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Factorial Growth (1)

Which function grows faster? f (n) = 2n or g(n) = n!

How about h(n) = 22n?
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Factorial Growth (1)

Which function grows faster? f (n) = 2n or g(n) = n!

How about h(n) = 22n?

n 1 2 3 4 5 6 7 8
g(n) n! 1 2 6 24 120 720 5040 40320
f (n) 2n 2 4 8 16 32 64 128 256
h(n) 22n 4 16 64 256 1024 4096 16384 65536
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Factorial Growth (1)

Consider the recurrences:

h(n) =

{

4 n = 1
4h(n − 1) n > 1

g(n) =

{

1 n = 1
ng(n − 1) n > 1

I hope your intuition tells you the right thing.

But, how do you PROVE it?

Induction? What is the base case?
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Using Logarithms (1)

n! ≥ 22n iff log n! ≥ log 22n = 2n. Why?
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Using Logarithms (1)

n! ≥ 22n iff log n! ≥ log 22n = 2n. Why?

n! = n × (n − 1) × · · · × n
2
× (

n
2
− 1) × · · · × 2 × 1

≥ n
2
× n

2
× · · · × n

2
× 1 × · · · × 1 × 1

= (
n
2

)n/2
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Using Logarithms (1)

n! ≥ 22n iff log n! ≥ log 22n = 2n. Why?

n! = n × (n − 1) × · · · × n
2
× (

n
2
− 1) × · · · × 2 × 1

≥ n
2
× n

2
× · · · × n

2
× 1 × · · · × 1 × 1

= (
n
2

)n/2

Therefore
log n! ≥ log(

n
2

)n/2 = (
n
2

) log(
n
2

).

Need only show that this grows to be bigger than 2n.
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Using Logarithms (2)

(n
2) log(n

2) ≥ 2n
⇐⇒ log(n

2) ≥ 4
⇐⇒ n ≥ 32

So, n! ≥ 22n once n ≥ 32.

Now we could prove this with induction, using 32 for the
base case.

What is the tightest base case?

How did we get such a big over-estimate?
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Logs and Factorials

We have proved that n! ∈ Ω(22n).

We have also proved that log n! ∈ Ω(n log n).

From here, its easy to prove that log n! ∈ O(n log n), so
log n! = Θ(n log n).

This does not mean that n! = Θ(nn).

Note that log n = Θ(log n2) but n 6= Θ(n2).

The log function is a “flattener” when dealing with
asymptotics.
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A Simple Sum (1)

sum = 0; inc = 0;
for (i=1; i<=n; i++)
for (j=1; j<=i; j++) {

sum = sum + inc;
inc++;

}

Use summations to analyze this code fragment. The number
of assignments is:

2 +
n

∑

i=1

(
i

∑

j=1

2) = 2 +
n

∑

i=1

2i = 2 + 2
n

∑

i=1

i
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A Simple Sum (2)

Give a good estimate.

Observe that the biggest term is 2 + 2n and there are n
terms, so its at most:
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A Simple Sum (2)

Give a good estimate.

Observe that the biggest term is 2 + 2n and there are n
terms, so its at most: 2n + 2n2

Actually, most terms are much less, and its a linear
ramp, so a better estimate is:
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A Simple Sum (2)

Give a good estimate.

Observe that the biggest term is 2 + 2n and there are n
terms, so its at most: 2n + 2n2

Actually, most terms are much less, and its a linear
ramp, so a better estimate is: about n2.
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A Simple Sum (2)

Give a good estimate.

Observe that the biggest term is 2 + 2n and there are n
terms, so its at most: 2n + 2n2

Actually, most terms are much less, and its a linear
ramp, so a better estimate is: about n2.

Give the exact solution.

Of course, we all know the closed form solution for
∑n

i=1 i .

And we should all know how to prove it using induction.

