Coping with NP-Completeness

T. M. Murali

May 1, 3, 2017
Examples of Hard Computational Problems

(from Kevin Wayne’s slides at Princeton University)

- Aerospace engineering: optimal mesh partitioning for finite elements.
- Biology: protein folding.
- Chemical engineering: heat exchanger network synthesis.
- Civil engineering: equilibrium of urban traffic flow.
- Economics: computation of arbitrage in financial markets with friction.
- Electrical engineering: VLSI layout.
- Environmental engineering: optimal placement of contaminant sensors.
- Financial engineering: find minimum risk portfolio of given return.
- Game theory: find Nash equilibrium that maximizes social welfare.
- Genomics: phylogeny reconstruction.
- Mechanical engineering: structure of turbulence in sheared flows.
- Medicine: reconstructing 3-D shape from biplane angiocardiogram.
- Operations research: optimal resource allocation.
- Physics: partition function of 3-D Ising model in statistical mechanics.
- Politics: Shapley-Shubik voting power.
- Pop culture: Minesweeper consistency.
- Statistics: optimal experimental design.
How Do We Tackle an NP-Complete Problem?

“I can’t find an efficient algorithm, but neither can all these famous people.”

(Garey and Johnson, *Computers and Intractability*)
How Do We Tackle an \mathcal{NP}-Complete Problem?

- These problems come up in real life.
How Do We Tackle an \(\mathcal{NP} \)-Complete Problem?

MY HOBBY:
EMBEDDING \(\mathcal{NP} \)-COMPLETE PROBLEMS IN RESTAURANT ORDERS

CHOTCHKIES RESTAURANT

\[\begin{align*}
\text{Appetizers} & \\
\text{Mixed Fruit} & 2.15 \\
\text{French Fries} & 2.75 \\
\text{Side Salad} & 3.35 \\
\text{Hot Wings} & 3.55 \\
\text{Mozzarella Sticks} & 4.20 \\
\text{Sampler Plate} & 5.80 \\
\text{Sandwiches} & \\
\text{Barbecue} & 6.55
\end{align*} \]

WE'D LIKE EXACTLY $15.05 WORTH OF APPETIZERS, PLEASE.

...EXACTLY? UHH...

HERE, THESE PAPERS ON THE KNAPSACK PROBLEM MIGHT HELP YOU OUT.

LISTEN, I HAVE SIX OTHER TABLES TO GET TO -

AS FAST AS POSSIBLE, OF COURSE. WANT SOMETHING ON TRAVELING SALESMAN?
How Do We Tackle an \mathcal{NP}-Complete Problem?

- These problems come up in real life.
- \mathcal{NP}-Complete means that a problem is hard to solve in the worst case. Can we come up with better solutions at least in some cases?
How Do We Tackle an \(\mathcal{NP}\)-Complete Problem?

- These problems come up in real life.
- \(\mathcal{NP}\)-Complete means that a problem is hard to solve in the worst case. Can we come up with better solutions at least in some cases?

\[\text{Brute-Force Solution: } O(n!)\]

\[\text{Dynamic Programming Algorithms: } O(n^22^n)\]

\[\text{Still working on your route?} \]

\[\text{Shut the hell up.} \]
How Do We Tackle an \mathcal{NP}-Complete Problem?

- These problems come up in real life.
- \mathcal{NP}-Complete means that a problem is hard to solve in the worst case. Can we come up with better solutions at least in some cases?
 - Develop algorithms that are exponential in one parameter in the problem.
 - Consider special cases of the input, e.g., graphs that “look like” trees.
 - Develop algorithms that can provably compute a solution close to the optimal.
Vertex Cover Problem

Vertex cover

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain a vertex cover of size at most k?

- The problem has two parameters: k and n, the number of nodes in G.
- What is the running time of a brute-force algorithm?
Vertex Cover Problem

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain a vertex cover of size at most k?

- The problem has two parameters: k and n, the number of nodes in G.
- What is the running time of a brute-force algorithm? $O(kn \binom{n}{k}) = O(kn^{k+1})$.
Vertex Cover Problem

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain a vertex cover of size at most k?

- The problem has two parameters: k and n, the number of nodes in G.
- What is the running time of a brute-force algorithm? $O(kn \binom{n}{k}) = O(kn^{k+1})$.
- Can we devise an algorithm whose running time is exponential in k but polynomial in n, e.g., $O(2^k n)$?
Designing the Vertex Cover Algorithm

- Intuition: if a graph has a small vertex cover, it cannot have too many edges.
Designing the Vertex Cover Algorithm

- Intuition: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
Designing the Vertex Cover Algorithm

- Intuition: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- Easy part of algorithm: Return no if G has more than kn edges.
Designing the Vertex Cover Algorithm

- Intuition: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- Easy part of algorithm: Return *no* if G has more than kn edges.
- $G - \{u\}$ is the graph G without node u and the edges incident on u.

![Graph Image]
Designing the Vertex Cover Algorithm

- Intuition: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- Easy part of algorithm: Return no if G has more than kn edges.
- $G - \{u\}$ is the graph G without node u and the edges incident on u.
- Consider an edge (u, v). Either u or v must be in the vertex cover.
Solving \(\mathcal{NP} \)-Complete Problems

Small Vertex Covers

Trees

Approx. Vertex Cover

Load Balancing

Set Cover

Designing the Vertex Cover Algorithm

- Intuition: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If \(G \) has \(n \) nodes and \(G \) has a vertex cover of size at most \(k \), then \(G \) has at most \(kn \) edges.
- Easy part of algorithm: Return \textit{no} if \(G \) has more than \(kn \) edges.
- \(G - \{u\} \) is the graph \(G \) without node \(u \) and the edges incident on \(u \).
- Consider an edge \((u, v)\). Either \(u \) or \(v \) must be in the vertex cover.
- Claim: \(G \) has a vertex cover of size at most \(k \) iff for any edge \((u, v)\) either \(G - \{u\} \) or \(G - \{v\} \) has a vertex cover of size at most \(k - 1 \).
Vertex Cover Algorithm

To search for a k-node vertex cover in G:

1. If G contains no edges, then the empty set is a vertex cover.
2. If G contains $> k \cdot |V|$ edges, then it has no k-node vertex cover.
3. Else let $e = (u, v)$ be an edge of G.
 - Recursively check if either of $G - \{u\}$ or $G - \{v\}$ has a vertex cover of size $k - 1$.
 - If neither of them does, then G has no k-node vertex cover.
 - Else, one of them (say, $G - \{u\}$) has a $(k - 1)$-node vertex cover T.
 - In this case, $T \cup \{u\}$ is a k-node vertex cover of G.
4. Endif
5. Endif
Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters
Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let $T(n, k)$ denote the worst-case running time of the algorithm on an instance of VERTEX COVER with parameters n and k.

$T(n, 1) \leq cn$.

$T(n, k) \leq 2T(n, k-1) + ckn$.

$\text{Claim: } T(n, k) = O(2^k kn)$.

