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Factorial Growth (1)

Which function grows faster? f (n) = 2n or g(n) = n!

How about h(n) = 22n?
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Factorial Growth (1)

Which function grows faster? f (n) = 2n or g(n) = n!

How about h(n) = 22n?

n 1 2 3 4 5 6 7 8
g(n) n! 1 2 6 24 120 720 5040 40320
f (n) 2n 2 4 8 16 32 64 128 256
h(n) 22n 4 16 64 256 1024 4096 16384 65536
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Factorial Growth (1)

Consider the recurrences:

h(n) =

{

4 n = 1
4h(n − 1) n > 1

g(n) =

{

1 n = 1
ng(n − 1) n > 1

I hope your intuition tells you the right thing.

But, how do you PROVE it?

Induction? What is the base case?
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Using Logarithms (1)

n! ≥ 22n iff log n! ≥ log 22n = 2n. Why?
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Using Logarithms (1)

n! ≥ 22n iff log n! ≥ log 22n = 2n. Why?

n! = n × (n − 1) × · · · × n
2
× (

n
2
− 1) × · · · × 2 × 1

≥ n
2
× n

2
× · · · × n

2
× 1 × · · · × 1 × 1

= (
n
2

)n/2
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Using Logarithms (1)

n! ≥ 22n iff log n! ≥ log 22n = 2n. Why?

n! = n × (n − 1) × · · · × n
2
× (

n
2
− 1) × · · · × 2 × 1

≥ n
2
× n

2
× · · · × n

2
× 1 × · · · × 1 × 1

= (
n
2

)n/2

Therefore
log n! ≥ log(

n
2

)n/2 = (
n
2

) log(
n
2

).

Need only show that this grows to be bigger than 2n.
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Using Logarithms (2)

(n
2) log(n

2) ≥ 2n
⇐⇒ log(n

2) ≥ 4
⇐⇒ n ≥ 32

So, n! ≥ 22n once n ≥ 32.

Now we could prove this with induction, using 32 for the
base case.

What is the tightest base case?

How did we get such a big over-estimate?
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Logs and Factorials

We have proved that n! ∈ Ω(22n).

We have also proved that log n! ∈ Ω(n log n).

From here, its easy to prove that log n! ∈ O(n log n), so
log n! = Θ(n log n).

This does not mean that n! = Θ(nn).

Note that log n = Θ(log n2) but n 6= Θ(n2).

The log function is a “flattener” when dealing with
asymptotics.
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A Simple Sum (1)

sum = 0; inc = 0;
for (i=1; i<=n; i++)
for (j=1; j<=i; j++) {

sum = sum + inc;
inc++;

}

Use summations to analyze this code fragment. The number
of assignments is:

2 +
n

∑

i=1

(
i

∑

j=1

2) = 2 +
n

∑

i=1

2i = 2 + 2
n

∑

i=1

i
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A Simple Sum (2)

Give a good estimate.

Observe that the biggest term is 2 + 2n and there are n
terms, so its at most:
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A Simple Sum (2)

Give a good estimate.

Observe that the biggest term is 2 + 2n and there are n
terms, so its at most: 2n + 2n2

Actually, most terms are much less, and its a linear
ramp, so a better estimate is:
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A Simple Sum (2)

Give a good estimate.

Observe that the biggest term is 2 + 2n and there are n
terms, so its at most: 2n + 2n2

Actually, most terms are much less, and its a linear
ramp, so a better estimate is: about n2.
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A Simple Sum (2)

Give a good estimate.

Observe that the biggest term is 2 + 2n and there are n
terms, so its at most: 2n + 2n2

Actually, most terms are much less, and its a linear
ramp, so a better estimate is: about n2.

Give the exact solution.

Of course, we all know the closed form solution for
∑n

i=1 i .

And we should all know how to prove it using induction.

But where did it come from?
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A Problem-Specific Approach

Observe that we can “pair up” the first and last terms, the
2nd and (n−1)th terms, and so on. Each pair sums to:
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A Problem-Specific Approach

Observe that we can “pair up” the first and last terms, the
2nd and (n−1)th terms, and so on. Each pair sums to: n +1.

The number of pairs is: n/2.

Thus, the solution is:
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A Problem-Specific Approach

Observe that we can “pair up” the first and last terms, the
2nd and (n−1)th terms, and so on. Each pair sums to: n +1.

The number of pairs is: n/2.

Thus, the solution is: (n + 1)(n/2).

CS 4104: Data and Algorithm
Analysis Fall 2010 50 / 69



A Little More General

Since the largest term is n and there are n terms, the
summation is less than n2.

If we are lucky, the solution is a polynomial.

Guess: f (n) = c1n2 + c2n + c3.
f (0) = 0 so c3 = 0.
For f (1), we get c1 + c2 = 1.
For f (2), we get 4c1 + 2c2 = 3.
Setting this up as a system of 2 equations on 2 variables, we
can solve to find that c1 = 1/2 and c2 = 1/2.
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More General (2)

So, if it truely is a polynomial, it must be

f (n) = n2/2 + n/2 + 0 =
n(n + 1)

2
.

Use induction to prove. Why is this step necessary?

Why is this not a universal approach to solving summations?
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An Even More General Approach

Subtract-and-Guess or Divide-and-Guess strategies.

To solve sum f , pick a known function g and find a pattern in
terms of f (n) − g(n) or f (n)/g(n).

Find the closed form solution for

f (n) =
n

∑

i=1

i .
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Guessing (cont.)