But where did it come from?
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A Problem-Specific Approach

Observe that we can “pair up” the first and last terms, the
2nd and (n−1)th terms, and so on. Each pair sums to:
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A Problem-Specific Approach

Observe that we can “pair up” the first and last terms, the
2nd and (n−1)th terms, and so on. Each pair sums to: n +1.

The number of pairs is: n/2.

Thus, the solution is:
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A Problem-Specific Approach

Observe that we can “pair up” the first and last terms, the
2nd and (n−1)th terms, and so on. Each pair sums to: n +1.

The number of pairs is: n/2.

Thus, the solution is: (n + 1)(n/2).
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A Little More General

Since the largest term is n and there are n terms, the
summation is less than n2.

If we are lucky, the solution is a polynomial.

Guess: f (n) = c1n2 + c2n + c3.
f (0) = 0 so c3 = 0.
For f (1), we get c1 + c2 = 1.
For f (2), we get 4c1 + 2c2 = 3.
Setting this up as a system of 2 equations on 2 variables, we
can solve to find that c1 = 1/2 and c2 = 1/2.
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More General (2)

So, if it truely is a polynomial, it must be

f (n) = n2/2 + n/2 + 0 =
n(n + 1)

2
.

Use induction to prove. Why is this step necessary?

Why is this not a universal approach to solving summations?
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An Even More General Approach

Subtract-and-Guess or Divide-and-Guess strategies.

To solve sum f , pick a known function g and find a pattern in
terms of f (n) − g(n) or f (n)/g(n).

Find the closed form solution for

f (n) =
n

∑

i=1

i .
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Guessing (cont.)

Examples: Try g1(n) = n; g2(n) = f (n − 1).

n 1 2 3 4 5 6 7 8
f (n) 1 3 6 10 15 21 28 36

g1(n) 1 2 3 4 5 6 7 8
f (n)/g1(n) 2/2 3/2 4/2 5/2 6/2 7/2 8/2 9/2

g2(n) 0 1 3 6 10 15 21 28
f (n)/g2(n) 3/1 4/2 5/3 6/4 7/5 8/6 9/7

What are the patterns?
f (n)

g1(n)
=

f (n)
g2(n)

=
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Solving Summations (cont.)

Use algebra to rearrange and solve for f (n)

f (n)

n
=

n + 1
2

f (n)

f (n − 1)
=

n + 1
n − 1
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Solving Summations (cont.)

f (n)

f (n − 1)
=

n + 1
n − 1

f (n)(n − 1) = (n + 1)f (n − 1)

f (n)(n − 1) = (n + 1)(f (n) − n)

nf (n) − f (n) = nf (n) + f (n) − n2 − n

2f (n) = n2 + n = n(n + 1)

f (n) =
n(n + 1)

2

Important Note: This is not a proof that f (n) = n(n + 1)/2.
Why?
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Growth Rates
Two functions of n have different growth rates if as n goes
to infinity their ratio either goes to infinity or goes to zero.
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Estimating Growth Rates

Exact equations relating program operations to running time
require machine-dependent constants.

Sometimes, the equation for exact running time is
complicated to compute.

Usually, we are satisfied with knowing an approximate
growth rate.

Example: Given two algorithms with growth rate c1n and
c22n!, do we need to know the values of c1 and c2?

Consider n2 and 3n. PROVE that n2 must eventually become
(and remain) bigger.
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Proof by Contradiction

Assume there are some values for constants r and s such
that, for all values of n,

n2 < rn + s.

Then, n < r + s/n.

But, as n grows, what happens to s/n?

Since n grows toward infinity, the assumption must be false.
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Some Growth Rates (1)

Since n2 grows faster than n,

2n2
grows faster than 2n.

n4 grows faster than n2.

n grows faster than
√

n.

2 log n grows no slower than log n.
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Some Growth Rates (2)

Since n! grows faster than 2n,

n!! grows faster than 2n!.

2n! grows faster than 22n
.

n!2 grows faster than 22n.√
n! grows faster than

√
2n.

log n! grows no slower than n.