We need $O(kn)$ time to count the number of edges.
Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let $T(n, k)$ denote the worst-case running time of the algorithm on an instance of VERTEX COVER with parameters n and k.
- $T(n, 1) \leq cn$.

▶ We need $O(2^kkn)$ time to count the number of edges.
Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let $T(n, k)$ denote the worst-case running time of the algorithm on an instance of \textsc{Vertex Cover} with parameters n and k.
 - $T(n, 1) \leq cn$.
 - $T(n, k) \leq 2T(n, k - 1) + ckn$.
 - We need $O(kn)$ time to count the number of edges.
Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let $T(n, k)$ denote the worst-case running time of the algorithm on an instance of VERTEX COVER with parameters n and k.
 - $T(n, 1) \leq cn$.
 - $T(n, k) \leq 2T(n, k - 1) + ckn$.
 - We need $O(kn)$ time to count the number of edges.
- Claim: $T(n, k) = O(2^k kn)$.

Solving \(\mathcal{NP} \)-Hard Problems on Trees

- "\(\mathcal{NP} \)-Hard": at least as hard as \(\mathcal{NP} \)-Complete. We will use \(\mathcal{NP} \)-Hard to refer to optimisation versions of decision problems.
Solving \(\mathcal{NP} \)-Hard Problems on Trees

- \(\mathcal{NP} \)-Hard’: at least as hard as \(\mathcal{NP} \)-Complete. We will use \(\mathcal{NP} \)-Hard to refer to optimisation versions of decision problems.
- Many \(\mathcal{NP} \)-Hard problems can be solved efficiently on trees.
- Intuition: subtree rooted at any node \(v \) of the tree “interacts” with the rest of tree only through \(v \). Therefore, depending on whether we include \(v \) in the solution or not, we can decouple solving the problem in \(v \)’s subtree from the rest of the tree.
Designing Greedy Algorithm for Independent Set

Optimisation problem: Find the largest independent set in a tree.
Solving \(\mathcal{NP} \)-Complete Problems

Small Vertex Covers

Trees

Approx. Vertex Cover

Load Balancing

Set Cover

Designing Greedy Algorithm for Independent Set

- **Optimisation problem**: Find the largest independent set in a tree.
- **Claim**: Every tree \(T(V, E) \) has a *leaf*, a node with degree 1.
- **Claim**: If a tree \(T \) has a leaf \(v \), then there exists a maximum-size independent set in \(T \) that contains \(v \).

\[V \]

Let \(S \) be a maximum-size independent set that does not contain \(v \).

Let \(v \) be connected to \(u \).

\(u \) must be in \(S \); otherwise, we can add \(v \) to \(S \), which means \(S \) is not maximum size.

Since \(u \) is in \(S \), we can swap \(u \) and \(v \).

T. M. Murali

May 1, 3, 2017

Coping with NP-Completeness
Designing Greedy Algorithm for Independent Set

- Optimisation problem: Find the largest independent set in a tree.
- Claim: Every tree $T(V, E)$ has a leaf, a node with degree 1.
- Claim: If a tree T has a leaf v, then there exists a maximum-size independent set in T that contains v. Prove by exchange argument.
 - Let S be a maximum-size independent set that does not contain v.
 - Let v be connected to u.
 - u must be in S; otherwise, we can add v to S, which means S is not maximum size.
 - Since u is in S, we can swap u and v.
Optimisation problem: Find the largest independent set in a tree.
Claim: Every tree $T(V, E)$ has a *leaf*, a node with degree 1.
Claim: If a tree T has a leaf v, then there exists a maximum-size independent set in T that contains v. Prove by exchange argument.
- Let S be a maximum-size independent set that does not contain v.
- Let v be connected to u.
- u must be in S; otherwise, we can add v to S, which means S is not maximum size.
- Since u is in S, we can swap u and v.
Claim: If a tree T has a leaf v, then a maximum-size independent set in T is v and a maximum-size independent set in $T - \{v\}$.
Greedy Algorithm for Independent Set

- A forest is a graph where every connected component is a tree.

To find a maximum-size independent set in a forest F:

Let S be the independent set to be constructed (initially empty)

While F has at least one edge

- Let $e = (u, v)$ be an edge of F such that v is a leaf
- Add v to S
- Delete from F nodes u and v, and all edges incident to them

Endwhile

Return S
Greedy Algorithm for Independent Set

- A *forest* is a graph where every connected component is a tree.
- Running time of the algorithm is $O(n)$.

To find a maximum-size independent set in a forest F:

1. Let S be the independent set to be constructed (initially empty)
2. While F has at least one edge
 - Let $e = (u, v)$ be an edge of F such that v is a leaf
 - Add v to S
 - Delete from F nodes u and v, and all edges incident to them
3. Endwhile
4. Return S
Greedy Algorithm for Independent Set

- A **forest** is a graph where every connected component is a tree.
- Running time of the algorithm is $O(n)$.
- The algorithm works correctly on any graph for which we can repeatedly find a leaf.

To find a maximum-size independent set in a forest F:

1. Let S be the independent set to be constructed (initially empty)
2. While F has at least one edge
 - Let $e = (u, v)$ be an edge of F such that v is a leaf
 - Add v to S
 - Delete from F nodes u and v, and all edges incident to them
3. Endwhile
4. Return S
Maximum Weight Independent Set

- Consider the **INDEPENDENT SET** problem but with a weight w_v on every node v.
- Goal is to find an independent set S such that $\sum_{v \in S} w_v$ is as large as possible.
Consider the **Independent Set** problem but with a weight w_v on every node v.

Goal is to find an independent set S such that $\sum_{v \in S} w_v$ is as large as possible.

Can we extend the greedy algorithm?
Consider the **INDEPENDENT SET** problem but with a weight w_v on every node v.

Goal is to find an independent set S such that $\sum_{v \in S} w_v$ is as large as possible.

Can we extend the greedy algorithm? Exchange argument fails: if u is a parent of a leaf v, w_u may be larger than w_v.
Consider the **INDEPENDENT SET** problem but with a weight w_v on every node v.

Goal is to find an independent set S such that $\sum_{v \in S} w_v$ is as large as possible.

Can we extend the greedy algorithm? Exchange argument fails: if u is a parent of a leaf v, w_u may be larger than w_v.

But there are still only two possibilities: either include u in the independent set or include all neighbours of u that are leaves.
Consider the **INDEPENDENT SET** problem but with a weight w_v on every node v.

Goal is to find an independent set S such that $\sum_{v \in S} w_v$ is as large as possible.

Can we extend the greedy algorithm? Exchange argument fails: if u is a parent of a leaf v, w_u may be larger than w_v.

But there are still only two possibilities: either include u in the independent set or include *all* neighbours of u that are leaves.

Suggests dynamic programming algorithm.
Designing Dynamic Programming Algorithm

- Dynamic programming algorithm needs a set of sub-problems, recursion to combine sub-problems, and order over sub-problems.
- What are the sub-problems?
Designing Dynamic Programming Algorithm

- Dynamic programming algorithm needs a set of sub-problems, recursion to combine sub-problems, and order over sub-problems.

