" Analysis

CS 4104: Data and Algorithm Analysis

Clifford A. Shaffer

Department of Computer Science
Virginia Tech
Blacksburg, Virginia

Fall 2010

Copyright © 2010 by Clifford A. Shaffer

Fall 2010 1/69

Factorial Growth (1)

Which function grows faster? f(n) = 2" or g(n) = n!
How about h(n) = 22"?

" Analysis

Fall 2010 43/69

Factorial Growth (1)

Which function grows faster? f(n) = 2" or g(n) = n!

How about h(n) = 22"?

nj]t 2 3 4 5 6 7 8
g(n) nl|[1 2 6 24 120 720 5040 40320
fn) 2|2 4 8 16 32 64 128 256
h(n) 22"|4 16 64 256 1024 4096 16384 65536

" Analysis Fall 2010 43/69

Factorial Growth (1)

Consider the recurrences:
4 n=1
h(”)_{ 4h(n—1) n>1

1 n=1
g(n):{ ng(n—1) n>1

| hope your intuition tells you the right thing.

But, how do you PROVE it?

7 Induction? What is the base case?

" Analysis

Fall 2010

44169

Using Logarithms (1)

n! > 22" jff logn! > log 22" = 2n. Why?

" Analysis

Fall 2010 45/69

Using Logarithms (1)

n! > 22" jff logn! > log 22" = 2n. Why?

" Analysis

n!

e x2x1

Fall 2010

45/69

Using Logarithms (1)

n! > 22" jff logn! > log 22" = 2n. Why?

n n
nl = n><(n—1)><--~><Ex(i—l)x---x2x1
n n n
> EXEX---xixlx---xlxl
o En/z
Therefore

Need only show that this grows to be bigger than 2n.

" Analysis Fall 2010

45/69

Using Logarithms (2)

(3)log(3) > 2n
— Iog(g) > 4
<— n > 32

So, n! > 22" once n > 32.

Now we could prove this with induction, using 32 for the
base case.

@ What is the tightest base case?
@ How did we get such a big over-estimate?

" Analysis Fall 2010

46 /69

Logs and Factorials

We have proved that n! € Q(22").
We have also proved that logn! € Q(nlogn).

From here, its easy to prove that logn! € O(nlogn), so
logn! = ©(nlogn).

This does not mean that n! = ©(n").
@ Note that logn = ©(log n?) but n # ©(n?).

@ The log function is a “flattener” when dealing with
asymptotics.

" Analysis Fall 2010 47/69

A Simple Sum (1)

sum = 0; inc = 0O;
for (i=1; i<=n; i++)
for (j=1; j<=i; j++) {
sum = sum + i nc;
i NC++;

Use summations to analyze this code fragment. The number
of assignments is:

2+Z Zz _2+22|_2+22|

(=il [=i

" Analysis Fall 2010 48/69

A Simple Sum (2)

Give a good estimate.

@ Observe that the biggest term is 2 + 2n and there are n
terms, so its at most:

" Analysis

Fall 2010 49 /69

A Simple Sum (2)

Give a good estimate.

@ Observe that the biggest term is 2 + 2n and there are n
terms, so its at most: 2n + 2n?

" Analysis

Fall 2010 49 /69

A Simple Sum (2)

Give a good estimate.

@ Observe that the biggest term is 2 + 2n and there are n
terms, so its at most: 2n + 2n?

@ Actually, most terms are much less, and its a linear
ramp, so a better estimate is:

" Analysis Fall 2010

49 /69

A Simple Sum (2)

Give a good estimate.

@ Observe that the biggest term is 2 + 2n and there are n
terms, so its at most: 2n + 2n?

@ Actually, most terms are much less, and its a linear
ramp, So a better estimate is: about n?.

" Analysis Fall 2010

49 /69

A Simple Sum (2)

Give a good estimate.

@ Observe that the biggest term is 2 + 2n and there are n
terms, so its at most: 2n + 2n?

@ Actually, most terms are much less, and its a linear
ramp, So a better estimate is: about n?.

Give the exact solution.
@ Of course, we all know the closed form solution for
>inq -

@ And we should all know how to prove it using induction.