CS 4104: Data and Algorithm
Analysis Fall 2010 61 / 69



Some Growth Rates (3)

If f grows faster than g, then

Must
√

f grow faster than
√

g?

Must log f grow faster than log g?

log n is related to n in exactly the same way that n is related
to 2n.

2log n = n
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Fibonacci Numbers (Iterative)

f (n) = f (n − 1) + f (n − 2) for n ≥ 2; f (0) = f (1) = 1.

long Fibi(int n) {
long past, prev, curr;
past = prev = curr = 1; // curr holds Fib(i)
for (int i=2; i<=n; i++) { // Compute next value
past = prev; prev = curr; // past holds Fib(i-2)
curr = past + prev; // prev holds Fib(i-1)

}
return curr;

}

The cost of Fibi is easy to compute:
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Fibonacci Numbers (Recursive)

int Fibr(int n) {
if ((n <= 1) return 1; // Base case
return Fibr(n-1) + Fibr(n-2); // Recursive call

}

What is the cost of Fibr?
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Analysis of Fibr

Use divide-and-guess with f (n − 1).

n 1 2 3 4 5 6 7
f (n) 1 2 3 5 8 13 21

f (n)/f (n − 1) 1 2 1.5 1.666 1.625 1.615 1.619

Following this out, it appears to settle to a ratio of 1.618.

Assuming f (n)/f (n − 1) really tends to a fixed value x , let’s
verify what x must be.

f (n)

f (n − 2)
=

f (n − 1)

f (n − 2)
+

f (n − 2)

f (n − 2)
→ x + 1
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Analysis of Fibr (cont.)

For large n,

f (n)

f (n − 2)
=

f (n)

f (n − 1)

f (n − 1)

f (n − 2)
→ x2

If x exists, then x2 − x − 1 → 0.

Using the quadratic equation, the only solution greater than
one is

x =
1 +

√
5

2
≈ 1.618.

What does this say about the growth rate of f?
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Order Notation
little oh f (n) ∈ o(g(n)) < lim f (n)/g(n) = 0
big oh f (n) ∈ O(g(n)) ≤
Theta f (n) = Θ(g(n)) = f = O(g) and

g = O(f )
Big Omega f (n) ∈ Ω(g(n)) ≥
Little Omega f (n) ∈ ω(g(n)) > lim g(n)/f (n) = 0

I prefer “f ∈ O(n2)” to “f = O(n2)”
While n ∈ O(n2) and n2 ∈ O(n2), O(n) 6= O(n2).

Note: Big oh does not say how good an algorithm is – only
how bad it CAN be.

If A ∈ O(n) and B ∈ O(n2), is A better than B?
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Order Notation
little oh f (n) ∈ o(g(n)) < lim f (n)/g(n) = 0
big oh f (n) ∈ O(g(n)) ≤
Theta f (n) = Θ(g(n)) = f = O(g) and

g = O(f )
Big Omega f (n) ∈ Ω(g(n)) ≥
Little Omega f (n) ∈ ω(g(n)) > lim g(n)/f (n) = 0

I prefer “f ∈ O(n2)” to “f = O(n2)”
While n ∈ O(n2) and n2 ∈ O(n2), O(n) 6= O(n2).

Note: Big oh does not say how good an algorithm is – only
how bad it CAN be.

If A ∈ O(n) and B ∈ O(n2), is A better than B?

Perhaps... but perhaps better analysis will show that
A = Θ(n) while B = Θ(log n).
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Limitations on Order Notation

Statement: Algorithm A’s resource requirements grow
slower than Algorithm B’s resource requirements.

Is A better than B?

Potential problems:
How big must the input be?
Some growth rate differences are trivial

◮ Example: Θ(log2 n) vs. Θ(n1/10).
It is not always practical to reduce an algorithm’s growth
rate

◮ Shaving a factor of n reduces cost by a factor of a million
for input size of a million.

◮ Shaving a factor of log log n saves only a factor of 4-5.
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Practicality Window

In general:

We have limited time to solve a problem.

We have a limited input size.

