysis Fall 2010 235 / 238



Knapsack Example (2)

Key:

-: No solution for P(i , k).
O: Solution(s) for P(i , k) with i omitted.
I: Solution(s) for P(i , k) with i included.
I/O: Solutions for P(i , k) with i included AND omitted.

Example: M(3, 9) contains O because P(2, 9) has a solution.
It contains I because P(2, 2) = P(2, 9 − 7) has a solution.

How can we find a solution to P(5, 10)?
How can we find ALL solutions to P(5, 10)?

CS 4104: Data and Algorithm
Analysis Fall 2010 236 / 238



All Pairs Shortest Paths (1)

For every vertex u, v ∈ V, calculate d(u, v ).
Define a k-path from u to v to be any path whose
intermediate vertices all have indices less than k .111 1 740 5 3 31122 121 1

CS 4104: Data and Algorithm
Analysis Fall 2010 237 / 238



All Pairs Shortest Paths (2)

void Floyd(Graph& G) { // All-pairs shortest paths
int D[G.n()][G.n()]; // Store distances
for (int i=0; i<G.n(); i++) // Initialize D
for (int j=0; j<G.n(); j++)

D[i][j] = G.weight(i, j);
for (int k=0; k<G.n(); k++) // Compute all k paths
for (int i=0; i<G.n(); i++)

for (int j=0; j<G.n(); j++)
if (D[i][j] > (D[i][k] + D[k][j]))
D[i][j] = D[i][k] + D[k][j];

}

CS 4104: Data and Algorithm
Analysis Fall 2010 238 / 238