- What are the sub-problems?
 - Pick a node r and root tree at r: orient edges towards r.
 - \textit{parent} $p(u)$ of a node u is the node adjacent to u along the path to r.
 - Sub-problems are T_u: subtree induced by u and all its descendants.

![Diagram showing a tree with a root node r and a child node u. The edges are oriented towards the root.](image)
Designing Dynamic Programming Algorithm

- Dynamic programming algorithm needs a set of sub-problems, recursion to combine sub-problems, and order over sub-problems.
- What are the sub-problems?
 - Pick a node r and root tree at r: orient edges towards r.
 - *parent* $p(u)$ of a node u is the node adjacent to u along the path to r.
 - Sub-problems are T_u: subtree induced by u and all its descendants.
- Ordering the sub-problems: start at leaves and work our way up to the root.
Recursion for Dynamic Programming Algorithm

Either we include u in an optimal solution or exclude u.

- $OPT_{in}(u)$: maximum weight of an independent set in T_u that includes u.
- $OPT_{out}(u)$: maximum weight of an independent set in T_u that excludes u.

Base cases:
For a leaf u, $OPT_{in}(u) = w_u$ and $OPT_{out}(u) = 0$.

Recurrence:
1. If we include u, all children must be excluded.
 $$OPT_{in}(u) = w_u + \sum_{v \in \text{children}(u)} OPT_{out}(v)$$
2. If we exclude u, a child may or may not be excluded.
 $$OPT_{out}(u) = \sum_{v \in \text{children}(u)} \max(\text{OPT}_{in}(v), \text{OPT}_{out}(v))$$
Recursion for Dynamic Programming Algorithm

- Either we include \(u \) in an optimal solution or exclude \(u \).
 - \(OPT_{in}(u) \): maximum weight of an independent set in \(T_u \) that includes \(u \).
 - \(OPT_{out}(u) \): maximum weight of an independent set in \(T_u \) that excludes \(u \).

- Base cases:
Recursion for Dynamic Programming Algorithm

- Either we include \(u \) in an optimal solution or exclude \(u \).
 - \(\text{OPT}_{\text{in}}(u) \): maximum weight of an independent set in \(T_u \) that includes \(u \).
 - \(\text{OPT}_{\text{out}}(u) \): maximum weight of an independent set in \(T_u \) that excludes \(u \).

- Base cases: For a leaf \(u \), \(\text{OPT}_{\text{in}}(u) = w_u \) and \(\text{OPT}_{\text{out}}(u) = 0 \).

- Recurrence: Include \(u \) or exclude \(u \).
Recursion for Dynamic Programming Algorithm

Either we include u in an optimal solution or exclude u.

- $OPT_{\text{in}}(u)$: maximum weight of an independent set in T_u that includes u.
- $OPT_{\text{out}}(u)$: maximum weight of an independent set in T_u that excludes u.

Base cases: For a leaf u, $OPT_{\text{in}}(u) = w_u$ and $OPT_{\text{out}}(u) = 0$.

Recurrence: Include u or exclude u.

1. If we include u, all children must be excluded.
 \[
 OPT_{\text{in}}(u) = w_u + \sum_{v \in \text{children}(u)} OPT_{\text{out}}(v)
 \]
Recursion for Dynamic Programming Algorithm

- Either we include u in an optimal solution or exclude u.
 - $OPT_{in}(u)$: maximum weight of an independent set in T_u that includes u.
 - $OPT_{out}(u)$: maximum weight of an independent set in T_u that excludes u.
- Base cases: For a leaf u, $OPT_{in}(u) = w_u$ and $OPT_{out}(u) = 0$.
- Recurrence: Include u or exclude u.
 1. If we include u, all children must be excluded.
 \[OPT_{in}(u) = w_u + \sum_{v \in \text{children}(u)} OPT_{out}(v) \]
 2. If we exclude u, a child may or may not be excluded.
 \[OPT_{out}(u) = \sum_{v \in \text{children}(u)} \max(\OPT_{in}(v), OPT_{out}(v)) \]
Dynamic Programming Algorithm

To find a maximum-weight independent set of a tree T:

1. Root the tree at a node r
2. For all nodes u of T in post-order
 - If u is a leaf then set the values:
 $$M_{out}[u] = 0$$
 $$M_{in}[u] = w_u$$
 - Else set the values:
 $$M_{out}[u] = \sum_{v \in \text{children}(u)} \max(M_{out}[v], M_{in}[v])$$
 $$M_{in}[u] = w_u + \sum_{v \in \text{children}(u)} M_{out}[u].$$
3. Endif
4. Endfor
5. Return $\max(M_{out}[r], M_{in}[r])$
Dynamic Programming Algorithm

To find a maximum-weight independent set of a tree T:

Root the tree at a node r

For all nodes u of T in post-order

If u is a leaf then set the values:
\[M_{\text{out}}[u] = 0 \]
\[M_{\text{in}}[u] = w_u \]

Else set the values:
\[M_{\text{out}}[u] = \sum_{v \in \text{children}(u)} \max(M_{\text{out}}[v], M_{\text{in}}[v]) \]
\[M_{\text{in}}[u] = w_u + \sum_{v \in \text{children}(u)} M_{\text{out}}[u]. \]

Endif

Endfor

Return $\max(M_{\text{out}}[r], M_{\text{in}}[r])$

- Running time of the algorithm is $O(n)$.

Approximation Algorithms

- Methods for optimisation versions of \mathcal{NP}-Complete problems.
- Run in polynomial time.
- Solution returned is guaranteed to be within a small factor of the optimal solution.
Approximation Algorithm for VertexCover

EASYVERTEXCOVER(\(G\))
1: \(C \leftarrow \emptyset\) \(\{C\) will be the vertex cover\}
2: while \(G\) has at least one edge do
3: Let \((u, v)\) be any edge in \(G\)
4: \[\text{Update } C\text{ using } u\text{ and/or } v\]
5: \[\text{Update } G\text{ using } u\text{ and/or } v\]
6:
7: end while
8: return \(C\)
Approximation Algorithm for VertexCover

\texttt{EasyVertexCover}(G)

1: \(C \leftarrow \emptyset \) \{ \(C \) will be the vertex cover\}
2: \textbf{while} \(G \) has at least one edge \textbf{do}
3: \textbf{Let} \((u, v)\) be any edge in \(G \)
4: \textbf{Add} \(u \) and \(v \) to \(C \)
5: \textbf{Update} \(G \) using \(u \) and/or \(v \) \{\text{Update } G \text{ using } u \text{ and/or } v\}\n6:
7: \textbf{end while}
8: \textbf{return} \(C \)
Approximation Algorithm for VertexCover

EasyVertexCover(G)