Fortunately, algorithm growth rates are USUALLY well
behaved, so that Order Notation gives practical indications.
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Searching

Assumptions for search problems:

Target is well defined.

Target is fixed.

Search domain is finite.

We (can) remember all information gathered during
search.

We search for a record with a key .
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A Search Model (1)

Problem :
Given:

A list L, of n elements
A search key X

Solve: Identify one element in L which has key value X , if
any exist.
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A Search Model (1)

Problem :
Given:

A list L, of n elements
A search key X

Solve: Identify one element in L which has key value X , if
any exist.

Model:
The key values for elements in L are unique.
One comparison determines <, =, >.
Comparison is our only way to find ordering information.
Every comparison costs the same.
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A Search Model (2)

Goal: Solve the problem using the minimum number of
comparisons.

Cost model: Number of comparisons.

(Implication) Access to every item in L costs the same
(array).

Is this a reasonable model and goal?
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Linear Search

General algorithm strategy: Reduce the problem.
Compare X to the first element.
If not done, then solve the problem for n − 1 elements.

Position linear_search(L, lower, upper, X) {
if L[lower] = X then

return lower;
else if lower = upper then

return -1;
else

return linear_search(L, lower+1, upper, X);
}

What equation represents the worst case cost?
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Worst Cost Upper Bound

f (n) =

{

1 n = 1
f (n − 1) + 1 n > 1

Reasonable to guess that f (n) = n.
Prove by induction:
Basis step : f (1) = 1, so f (n) = n when n = 1.
Induction hypothesis : For k < n, f (k) = k .
Induction step : From recurrence,

f (n) = f (n − 1) + 1

= (n − 1) + 1

= n

Thus, the worst case cost for n elements is linear.
Induction is great for verifying a hypothesis.
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Approach #2

What if we couldn’t guess a solution?
Try: Substitute and Guess.

◮ Iterate a few steps of the recurrence, and look for a
summation.

f (n) = f (n − 1) + 1

= {f (n − 2) + 1} + 1

= {{f (n − 3) + 1} + 1} + 1}
Now what? Guess f (n) = f (n − i) + i .
When do we stop? When we reach a value for f that we
know.

f (n) = f (n − (n − 1)) + n − 1 = f (1) + n − 1 = n

Now, go back and test the guess using induction.
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Approach #3

Guess and Test : Guess the form of the solution, then solve
the resulting equations.

Guess : f (n) is linear.
f (n) = rn + s for some r , s.

What do we know?
f (1) = r(1) + s = r + s = 1.
f (n) = r(n) + s = r(n − 1) + s + 1.

Solving these two simultaneous equations, r = 1, s = 0.

Final form of guess: f (n) = n.

Now, prove using induction.
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Lower Bound on Problem

Theorem : Lower bound (in the worst case) for the problem
is n comparisons.

Proof : By contradiction.
Assume an algorithm A exists that requires only n − 1
(or less) comparisons of X with elements of L.
Since there are n elements of L, A must have avoided
comparing X with L[i ] for some value i .
We can feed the algorithm an input with X in position i .
Such an input is legal in our model, so the algorithm is
incorrect.

Is this proof correct?
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Fixing the Proof (1)

Error #1: An algorithm need not consistently skip position i .
Fix:

On any given run of the algorithm, some element i gets
skipped.

It is possible that X is in position i at that time.
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Fixing the Proof (2)

Error #2: Must allow comparisons between elements of L.
Fix:

Include the ability to “preprocess” L.

View L as initially consisting of n “pieces.”

A comparison can join two pieces (without involving X ).

The total of these comparisons is k .

We must have at least n − k pieces.

A comparison of X against a piece can reject the whole
piece.

This requires n − k comparisons.

The total is still at least n comparisons.
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Average Cost

How many comparisons does linear search do on average?

We must know the probability of occurrence for each
possible input.

(Must X be in L?) Ignore everything except the position of X

in L. Why?

What are the n + 1 events?