Examples: Try g1(n) = n; g2(n) = f (n − 1).

n 1 2 3 4 5 6 7 8
f (n) 1 3 6 10 15 21 28 36

g1(n) 1 2 3 4 5 6 7 8
f (n)/g1(n) 2/2 3/2 4/2 5/2 6/2 7/2 8/2 9/2

g2(n) 0 1 3 6 10 15 21 28
f (n)/g2(n) 3/1 4/2 5/3 6/4 7/5 8/6 9/7

What are the patterns?
f (n)

g1(n)
=

f (n)
g2(n)

=
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Solving Summations (cont.)

Use algebra to rearrange and solve for f (n)

f (n)

n
=

n + 1
2

f (n)

f (n − 1)
=

n + 1
n − 1
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Solving Summations (cont.)

f (n)

f (n − 1)
=

n + 1
n − 1

f (n)(n − 1) = (n + 1)f (n − 1)

f (n)(n − 1) = (n + 1)(f (n) − n)

nf (n) − f (n) = nf (n) + f (n) − n2 − n

2f (n) = n2 + n = n(n + 1)

f (n) =
n(n + 1)

2

Important Note: This is not a proof that f (n) = n(n + 1)/2.
Why?
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Growth Rates
Two functions of n have different growth rates if as n goes
to infinity their ratio either goes to infinity or goes to zero.
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Estimating Growth Rates

Exact equations relating program operations to running time
require machine-dependent constants.

Sometimes, the equation for exact running time is
complicated to compute.

Usually, we are satisfied with knowing an approximate
growth rate.

Example: Given two algorithms with growth rate c1n and
c22n!, do we need to know the values of c1 and c2?

Consider n2 and 3n. PROVE that n2 must eventually become
(and remain) bigger.
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Proof by Contradiction

Assume there are some values for constants r and s such
that, for all values of n,

n2 < rn + s.

Then, n < r + s/n.

But, as n grows, what happens to s/n?

Since n grows toward infinity, the assumption must be false.
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Some Growth Rates (1)

Since n2 grows faster than n,

2n2
grows faster than 2n.

n4 grows faster than n2.

n grows faster than
√

n.

2 log n grows no slower than log n.
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Some Growth Rates (2)

Since n! grows faster than 2n,

n!! grows faster than 2n!.

2n! grows faster than 22n
.

n!2 grows faster than 22n.√
n! grows faster than

√
2n.

log n! grows no slower than n.
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Some Growth Rates (3)

If f grows faster than g, then

Must
√

f grow faster than
√

g?

Must log f grow faster than log g?

log n is related to n in exactly the same way that n is related
to 2n.

2log n = n
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Fibonacci Numbers (Iterative)

f (n) = f (n − 1) + f (n − 2) for n ≥ 2; f (0) = f (1) = 1.

long Fibi(int n) {
long past, prev, curr;
past = prev = curr = 1; // curr holds Fib(i)
for (int i=2; i<=n; i++) { // Compute next value
past = prev; prev = curr; // past holds Fib(i-2)
curr = past + prev; // prev holds Fib(i-1)

}
return curr;

}

The cost of Fibi is easy to compute:
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Fibonacci Numbers (Recursive)

int Fibr(int n) {
if ((n <= 1) return 1; // Base case
return Fibr(n-1) + Fibr(n-2); // Recursive call

}

What is the cost of Fibr?
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Analysis of Fibr

Use divide-and-guess with f (n − 1).

n 1 2 3 4 5 6 7
f (n) 1 2 3 5 8 13 21

f (n)/f (n − 1) 1 2 1.5 1.666 1.625 1.615 1.619

Following this out, it appears to settle to a ratio of 1.618.

Assuming f (n)/f (n − 1) really tends to a fixed value x , let’s
verify what x must be.

f (n)

f (n − 2)
=

f (n − 1)

f (n − 2)
+

f (n − 2)

f (n − 2)
→ x + 1
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Analysis of Fibr (cont.)

For large n,

f (n)

f (n − 2)
=

f (n)

f (n − 1)

f (n − 1)

f (n − 2)
→ x2

If x exists, then x2 − x − 1 → 0.

Using the quadratic equation, the only solution greater than
one is

x =
1 +

√
5

2
≈ 1.618.

What does this say about the growth rate of f?
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Order Notation
little oh f (n) ∈ o(g(n)) < lim f (n)/g(n) = 0
big oh f (n) ∈ O(g(n)) ≤
Theta f (n) = Θ(g(n)) = f = O(g) and

g = O(f )
Big Omega f (n) ∈ Ω(g(n)) ≥
Little Omega f (n) ∈ ω(g(n)) > lim g(n)/f (n) = 0

I prefer “f ∈ O(n2)” to “f = O(n2)”
While n ∈ O(n2) and n2 ∈ O(n2), O(n) 6= O(n2).

Note: Big oh does not say how good an algorithm is – only
how bad it CAN be.

If A ∈ O(n) and B ∈ O(n2), is A better than B?

Perhaps... but perhaps better analysis will show that
A = Θ(n) while B = Θ(log n).
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Limitations on Order Notation

Statement: Algorithm A’s resource requirements grow
slower than Algorithm B’s resource requirements.

Is A better than B?

Potential problems:
How big must the input be?
Some growth rate differences are trivial

◮ Example: Θ(log2 n) vs. Θ(n1/10).
It is not always practical to reduce an algorithm’s growth
rate

◮ Shaving a factor of n reduces cost by a factor of a million
for input size of a million.

◮ Shaving a factor of log log n saves only a factor of 4-5.
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Practicality Window

In general:

We have limited time to solve a problem.

We have a limited input size.

Fortunately, algorithm growth rates are USUALLY well
behaved, so that Order Notation gives practical indications.
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