1: \(C \leftarrow \emptyset, \ E' \leftarrow \emptyset \) \{ \(C \) will be the vertex cover\}
2: \textbf{while} \(G \) has at least one edge \textbf{do}
 3: \text{Let} \ (u, v) \text{ be any edge in} \ G
 4: \text{Add} \ u \text{ and} \ v \text{ to} \ C
 5: \ G \leftarrow G - \{u, v\} \ \{\text{Delete} \ u, \ v, \text{ and all incident edges from} \ G.\}\}
 6: \text{Add} \ (u, v) \text{ to} \ E' \ \{\text{Keep track of edges for bookkeeping.}\}
3: \textbf{end while}
8: \textbf{return} \ C
Approximation Algorithm for VertexCover

EASYVERTEXCOVER(G)

1: $C \leftarrow \emptyset, E' \leftarrow \emptyset \{C$ will be the vertex cover$\}$
2: **while** G has at least one edge **do**
3: \hspace{1em} Let (u, v) be any edge in G
4: \hspace{1em} Add u and v to C
5: \hspace{1em} $G \leftarrow G - \{u, v\} \{Delete \ u, \ v, \ and \ all \ incident \ edges \ from \ G.\}$
6: \hspace{1em} Add (u, v) to E' \{Keep track of edges for bookkeeping.$\}$
7: **end while**
8: **return** C
Approximation Algorithm for VertexCover

EASYVERTEXCOVER(G)

1: \(C \leftarrow \emptyset, \ E' \leftarrow \emptyset \) \{ \(C \) will be the vertex cover\}
2: **while** \(G \) has at least one edge **do**
3: \(\text{Let} \ (u, v) \ \text{be any edge in} \ \ G \)
4: \(\text{Add} \ u \ \text{and} \ v \ \text{to} \ \ C \)
5: \(G \leftarrow G - \{u, v\} \) \{\text{Delete} \ u, \ v, \ \text{and all incident edges from} \ G.\}
6: \(\text{Add} \ (u, v) \ \text{to} \ \ E' \) \{\text{Keep track of edges for bookkeeping.}\}
7: **end while**
8: **return** \(C \)

T. M. Murali May 1, 3, 2017 Coping with NP-Completeness
Approximation Algorithm for VertexCover

EasyVertexCover(G)

1: \(C \leftarrow \emptyset, \ E' \leftarrow \emptyset \) \{\(C \) will be the vertex cover\}
2: while \(G \) has at least one edge do
3: Let \((u, v)\) be any edge in \(G \)
4: Add \(u \) and \(v \) to \(C \)
5: \(G \leftarrow G - \{u, v\} \) \{Delete \(u, v, \) and all incident edges from \(G \).\}
6: Add \((u, v)\) to \(E' \) \{Keep track of edges for bookkeeping.\}
7: end while
8: return \(C \)
Analysis of EasyVertexCover

EasyVertexCover(G)

1: $C \leftarrow \emptyset$, $E' \leftarrow \emptyset$
2: while G has at least one edge do
3: Let (u, v) be any edge in G
4: Add u and v to C
5: $G \leftarrow G - \{u, v\}$
6: Add (u, v) to E'
7: end while
8: return C

- Running time is linear in the size of the graph.

Claim: C is a vertex cover.

Claim: No two edges in E' can be covered by the same node.

Claim: The size c^* of the smallest vertex cover is at least $|E'|$.

Claim: $|C| = 2|E'| \leq 2c^*$.
Analysis of EasyVertexCover

EasyVertexCover(G)

1: $C \leftarrow \emptyset$, $E' \leftarrow \emptyset$
2: while G has at least one edge do
3: Let (u, v) be any edge in G
4: Add u and v to C
5: $G \leftarrow G - \{u, v\}$
6: Add (u, v) to E'
7: end while
8: return C

- Running time is linear in the size of the graph.
Analysis of EasyVertexCover

EasyVertexCover(G)

1: $C \leftarrow \emptyset$, $E' \leftarrow \emptyset$
2: **while** G has at least one edge **do**
3: Let (u, v) be any edge in G
4: Add u and v to C
5: $G \leftarrow G \setminus \{u, v\}$
6: Add (u, v) to E'
7: **end while**
8: **return** C

- Running time is linear in the size of the graph.
- Claim: C is a vertex cover.
Analysis of EasyVertexCover

EasyVertexCover(G)

1: \(C \leftarrow \emptyset, E' \leftarrow \emptyset \)
2: **while** G has at least one edge **do**
3: \[\text{Let } (u, v) \text{ be any edge in } G \]
4: \[\text{Add } u \text{ and } v \text{ to } C \]
5: \[G \leftarrow G - \{u, v\} \]
6: \[\text{Add } (u, v) \text{ to } E' \]
7: **end while**
8: return \(C \)

- Running time is linear in the size of the graph.
- Claim: \(C \) is a vertex cover.
- Claim: No two edges in \(E' \) can be covered by the same node.
Analysis of EasyVertexCover

EasyVertexCover(G)

1. $C \leftarrow \emptyset$, $E' \leftarrow \emptyset$
2. **while** G has at least one edge **do**
3. Let (u, v) be any edge in G
4. Add u and v to C
5. $G \leftarrow G - \{u, v\}$
6. Add (u, v) to E'
7. **end while**
8. **return** C

- Running time is linear in the size of the graph.
- Claim: C is a vertex cover.
- Claim: No two edges in E' can be covered by the same node.
- Claim: The size c^* of the smallest vertex cover is at least $|E'|$.
Analysis of EasyVertexCover

EasyVertexCover(G)

1: $C \leftarrow \emptyset$, $E' \leftarrow \emptyset$
2: **while** G has at least one edge **do**
3: Let (u, v) be any edge in G
4: Add u and v to C
5: $G \leftarrow G - \{u, v\}$
6: Add (u, v) to E'
7: **end while**
8: **return** C

- Running time is linear in the size of the graph.
- Claim: C is a vertex cover.
- Claim: No two edges in E' can be covered by the same node.
- Claim: The size c^* of the smallest vertex cover is at least $|E'|$.
- Claim: $|C| = 2|E'| \leq 2c^*$
Given set of m machines $M_1, M_2, \ldots M_m$.

Given a set of n jobs: job j has processing time t_j.

Assign each job to one machine so that the total time spent is minimised.
Load Balancing Problem

- Given set of m machines $M_1, M_2, \ldots M_m$.
- Given a set of n jobs: job j has processing time t_j.
- Assign each job to one machine so that the total time spent is minimised.
- Let $A(i)$ be the set of jobs assigned to machine M_i.
- Total time spent on machine i is $T_i = \sum_{k \in A(i)} t_k$.
- Minimise makespan $T = \max_i T_i$, the largest load on any machine.
Given set of \(m \) machines \(M_1, M_2, \ldots, M_m \).

Given a set of \(n \) jobs: job \(j \) has processing time \(t_j \).

Assign each job to one machine so that the total time spent is minimised.

Let \(A(i) \) be the set of jobs assigned to machine \(M_i \).

Total time spent on machine \(i \) is \(T_i = \sum_{k \in A(i)} t_k \).

Minimise \(\text{makespan} \) \(T = \max_i T_i \), the largest load on any machine.