P(X /∈ L) = 1 −
n

∑

i=1

P(X = L[i ]).
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Average Cost Equation

Let ki = i be the number of comparisons when X = L[i ].
Let k0 = n be the number of comparisons when X /∈ L.

Let pi be the probability that X = L[i ].
Let p0 be the probability that X /∈ L[i ] for any i .

f (n) = k0p0 +
n

∑

i=1

kipi

= np0 +
n

∑

i=1

ipi

What happens to the equation if we assume all pi ’s are
equal (except p0)?
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Computation

f (n) = p0n +

n
∑

i=1

ip

= p0n + p
n

∑

i=1

i

= p0n + p
n(n + 1)

2

= p0n +
1 − p0

n
n(n + 1)

2

=
n + 1 + p0(n − 1)

2

Depending on the value of p0, n+1
2 ≤ f (n) ≤ n.
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Problems with Average Cost

Average cost is usually harder to determine than worst
cost.

We really need also to know the variance around the
average.

Our computation is only as good as our knowledge
(guess) on distribution.
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Sorted List
Change the model: Assume that the elements are in
ascending order.

Is linear search still optimal? Why not?

Optimization: Use linear search, but test if the element is
greater than X . Why?

Observation: If we look at L[5] and find that X is bigger, then
we rule out L[1] to L[4] as well.

More is Better: If we look at L[n] and find that X is bigger,
then we know in one test that X is not in L. Great!

What is wrong here?
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Jump Search

Algorithm:

From the beginning of the array, start making jumps of
size k , checking L[k ] then L[2k ], and so on.

So long as X is greater, keep jumping by k .

If X is less, then use linear search on the last sublist of
k elements.

This is called Jump Search.

What is the right amount to jump?
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Analysis of Jump Search

If mk ≤ n < (m + 1)k , then the total cost is at most
m + k − 1 3-way comparisons.

f (n, k) = m + k − 1 =
⌊n

k

⌋

+ k − 1.

What should k be?

min
1≤k≤n

{⌊n
k

⌋

+ k − 1
}

Take the derivative and solve for f ′(x) = 0 to find the
minimum.
This is a minimum when k =

√
n.

What is the worst case cost?
◮ Roughly 2

√
n.
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Lessons
We want to balance the work done while selecting a sublist
with the work done while searching a sublist.

In general, make subproblems of equal effort.

This is an example of divide and conquer

What if we extend this to three levels?
We’d jump to get a sublist, then jump to get a
sub-sublist, then do sequential search
While it might make sense to do a two-level algorithm
(like jump search), it almost never makes sense to do a
three-level algorithm
Instead, we resort to recursion
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Binary Search

int binary(int K, int* array, int left, int right) {
// Return position of element (if any) with value K
int l = left-1;
int r = right+1; // l and r beyond array bounds
while (l+1 != r) { // Stop when l and r meet
int i = (l+r)/2; // Middle of remaining subarray
if (K < array[i]) r = i; // In left half
if (K == array[i]) return i; // Found it
if (K > array[i]) l = i; // In right half

}
return UNSUCCESSFUL; // Search value not in array

}
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Worst Case for Binary Search (1)

f (n) =

{

1 n = 1
f (⌊n/2⌋) + 1 n > 1

Since n/2 ≥ ⌊n/2⌋, and since f (n) is assumed to be
non-decreasing (why?), we can use

f (n) = f (n/2) + 1.

Alternatively, assume n is a power of 2.

Expand the recurrence:

f (n) = f (n/2) + 1

= {f (n/4) + 1} + 1

= {{f (n/8) + 1} + 1} + 1
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Worst Case for Binary Search (2)

Collapse to
f (n) = f (n/2i) + i = log n + 1

Now, prove it with induction.

f (n/2) + 1 = (log(n/2) + 1) + 1

= (log n − 1 + 1) + 1

= log n + 1 = f (n).
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Lower Bound (for Problem Worst Case)

How does n compare to
√

n compare to log n?

Can we do better?