@ But where did it come from?

" Analysis Fall 2010 49/69

A Problem-Specific Approach

Observe that we can “pair up” the first and last terms, the
2nd and (n — 1)th terms, and so on. Each pair sums to:

" Analysis Fall 2010 50/69

A Problem-Specific Approach

Observe that we can “pair up” the first and last terms, the
2nd and (n — 1)th terms, and so on. Each pair sums to: n+ 1.

The number of pairs is:

" Analysis Fall 2010 50/69

A Problem-Specific Approach

Observe that we can “pair up” the first and last terms, the
2nd and (n — 1)th terms, and so on. Each pair sums to: n+ 1.

The number of pairs is: n/2.

Thus, the solution is:

" Analysis Fall 2010 50/69

A Problem-Specific Approach

Observe that we can “pair up” the first and last terms, the
2nd and (n — 1)th terms, and so on. Each pair sums to: n+ 1.

The number of pairs is: n/2.

Thus, the solution is: (n + 1)(n/2).

" Analysis Fall 2010 50/69

A Little More General

Since the largest term is n and there are n terms, the
summation is less than n?.

If we are lucky, the solution is a polynomial.

Guess: f(n) = cin? + con + C3.

f(0)=0soc3 =0.

For f(1), we getc; + ¢, = 1.

For f(2), we get 4c; + 2¢, = 3.

Setting this up as a system of 2 equations on 2 variables, we
can solve to find thatc; = 1/2 and ¢, = 1/2.

" Analysis Fall 2010 51/69

More General (2)

So, if it truely is a polynomial, it must be

n(n+1)

f(n)=n?/2+n/2+0= >

Use induction to prove. Why is this step necessary?

Why is this not a universal approach to solving summations?

" Analysis Fall 2010 52/69

An Even More General Approach

Subtract-and-Guess or Divide-and-Guess strategies.

To solve sum f, pick a known function g and find a pattern in
terms of f(n) — g(n) or f(n)/g(n).

Find the closed form solution for

Fall 2010

" Analysis

53/69

Guessing (cont.)

Examples: Try g1(n) = n; g2(n) = f(n — 1).

2 3 4 5 6 7 8
3 6 10 15 21 28 36
2 3 4 5 6 7 8
3/2 4/2 5/2 6/2 7/2 8/2 9/2
1 3 6 10 15 21 28
3/1 4/2 5/3 6/4 7/5 8/6 9/7

ON R Rk

(n)
91(n)

f(n)/gl(n) 2/
92(n)
(n)

What are the patterns?
f(n) _
gi(n)
f(n) _

g2(n)

" Analysis Fall 2010 54/69

Solving Summations (cont.)

Use algebra to rearrange and solve for f(n)

f(n) n+1
n 2
fn) n+1
fln—1) n-1

" Analysis

Fall 2010 55/69

Solving Summations (cont.)

fn) n+4+1
fn-1) n-1
f(n(n—1) = (n+1)f(n—-1)
f(n)n—1) = (n+1)(f(n) —n)

= n+n=n(n+1)

n(n+1)

)
)

nf(n) —f(n) = nf(n)+f(n)—n?—-n
)

) 2

Important Note: This is not a proof thatf(n) =n(n+1)/2.
Why?

Fall 2010 56 / 69

Growth Rates

Two functions of n have different growth rates if as n goes
to infinity their ratio either goes to infinity or goes to zero.

" Analysis

100 P 2n? snlogn
1200
1000 2
800 ==
600 Ze 10n
a0 T[T 9 =T
200 7l _===7

0 10 20 30 10

Fall 2010

57 /69

Estimating Growth Rates

Exact equations relating program operations to running time
require machine-dependent constants.

Sometimes, the equation for exact running time is
complicated to compute.

Usually, we are satisfied with knowing an approximate
growth rate.

Example: Given two algorithms with growth rate c;n and
c,2™, do we need to know the values of ¢, and c,?

Consider n? and 3n. PROVE that n?> must eventually become

(and remain) bigger.