Minimising makespan is \(\mathcal{NP} \)-Complete.
Greedy-Balance Algorithm

- Adopt a greedy approach.
- Process jobs in any order.
- Assign next job to the processor that has smallest total load so far.

Greedy-Balance:
Start with no jobs assigned
Set $T_i = 0$ and $A(i) = \emptyset$ for all machines M_i
For $j = 1, \ldots, n$
 - Let M_i be a machine that achieves the minimum $\min_k T_k$
 - Assign job j to machine M_i
 - Set $A(i) \leftarrow A(i) \cup \{j\}$
 - Set $T_i \leftarrow T_i + t_j$
EndFor
Example of Greedy-Balance Algorithm

The algorithm aims to balance the load among the machines.

1. **Job Time:**
 - Jobs are ordered by their time.
 - Machines are assigned sequentially from the start.

2. **Job Index:**
 - The index helps in identifying the jobs.
 - Machines are assigned to each job based on their index.

3. **Load Balancing:**
 - The goal is to minimize the maximum load on any machine.
 - Machines are assigned until all jobs are processed.

4. **Machine Assignment:**
 - Machines are assigned in a sequential manner.
 - The algorithm tries to distribute the load evenly across the machines.

5. **Example:**
 - Jobs are processed in a specific order.
 - Machines are assigned to each job based on their index.
 - The load on each machine is calculated and balanced.

This example demonstrates how the greedy-balance algorithm works to solve load balancing problems.
Lower Bounds on the Optimal Makespan

- We need a lower bound on the optimum makespan T^*.
Lower Bounds on the Optimal Makespan

- We need a lower bound on the optimum makespan T^*.
- The two bounds below will suffice:

$$T^* \geq \frac{1}{m} \sum_j t_j$$

$$T^* \geq \max_j t_j$$
Claim: Computed makespan $T \leq 2T^\ast$.
Claim: Computed makespan $T \leq 2T^*$.

Let M_i be the machine whose load is T and j be the last job placed on M_i.

What was the situation just before placing this job?
Claim: Computed makespan $T \leq 2 T^*$. Let M_i be the machine whose load is T and j be the last job placed on M_i.

What was the situation just before placing this job?

M_i had the smallest load and its load was $T - t_j$.

For every machine M_k, load $T_k \geq T - t_j$.

\[T = T_i \]

\[T_i - t_j \]

\[M_1 \quad M_2 \quad M_3 \quad M_i \quad M_m \]
Analysing Greedy-Balance

- Claim: Computed makespan $T \leq 2T^*$.
- Let M_i be the machine whose load is T and j be the last job placed on M_i.
- What was the situation just before placing this job?
- M_i had the smallest load and its load was $T - t_j$.
- For every machine M_k, load $T_k \geq T - t_j$.

\[
\sum_k T_k \geq m(T - t_j), \text{ where } k \text{ ranges over all machines}
\]

\[
\sum_j t_j \geq m(T - t_j), \text{ where } j \text{ ranges over all jobs}
\]

\[
T - t_j \leq 1/m \sum_j t_j \leq T^*
\]

\[
T \leq 2T^*, \text{ since } t_j \leq T^*
\]
Improving the Bound

- It is easy to construct an example for which the greedy algorithm produces a solution close to a factor of 2 away from optimal.
Improving the Bound

- It is easy to construct an example for which the greedy algorithm produces a solution close to a factor of 2 away from optimal.
- How can we improve the algorithm?
Improving the Bound

- It is easy to construct an example for which the greedy algorithm produces a solution close to a factor of 2 away from optimal.
- How can we improve the algorithm?
- What if we process the jobs in decreasing order of processing time?
Sorted-Balance Algorithm

Sorted-Balance:

Start with no jobs assigned

Set \(T_i = 0 \) and \(A(i) = \emptyset \) for all machines \(M_i \)

Sort jobs in decreasing order of processing times \(t_j \)

Assume that \(t_1 \geq t_2 \geq \ldots \geq t_n \)

For \(j = 1, \ldots, n \)

 Let \(M_i \) be the machine that achieves the minimum \(\min_k T_k \)

 Assign job \(j \) to machine \(M_i \)

 Set \(A(i) \leftarrow A(i) \cup \{j\} \)

 Set \(T_i \leftarrow T_i + t_j \)

EndFor
Sorted-Balance Algorithm

Sorted-Balance:

Start with no jobs assigned
Set $T_i = 0$ and $A(i) = \emptyset$ for all machines M_i
Sort jobs in decreasing order of processing times t_j
Assume that $t_1 \geq t_2 \geq \ldots \geq t_n$
For $j = 1, \ldots, n$
 Let M_i be the machine that achieves the minimum $\min_k T_k$
 Assign job j to machine M_i
 Set $A(i) \leftarrow A(i) \cup \{j\}$
 Set $T_i \leftarrow T_i + t_j$
EndFor

This algorithm assigns the first m jobs to m distinct machines.
Example of Sorted-Balance Algorithm

Job time: Jobs

Job index:

Machines:

$$T = T_1$$

$$T_2, T_3$$

$\begin{array}{ccccccc}
\text{Jobs} & 3 & 4 & 1 & 2 & 3 & 4 \\
\text{Job index} & 3 & 4 & 2 & 3 & 4 & 2 \\
\end{array}$

$\begin{array}{cccccccc}
\text{Machines} & M_1 & M_2 & M_3 \\
1 & 10 & 1 & 9 \\
2 & 7 & 8 & 4 \\
3 & 5 & 6 & 3 \\
4 & 2 & 1 & 1 \\
\end{array}$
Analyzing Sorted-Balance

- Claim: if there are fewer than \(m \) jobs, algorithm is optimal.
- Claim: if there are more than \(m \) jobs, then \(T^* \geq 2t_{m+1} \).
Analyzing Sorted-Balance

- Claim: if there are fewer than m jobs, algorithm is optimal.
- Claim: if there are more than m jobs, then $T^* \geq 2t_{m+1}$.
 - Consider only the first $m + 1$ jobs in sorted order.
 - Consider any assignment of these $m + 1$ jobs to machines.
 - Some machine must be assigned two jobs, each with processing time at least t_{m+1}.
 - This machine will have load at least $2t_{m+1}$.

Claim: $T \leq 3T^*/2$.
Let M_i be the machine whose load is T and j be the last job placed on M_i. (M_i has at least two jobs.)
$t_j \leq t_{m+1} \leq T^*/2$, since $j \geq m + 1$
$T - t_j \leq T^*$,
Analyzing Sorted-Balance

- Claim: if there are fewer than \(m \) jobs, algorithm is optimal.
- Claim: if there are more than \(m \) jobs, then \(T^* \geq 2t_{m+1} \).
 - Consider only the first \(m + 1 \) jobs in sorted order.
 - Consider any assignment of these \(m + 1 \) jobs to machines.
 - Some machine must be assigned two jobs, each with processing time at least \(t_{m+1} \).
 - This machine will have load at least \(2t_{m+1} \).
- Claim: \(T \leq 3T^*/2. \)
Analyzing Sorted-Balance

- **Claim:** if there are fewer than \(m \) jobs, algorithm is optimal.