Model an algorithm for the problem using a decision tree.
Consider only comparisons with X .
Branch depending on the result of comparing X with
L[i ].
There must be at least n leaf nodes in the tree. (Why?)
Some path must be at least log n deep. (Why?)

Thus, binary search has optimal worst cost under this
model.
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Average Cost of Binary Search (1)

An estimate given these assumptions:
X is in L.
X is equally likely to be in any position.
n = 2k for some non-negative integer k .

Cost?
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Average Cost of Binary Search (1)

An estimate given these assumptions:
X is in L.
X is equally likely to be in any position.
n = 2k for some non-negative integer k .

Cost?

One chance to hit in one probe.
Two chances to hit in two probes.
2i−1 to hit in i probes.
i ≤ k .
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Average Cost of Binary Search (1)

An estimate given these assumptions:
X is in L.
X is equally likely to be in any position.
n = 2k for some non-negative integer k .

Cost?

One chance to hit in one probe.
Two chances to hit in two probes.
2i−1 to hit in i probes.
i ≤ k .

What is the equation?
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Average Cost (2)

1 × 1 + 2 × 2 + 3 × 4 + ... + log n2log n−1

n
=

1
n

log n
∑

i=1

i2i−1

k
∑

i=1

i2i−1 =
k−1
∑

i=0

(i + 1)2i =
k−1
∑

i=0

i2i +
k−1
∑

i=0

2i

= 2
k−1
∑

i=0

i2i−1 + 2k − 1

= 2
k

∑

i=1

i2i−1 − k2k + 2k − 1
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Average Cost (3)

Now what? Subtract from the original!

k
∑

i=1

i2i−1 = k2k − 2k + 1 = (k − 1)2k + 1.
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Result (1)

1
n

log n
∑

i=1

i2i−1 =
(log n − 1)2log n + 1

n

=
n(log n − 1) + 1

n
≈ log n − 1

So the average cost is only about one or two comparisons
less than the worst cost.
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Result (2)

If we want to relax the assumption that n = 2k , we get:

f (n) =























0 n = 0
1 n = 1
⌈ n

2 ⌉−1
n f (⌈n

2⌉ − 1) + 1
n0 +

⌊ n
2 ⌋
n f (⌊n

2⌋) + 1 n > 1
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Average Cost Lower Bound

Use decision trees again.

Total Path Length : Sum of the level for each node.

The cost of an outcome is the level of the corresponding
node plus 1.

The average cost of the algorithm is the average cost of
the outcomes (total path length/n).

What is the tree with the least average depth?

This is equivalent to the tree that corresponds to binary
search.

Thus, binary search is optimal.
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Changing the Model

What are factors that might make binary search either
unusable or not optimal?

We know something about the distribution.

Data are not sorted. (Preprocessing?)

Data sorted, but probes not all the same cost (not an
array).

Data are static, know all search requests in advance.
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Interpolation Search

(Also known as Dictionary Search)

Search L at a position that is appropriate to the value of X .

p =
X − L[1]

L[n] − L[1]

Repeat as necessary to recalculate p for future searches.
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Quadratic Binary Search

This is easier to analyze:

Compute p and examine L[⌈pn⌉].
If X < L[⌈pn⌉] then sequentially probe

L[⌈pn − i
√

n⌉], i = 1, 2, 3, ...

until we reach a value less than or equal to X .
Similar for X > L[⌈pn⌉].
We are now within

√
n positions of X .

ASSUME (for now) that this takes a constant number of
comparisons.
Now we have a sublist of size

√
n.

Repeat the process recursively.
What is the cost?
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QBS Probe Count (1)

Cost is Θ(log log n) IF the number of probes on jump search
is constant.