" Analysis

Fall 2010

58 /69

Proof by Contradiction

Assume there are some values for constants r and s such
that, for all values of n,

n><rn-+s.

Then,n <r +s/n.

But, as n grows, what happens to s/n?

Since n grows toward infinity, the assumption must be false.

" Analysis Fall 2010

59 /69

Some Growth Rates (1)

Since n? grows faster than n,

@ 2" grows faster than 2".
@ n* grows faster than n?.
@ n grows faster than /n.
@ 2logn grows no slower than log n.

" Analysis Fall 2010 60/69

Some Growth Rates (2)

Since n! grows faster than 2",

@ n!! grows faster than 2"!.

2" grows faster than 22",

n!? grows faster than 22",

v/nl grows faster than /2",
log n! grows no slower than n.

" Analysis Fall 2010 61/69

Some Growth Rates (3)

If f grows faster than g, then
@ Must VT grow faster than ,/g?
@ Must logf grow faster than logg?

log n is related to n in exactly the same way that n is related
to 2".

@ 209" —

" Analysis Fall 2010 62/69

Fibonacci Numbers (lterative)

f(n)=f(n—1)+f(n—2)forn>2;f(0)=1f(1) =1.

long Fibi(int n) {
| ong past, prev, curr;
past = prev = curr = 1; [l curr holds Fib(i)
for (int i=2; i<=n; i++) { // Conpute next val ue

past = prev; prev = curr; // past holds Fib(i-2)
curr = past + prey; [l prev holds Fib(i-1)
}
return curr;

}

The cost of Fibi is easy to compute:

" Analysis Fall 2010 63/69

Fibonacci Numbers (Recursive)

int Fibr(int n) {
if ((n <=1) return 1;

return Fibr(n-1) + Fibr(n-2);
}

/| Base case
/] Recursive call

What is the cost of Fibr?

" Analysis

Fall 2010 64 /69

Analysis of Fibr

Use divide-and-guess with f(n — 1).

n 1 2 3 4 5 6 7
f(n) 123 5 8 13 21
f(n)/f(n—1)|1 2 1.5 1.666 1.625 1615 1.619

Following this out, it appears to settle to a ratio of 1.618.

Assuming f(n)/f(n — 1) really tends to a fixed value x, let's
verify what x must be.

" Analysis Fall 2010 65/69

Analysis of Fibr (cont.)

For large n,

f(n) f(n) f(n-1) 7
fn—2) f(n-1f(n-2)

If X exists, then x2 —x — 1 — 0.

Using the quadratic equation, the only solution greater than

one is
1++/5

~ 1.618.
5 618

What does this say about the growth rate of f?

" Analysis

Fall 2010 66 /69

Order Notation

little oh f(n) eo(g(n)) < limf(n)/g(n) =

big oh f(n)e O(g(n)) <

Theta f(n)=0©(g(n)) = f=0(g)and
g =0(f)

Big Omega f(n) € Q(g(n)) >

Little Omega ﬂMew((D > limg(n)/f(n) =
| prefer “f € O(n?)" to “f = O(n?)”
@ While n € O(n?) and n? € O(n?), O(n) # O(n?).

Note: Big oh does not say how good an algorithm is — only
how bad it CAN be.

If A € O(n) and B € O(n?), is A better than B?

Perhaps... but perhaps better analysis will show that
A=0(n) while B = ©(logn).

" Analysis Fall 2010 67/69

Limitations on Order Notation

Statement: Algorithm A’s resource requirements grow
slower than Algorithm B’s resource requirements.

Is A better than B?

Potential problems:

@ How big must the input be?

@ Some growth rate differences are trivial
» Example: ©(log? n) vs. ©(nt/19),

@ It is not always practical to reduce an algorithm’s growth

rate
» Shaving a factor of n reduces cost by a factor of a million
for input size of a million.

» Shaving a factor of log log n saves only a factor of 4-5.

" Analysis Fall 2010 68/69

Practicality Window

In general:
@ We have limited time to solve a problem.
@ We have a limited input size.

Fortunately, algorithm growth rates are USUALLY well
behaved, so that Order Notation gives practical indications.

" Analysis Fall 2010 69/69