- **Claim:** if there are more than \(m \) jobs, then \(T^* \geq 2t_{m+1} \).
 - Consider only the first \(m + 1 \) jobs in sorted order.
 - Consider *any* assignment of these \(m + 1 \) jobs to machines.
 - Some machine must be assigned two jobs, each with processing time at least \(t_{m+1} \).
 - This machine will have load at least \(2t_{m+1} \).

- **Claim:** \(T \leq 3T^*/2 \).

- Let \(M_i \) be the machine whose load is \(T \) and \(j \) be the last job placed on \(M_i \). (\(M_i \) has at least two jobs.)
Analyzing Sorted-Balance

- Claim: if there are fewer than \(m \) jobs, algorithm is optimal.
- Claim: if there are more than \(m \) jobs, then \(T^* \geq 2t_{m+1} \).
 - Consider only the first \(m + 1 \) jobs in sorted order.
 - Consider any assignment of these \(m + 1 \) jobs to machines.
 - Some machine must be assigned two jobs, each with processing time at least \(t_{m+1} \).
 - This machine will have load at least \(2t_{m+1} \).

- Claim: \(T \leq 3T^*/2 \).
- Let \(M_i \) be the machine whose load is \(T \) and \(j \) be the last job placed on \(M_i \). (\(M_i \) has at least two jobs.)

\[
t_j \leq t_{m+1} \leq T^*/2, \text{ since } j \geq m + 1
\]

\[
T - t_j \leq T^*, \text{ Greedy-Balance proof}
\]

\[
T \leq 3T^*/2
\]
Set Cover

Set Cover

INSTANCE: A set U of n elements, a collection S_1, S_2, \ldots, S_m of subsets of U, each with an associated weight w.

SOLUTION: A collection C of sets in the collection such that $\bigcup_{S_i \in C} S_i = U$ and $\sum_{S_i \in C} w_i$ is minimised.
Greedy Approach

1.1

1

1

1

1

1

1

1

T. M. Murali May 1, 3, 2017 Coping with NP-Completeness
Greedy Approach

T. M. Murali May 1, 3, 2017 Coping with NP-Completeness
Solving NP-Complete Problems
Small Vertex Covers
Trees
Approx. Vertex Cover
Load Balancing
Set Cover

Greedy Approach

1.1

1

1

1

1

1

1

1

1

1

1

1

1

T. M. Murali
May 1, 3, 2017
Coping with NP-Completeness
Greedy Approach

1.1

1

1

1

0.5

0.5

1

0.25

0.25

1

0.25

0.25

1
Greedy Approach

1.1

T. M. Murali May 1, 3, 2017 Coping with NP-Completeness
Greedy-Set-Cover

- To get a greedy algorithm, in what order should we process the sets?
Greedy-Set-Cover

- To get a greedy algorithm, in what order should we process the sets?
- Maintain set R of uncovered elements.
- Process set in decreasing order of $w_i / |S_i \cap R|$.

The algorithm computes a set cover whose weight is at most $O(\log n)$ times the optimal weight (Johnson 1974, Lovász 1975, Chvatal 1979).
Greedy-Set-Cover

- To get a greedy algorithm, in what order should we process the sets?
- Maintain set R of uncovered elements.
- Process set in decreasing order of $w_i/|S_i \cap R|$.

Greedy-Set-Cover:

Start with $R = U$ and no sets selected

While $R \neq \emptyset$

- Select set S_i that minimizes $w_i/|S_i \cap R|$

 Delete set S_i from R

EndWhile

Return the selected sets
Greedy-Set-Cover

- To get a greedy algorithm, in what order should we process the sets?
- Maintain set \(R \) of uncovered elements.
- Process set in decreasing order of \(w_i/|S_i \cap R| \).

Greedy-Set-Cover:
Start with \(R = U \) and no sets selected
While \(R \neq \emptyset \)
- Select set \(S_i \) that minimizes \(w_i/|S_i \cap R| \)
- Delete set \(S_i \) from \(R \)
EndWhile
Return the selected sets

- The algorithm computes a set cover whose weight is at most \(O(\log n) \) times the optimal weight (Johnson 1974, Lovász 1975, Chvatal 1979).
Add Bookkeeping to Greedy-Set-Cover

- Good lower bounds on the weight w^* of the optimum set cover are not easy to obtain.

Bookkeeping: record the per-element cost paid when selecting S_i. In the algorithm, after selecting S_i, add the line

Define $c_s = w_i / |S_i \cap R|$ for all $s \in S_i \cap R$.

As each set S_i is selected, distribute its weight over the costs c_s of the newly-covered elements. Each element in the universe assigned cost exactly once.
Add Bookkeeping to Greedy-Set-Cover

- Good lower bounds on the weight w^* of the optimum set cover are not easy to obtain.
- Bookkeeping: record the per-element cost paid when selecting S_i.

$$c_s = \frac{w_i}{|S_i \cap R|} \text{ for all } s \in S_i \cap R.$$

As each set S_i is selected, distribute its weight over the costs c_s of the newly-covered elements. Each element in the universe assigned cost exactly once.
Add Bookkeeping to Greedy-Set-Cover

- Good lower bounds on the weight w^* of the optimum set cover are not easy to obtain.
- Bookkeeping: record the per-element *cost* paid when selecting S_i.
- In the algorithm, after selecting S_i, add the line:

 Define $c_s = w_i / |S_i \cap R|$ for all $s \in S_i \cap R$.

- As each set S_i is selected, distribute its weight over the costs c_s of the newly-covered elements.
- Each element in the universe assigned cost exactly once.
Add Bookkeeping to Greedy-Set-Cover

- Good lower bounds on the weight w^* of the optimum set cover are not easy to obtain.
- Bookkeeping: record the per-element cost paid when selecting S_i.
- In the algorithm, after selecting S_i, add the line

 Define $c_s = w_i / |S_i \cap R|$ for all $s \in S_i \cap R$.
- As each set S_i is selected, distribute its weight over the costs c_s of the newly-covered elements.
- Each element in the universe assigned cost exactly once.
Starting the Analysis of Greedy-Set-Cover

- Let C be the set cover computed by Greedy-Set-Cover.

- Claim: $\sum_{S_i \in C} w_i = \sum_{s \in U} c_s$.

\[
\sum_{S_i \in C} w_i = \sum_{S_i \in C} \left(\sum_{s \in S_i \cap R} c_s \right), \text{ by definition of } c_s
\]

\[= \sum_{s \in U} c_s, \text{ since each element in the universe contributes exactly once}\]

- In other words, the total weight of the solution computed by Greedy-Set-Cover is the total costs it assigns to the elements in the universe.

- Can “switch” between set-based weight of solution and element-based costs.