Number of comparisons needed is:
√

n
∑

i=1

iP(need exactly i probes)

= 1P1 + 2P2 + 3P3 + · · · +
√

nP√
n

This is equal to:
√

n
∑

i=1

P(need at least i probes)

CS 4104: Data and Algorithm
Analysis Fall 2010 101 / 69



QBS Probe Count (2)

√
n

∑

i=1

P(need at least i probes)

= 1 + (1 − P1) + (1 − P1 − P2) + · · · + P√
n

= (P1 + ... + P√
n) + (P2 + ... + P√

n) +

(P3 + ... + P√
n) + · · ·

= 1P1 + 2P2 + 3P3 + · · · +
√

nP√
n
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QBS Probe Count (3)

We require at least two probes to set the bounds, so cost is:

2 +

√
n

∑

i=3

P(need at least i probes)

Useful fact (Čebyšev’s Inequality):
The probability that we need probe i times (Pi) is:

Pi ≤
p(1 − p)n
(i − 2)2n

≤ 1
4(i − 2)2

since p(1 − p) ≤ 1/4.

This assumes uniformly distributed data.
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QBS Probe Count (4)

Final result:

2 +

√
n

∑

i=3

1
4(i − 2)2

≈ 2.4112

Is this better than binary search?

What happened to our proof that binary search is optimal?
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Comparison (1)

Let’s compare log log n to log n.
n log n log log n Diff
16 4 2 2
256 8 3 2.7
64K 16 4 4
232 32 5 6.4

Now look at the actual comparisons used.
Binary search ≈ log n − 1
Interpolation search ≈ 2.4 log log n

n log n − 1 2.4 log log n Diff
16 3 4.8 worse
256 7 7.2 ≈ same
64K 15 9.6 1.6
232 31 12 2.6
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Comparison (2)

Not done yet! This is only a count of comparisons!

Which is more expensive: calculating the midpoint or
calculating the interpolation point?

Which algorithm is dependent on good behavior by the
input?
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Hashing

Assume we can preprocess the data.
How should we do it to minimize search?

Put record with key value X in L[X ].

If the range is too big, then use hashing.

How much can we get from this?

Simplifying assumptions:
We hash to each slot with equal probability
We probe to each (new) slot with equal probability
This is called uniform hashing
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Hashing Insertion Analysis (1)

Define α = N/M (Records stored/Table size)

Insertion cost: sum of costs times probabilities for looking at
1, 2, ..., N + 1 slots

Probability of collision on insertion? α = N/M

Probability of initial collision and another collision when
probing? α2

i=N
∑

i=0

i(
N
M

)i M − N
M

=
i=N
∑

i=0

iαi(1 − α)
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Hashing Insertion Analysis (2)

Simpler formulation: Always look at least once, look at least
twice with probability α, look at least three times with
probability α2, etc.

∞
∑

i=0

αi = 1 + α + α2 · · · =
1

1 − α

How does this grow?
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Searching Linked Lists

Assume the list is sorted, but is stored in a linked list.

Can we use binary search?

Comparisons?

“Work?”

What if we add additional pointers?
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“Perfect” Skip List

62

head

0

5 25 30 58 6931

(a)

42 62

5 25 30 58

0

1

6931

head

(b)

42 62

5 25 30 58

0

1

2

6931

head

(c)

42
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Building a Skip List
Pick the node size at random (from a suitable probability
distribution).

head

(a) (b)

(c) (d)

(e)

head head

5 10 20

head

2

2 5 10 20 30

10 2010

5 10 20

head
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Skip List Analysis (1)

What distribution do we want for the node depths?

int randomLevel(void) { // Exponential distrib
for (int level=0; Random(2) == 0; level++);
return level;

}

What is the worst cost to search in the “perfect” Skip List?

What is the average cost to search in the “perfect” Skip List?

What is the cost to insert?

What is the average cost in the “typical” Skip List?
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Skip List Analysis (2)

How does this differ from a BST?

Simpler or more complex?

More or less efficient?

Which relies on data distribution, which on basic laws of
probability?
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Other Types of Search

Nearest neighbor (if X not in L).

Exact Match Query.

Range query.

Multi-dimensional search.

Is L static?

Is linear search on a sorted list ever better than binary
search?
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