- Note: sets have weights whereas Greedy-Set-Cover assigns costs to elements.
Intuition Behind the Proof

- Suppose \mathcal{C}^* is the optimal set cover: $w^* = \sum_{S_j \in \mathcal{C}^*} w_j$.
- Goal is to relate total weight of sets in \mathcal{C} to total weight of sets in \mathcal{C}^*.
Intuition Behind the Proof

- Suppose C^* is the optimal set cover: $w^* = \sum_{S_j \in C^*} w_j$.
- Goal is to relate total weight of sets in C to total weight of sets in C^*.
- What is the total cost assigned by Greedy-Set-Cover to the elements in the sets in the optimal cover C^*?
Intuition Behind the Proof

- Suppose C^* is the optimal set cover: $w^* = \sum_{S_j \in C^*} w_j$.
- Goal is to relate total weight of sets in C to total weight of sets in C^*.
- What is the total cost assigned by Greedy-Set-Cover to the elements in the sets in the optimal cover C^*?

Since C^* is a set cover,
$$\sum_{S_j \in C^*} \left(\sum_{s \in S_j} c_s \right) \geq \sum_{s \in U} c_s = \sum_{S_i \in C} w_i = w.$$
Intuition Behind the Proof

- Suppose C^* is the optimal set cover: $w^* = \sum_{S_j \in C^*} w_j$.
- Goal is to relate total weight of sets in C to total weight of sets in C^*.
- What is the total cost assigned by `Greedy-Set-Cover` to the elements in the sets in the optimal cover C^*?

- Since C^* is a set cover, $\sum_{S_j \in C^*} \left(\sum_{s \in S_j} c_s \right) \geq \sum_{s \in U} c_s = \sum_{S_i \in C} w_i = w$.

- In the sum on the left, S_j is a set in C^* (need not be a set in C). How large can total cost of elements in such a set be?
Intuition Behind the Proof

- Suppose C^* is the optimal set cover: $w^* = \sum_{S_j \in C^*} w_j$.
- Goal is to relate total weight of sets in C to total weight of sets in C^*.
- What is the total cost assigned by \textsc{Greedy-Set-Cover} to the elements in the sets in the optimal cover C^*?

Since C^* is a set cover, $\sum_{S_j \in C^*} \left(\sum_{s \in S_j} c_s \right) \geq \sum_{s \in U} c_s = \sum_{S_i \in C} w_i = w$.

In the sum on the left, S_j is a set in C^* (need not be a set in C). How large can total cost of elements in such a set be?

For any set S_k, suppose we can prove $\sum_{s \in S_k} c_s \leq \alpha w_k$, for some fixed $\alpha > 0$, i.e., total cost assigned by \textsc{Greedy-Set-Cover} to the elements in S_k cannot be much larger than the weight of s_k.
Intuition Behind the Proof

- Suppose C^* is the optimal set cover: $w^* = \sum_{S_j \in C^*} w_j$.
- Goal is to relate total weight of sets in C to total weight of sets in C^*.
- What is the total cost assigned by Greedy-Set-Cover to the elements in the sets in the optimal cover C^*?

- Since C^* is a set cover, $\sum_{S_j \in C^*} \left(\sum_{s \in S_j} c_s \right) \geq \sum_{s \in U} c_s = \sum_{S_i \in C} w_i = w$.

- In the sum on the left, S_j is a set in C^* (need not be a set in C). How large can total cost of elements in such a set be?
- For any set S_k, suppose we can prove $\sum_{s \in S_k} c_s \leq \alpha w_k$, for some fixed $\alpha > 0$, i.e., total cost assigned by Greedy-Set-Cover to the elements in S_k cannot be much larger than the weight of s_k.

- Then $w \leq \sum_{S_j \in C^*} \left(\sum_{s \in S_j} c_s \right) \leq \sum_{S_j \in C^*} \alpha w_j = \alpha w^*$.
Intuition Behind the Proof

- Suppose C^* is the optimal set cover: $w^* = \sum_{S_j \in C^*} w_j$.
- Goal is to relate total weight of sets in C to total weight of sets in C^*.
- What is the total cost assigned by GREEDY-SET-COVER to the elements in the sets in the optimal cover C^*?

- Since C^* is a set cover, $\sum_{S_j \in C^*} \left(\sum_{s \in S_j} c_s \right) \geq \sum_{s \in U} c_s = \sum_{S_i \in C} w_i = w$.
- In the sum on the left, S_j is a set in C^* (need not be a set in C). How large can total cost of elements in such a set be?
- For any set S_k, suppose we can prove $\sum_{s \in S_k} c_s \leq \alpha w_k$, for some fixed $\alpha > 0$, i.e., total cost assigned by GREEDY-SET-COVER to the elements in S_k cannot be much larger than the weight of s_k.

- Then $w \leq \sum_{S_j \in C^*} \left(\sum_{s \in S_j} c_s \right) \leq \sum_{S_j \in C^*} \alpha w_j = \alpha w^*$.

- For every set S_k in the input, goal is to prove an upper bound on $\frac{\sum_{s \in S_k} c_s}{w_k}$.
Upper Bounding Cost-by-Weight Ratio

- Consider any set S_k (even one not selected by the algorithm).
- How large can $\sum_{s \in S_k} \frac{c_s}{w_k}$ get?
Upper Bounding Cost-by-Weight Ratio

- Consider any set S_k (even one not selected by the algorithm).

- How large can $\sum_{s \in S_k} \frac{c_s}{w_k}$ get?

- The harmonic function

$$H(n) = \sum_{i=1}^{n} \frac{1}{i} = \Theta(\ln n).$$
Consider any set S_k (even one not selected by the algorithm).

How large can $\frac{\sum_{s \in S_k} c_s}{w_k}$ get?

The harmonic function

$$H(n) = \sum_{i=1}^{n} \frac{1}{i} = \Theta(\ln n).$$

Claim: For every set S_k, the sum $\sum_{s \in S_k} c_s \leq H(|S_k|)w_k$.
Renumbering Elements in S_k

- Renumber elements in U so that elements in S_k are the first $d = |S_k|$ elements of U, i.e., $S_k = \{s_1, s_2, \ldots, s_d\}$.

- Order elements of S in the order they get covered by the algorithm (i.e., when they get assigned a cost by Greedy-Set-Cover).
Renumbering Elements in S_k

- Renumber elements in U so that elements in S_k are the first $d = |S_k|$ elements of U, i.e.,
 $$S_k = \{s_1, s_2, \ldots, s_d\}.$$
- Order elements of S in the order they get covered by the algorithm (i.e., when they get assigned a cost by \textsc{Greedy-Set-Cover}).
Proving $\sum_{s \in S_k} c_s \leq H(|S_k|)w_k$

- What happens in the iteration when the algorithm covers element $s_j \in S_k, j \leq d$?
Proving $\sum_{s \in S_k} c_s \leq H(|S_K|)w_k$

- What happens in the iteration when the algorithm covers element $s_j \in S_k, j \leq d$?
- At the start of this iteration, R must contain $s_j, s_{j+1}, \ldots s_d$, i.e., $|S_k \cap R| \geq d - j + 1$. ($R$ may contain other elements of S_k as well.)
Proving $\sum_{s \in S_k} c_s \leq H(|S_K|)w_k$

- What happens in the iteration when the algorithm covers element $s_j \in S_k, j \leq d$?
- At the start of this iteration, R must contain $s_j, s_{j+1}, \ldots, s_d$, i.e., $|S_k \cap R| \geq d - j + 1$. ($R$ may contain other elements of S_k as well.)
- Therefore, $\frac{w_k}{|S_k \cap R|} \leq \frac{w_k}{d - j + 1}$.
Proving $\sum_{s \in S_k} c_s \leq H(|S_K|)w_k$

- What happens in the iteration when the algorithm covers element $s_j \in S_k, j \leq d$?

- At the start of this iteration, R must contain $s_j, s_{j+1}, \ldots s_d$, i.e., $|S_k \cap R| \geq d - j + 1$. ($R$ may contain other elements of S_k as well.)

- Therefore, $\frac{w_k}{|S_k \cap R|} \leq \frac{w_k}{d - j + 1}$.

- What cost did the algorithm assign to s_j?

- Suppose the algorithm selected set S_i in this iteration.

$$c_{s_j} = \frac{w_i}{|S_i \cap R|} \leq \frac{w_k}{|S_k \cap R|} \leq \frac{w_k}{d - j + 1}.$$
Proving \(\sum_{s \in S_k} c_s \leq H(|S_k|)w_k \)

- What happens in the iteration when the algorithm covers element \(s_j \in S_k, j \leq d \)?
- At the start of this iteration, \(R \) must contain \(s_j, s_{j+1}, \ldots, s_d \), i.e., \(|S_k \cap R| \geq d - j + 1 \). (\(R \) may contain other elements of \(S_k \) as well.)
- Therefore, \(\frac{w_k}{|S_k \cap R|} \leq \frac{w_k}{d - j + 1} \).
- What cost did the algorithm assign to \(s_j \)?
- Suppose the algorithm selected set \(S_i \) in this iteration.
 \[c_{s_j} = \frac{w_i}{|S_i \cap R|} \leq \frac{w_k}{|S_k \cap R|} \leq \frac{w_k}{d - j + 1} \]
- We are done!

\[
\sum_{s \in S_k} c_s = \sum_{j=1}^{d} c_{s_j} \leq \sum_{j=1}^{d} \frac{w_k}{d - j + 1} = H(d)w_k.
\]
Proving Upper Bound on Cost of Greedy-Set-Cover

- Let us assume $\sum_{s \in S_k} c_s \leq H(|S_K|)w_k$.
- Let d^* be the size of the largest set in the collection.
- Recall that C^* is the optimal set cover and $w^* = \sum_{S_i \in C^*} w_i$.
Proving Upper Bound on Cost of Greedy-Set-Cover

- Let us assume $\sum_{s \in S_k} c_s \leq H(|S_K|)w_k$.
- Let d^* be the size of the largest set in the collection.
- Recall that C^* is the optimal set cover and $w^* = \sum_{S_i \in C^*} w_i$.
- For each set S_j in C^*, we have $w_j \geq \frac{\sum_{s \in S_j} c_s}{H(|S_i|)} \geq \frac{\sum_{s \in S_j} c_s}{H(d^*)}$.
- Combining with $\sum_{S_i \in C} w_i = \sum_{s \in U} c_s$, we have

$$w^* = \sum_{S_j \in C^*} w_j$$
Proving Upper Bound on Cost of Greedy-Set-Cover

- Let us assume $\sum_{s \in S_k} c_s \leq H(|S_k|)w_k$.
- Let d^* be the size of the largest set in the collection.
- Recall that C^* is the optimal set cover and $w^* = \sum_{S_i \in C^*} w_i$.
- For each set S_j in C^*, we have $w_j \geq \frac{\sum_{s \in S_j} c_s}{H(|S_i|)} \geq \frac{\sum_{s \in S_j} c_s}{H(d^*)}$.
- Combining with $\sum_{S_i \in C} w_i = \sum_{s \in U} c_s$, we have

$$w^* = \sum_{S_j \in C^*} w_j \geq \sum_{S_j \in C^*} \frac{1}{H(d^*)} \sum_{s \in S_j} c_s \geq \frac{1}{H(d^*)} \sum_{s \in U} c_s$$
Proving Upper Bound on Cost of Greedy-Set-Cover

- Let us assume \(\sum_{s \in S_k} c_s \leq H(|S_k|)w_k \).
- Let \(d^* \) be the size of the largest set in the collection.
- Recall that \(C^* \) is the optimal set cover and \(w^* = \sum_{S_i \in C^*} w_i \).
- For each set \(S_j \) in \(C^* \), we have \(w_j \geq \frac{\sum_{s \in S_j} c_s}{H(|S_i|)} \geq \frac{\sum_{s \in S_j} c_s}{H(d^*)} \).
- Combining with \(\sum_{S_i \in C} w_i = \sum_{s \in U} c_s \), we have

\[
 w^* = \sum_{S_j \in C^*} w_j \geq \sum_{S_j \in C^*} \frac{1}{H(d^*)} \sum_{s \in S_j} c_s \geq \frac{1}{H(d^*)} \sum_{s \in U} c_s = \frac{1}{H(d^*)} \sum_{S_i \in C} w_i = w.
\]
Proving Upper Bound on Cost of Greedy-Set-Cover

- Let us assume $\sum_{s \in S_k} c_s \leq H(|S_k|)w_k$.
- Let d^* be the size of the largest set in the collection.
- Recall that C^* is the optimal set cover and $w^* = \sum_{S_i \in C^*} w_i$.
- For each set S_j in C^*, we have $w_j \geq \frac{\sum_{s \in S_j} c_s}{H(|S_i|)} \geq \frac{\sum_{s \in S_j} c_s}{H(d^*)}$.
- Combining with $\sum_{S_i \in C} w_i = \sum_{s \in U} c_s$, we have

$$w^* = \sum_{S_j \in C^*} w_j \geq \sum_{S_j \in C^*} \frac{1}{H(d^*)} \sum_{s \in S_j} c_s \geq \frac{1}{H(d^*)} \sum_{s \in U} c_s = \frac{1}{H(d^*)} \sum_{S_i \in C} w_i = w.$$

- We have proven that GREEDY-SET-COVER computes a set cover whose weight is at most $H(d^*)$ times the optimal weight.
How Badly Can Greedy-Set-Cover Perform?

- Generalise this example to show that algorithm produces a set cover of weight $\Omega(\log n)$ even though optimal weight is $2 + \varepsilon$.
- More complex constructions show greedy algorithm incurs a weight close to $H(n)$ times the optimal weight.
How Badly Can Greedy-Set-Cover Perform?

- Generalise this example to show that algorithm produces a set cover of weight $\Omega(\log n)$ even though optimal weight is $2 + \varepsilon$.
- More complex constructions show greedy algorithm incurs a weight close to $H(n)$ times the optimal weight.
- No polynomial time algorithm can achieve an approximation bound better than $(1 - \Omega(1)) \ln n$ times optimal unless $\mathcal{P} = \mathcal{NP}$ (Dinur and Steurer, 2014)