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Introduction Reductions NP NP-Complete NP vs. co-NP

Algorithm Design

Patterns
I Greed. O(n log n) interval scheduling.
I Divide-and-conquer. O(n log n) closest pair of points.
I Dynamic programming. O(n3) RNA folding.
I Duality. O(n3) maximum flow and minimum cuts.

I Reductions. Image segmentation ≤P Minimum s-t cut
I Local search.
I Randomization.

“Anti-patterns”
I NP-completeness. O(nk) algorithm unlikely.
I PSPACE-completeness. O(nk) certification algorithm unlikely.
I Undecidability. No algorithm possible.
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Computational Tractability

When is an algorithm an efficient solution to a problem?

When its running
time is polynomial in the size of the input.

A problem is computationally tractable if it has a polynomial-time algorithm.

Polynomial time Probably not
Shortest path Longest path
Matching 3-D matching
Minimum cut Maximum cut
2-SAT 3-SAT
Planar four-colour Planar three-colour
Bipartite vertex cover Vertex cover
Primality testing Factoring
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Problem Classification

Classify problems based on whether they admit efficient solutions or not.

Some extremely hard problems cannot be solved efficiently (e.g., chess on an
n-by-n board).

However, classification is unclear for a very large number of discrete
computational problems.

We can prove that these problems are fundamentally equivalent and are
manifestations of the same problem!
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Polynomial-Time Reduction

Goal is to express statements of the type “Problem X is at least as hard as
problem Y .”

Use the notion of reductions.

Y is polynomial-time reducible to X (Y ≤P X )

if any arbitrary instance
(input) of Y can be solved using a polynomial number of standard
operations, plus one call to a black box that solves problem X .

I Maximum Bipartite Matching ≤P Maximum s-t Flow
I Image Segmentation ≤P Minimum s-t Cut

Y ≤P X implies that “X is at least as hard as Y .”

Such reductions are Karp reductions. Cook reductions allow a polynomial
number of calls to the black box that solves X .
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Polynomial-Time Reduction

Algorithm for 
maximizing

network flow

Maximum Bipartite Matching ≤P Maximum s-t Flow

Goal is to express statements of the type “Problem X is at least as hard as
problem Y .”
Use the notion of reductions.
Y is polynomial-time reducible to X (Y ≤P X )

if any arbitrary instance
(input) of Y can be solved using a polynomial number of standard
operations, plus one call to a black box that solves problem X .

I Maximum Bipartite Matching ≤P Maximum s-t Flow
I Image Segmentation ≤P Minimum s-t Cut

Y ≤P X implies that “X is at least as hard as Y .”
Such reductions are Karp reductions. Cook reductions allow a polynomial
number of calls to the black box that solves X .
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Usefulness of Reductions

Claim: If Y ≤P X and X can be solved in polynomial time, then Y can be
solved in polynomial time.

Contrapositive: If Y ≤P X and Y cannot be solved in polynomial time, then
X cannot be solved in polynomial time.

Informally: If Y is hard, and we can show that Y reduces to X , then the
hardness “spreads” to X .
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Reduction Strategies

Simple equivalence.

Special case to general case.

Encoding with gadgets.
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Optimisation versus Decision Problems

So far, we have developed algorithms that solve optimisation problems.
I Compute the largest flow.
I Find the closest pair of points.
I Find the schedule with the least completion time.

Now, we will focus on decision versions of problems, e.g., is there a flow with
value at least k, for a given value of k?

Decision problem: answer to every input is yes or no.

Primes

INSTANCE: A natural number n

QUESTION: Is n prime?
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Independent Set and Vertex Cover

Given an undirected graph G (V ,E ), a subset S ⊆ V is an independent set if
no two vertices in S are connected by an edge.
Given an undirected graph G (V ,E ), a subset S ⊆ V is a vertex cover if every
edge in E is incident on at least one vertex in S .

Independent Set

INSTANCE: Undirected graph
G and an integer k

QUESTION: Does G contain
an independent set of size

≥ k?

Vertex cover

INSTANCE: Undirected graph
G and an integer l

QUESTION:

Does G contain a
vertex cover of size

≤ l?

Demonstrate simple equivalence between these two problems.
Claim: Independent Set ≤P Vertex Cover and
Vertex Cover ≤P Independent Set.
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Strategy for Proving Indep. Set ≤P Vertex Cover

Unknown algorithm 
for  solving 

vertex cover

Input graph for the 
vertex cover problem

Yes

No

Yes, there is an 
independent set of size 

at least 3

No, every independent 
set is of size 3 or less
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Strategy for Proving Indep. Set ≤P Vertex Cover

1 Start with an arbitrary instance of Independent Set: an undirected graph
G (V ,E ) and an integer k .

2 From G (V ,E ) and k , create an instance of Vertex Cover: an undirected
graph G ′(V ′,E ′) and an integer l .

I G ′ related to G in some way.

I l can depend upon k and size of G .

3 Prove that G (V ,E ) has an independent set of size ≥ k iff G ′(V ′,E ′) has a
vertex cover of size ≤ l .

Transformation and proof must be correct for all possible graphs G (V ,E )
and all possible values of k.

Why is the proof an iff statement?
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Reason for Two-Way Proof

Unknown algorithm 
for  solving 

vertex cover

Input graph for the 
vertex cover problem

Yes

No

Yes, there is an 
independent set of size 

at least 3

No, every independent 
set is of size 3 or less

Why is the proof an iff statement?

In the reduction, we are using black box
for Vertex Cover to solve Independent Set.

(i) If there is an independent set size ≥ k, we must be sure that there is a vertex
cover of size ≤ l , so that we know that the black box will find this vertex cover.

(ii) If the black box finds a vertex cover of size ≤ l , we must be sure we can
construct an independent set of size ≥ k from this vertex cover.
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Proof that Independent Set ≤P Vertex Cover

1 Arbitrary instance of Independent Set: an undirected graph G (V ,E ) and
an integer k.

2 Let |V | = n.

3 Create an instance of Vertex Cover: same undirected graph G (V ,E ) and
integer l = n − k.

4 Claim: G (V ,E ) has an independent set of size ≥ k iff G (V ,E ) has a vertex
cover of size ≤ n − k.

Proof: S is an independent set in G iff V − S is a vertex cover in G .

Same idea proves that Vertex Cover ≤P Independent Set
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Vertex Cover and Set Cover

Independent Set is a “packing” problem: pack as many vertices as
possible, subject to constraints (the edges).

Vertex Cover is a “covering” problem: cover all edges in the graph with
as few vertices as possible.

There are more general covering problems.

Microbe Cover

INSTANCE: A set U of n
compounds, a collection
M1,M2, . . . ,Ml of microbes,
where each microbe can make a
subset of compounds in U, and
an integer k .

QUESTION: Is there a subset
of ≤ k microbes that can
together make all the
compounds in U?

T. M. Murali April 19, 24, 26, 2017 NP and Computational Intractability



Introduction Reductions NP NP-Complete NP vs. co-NP

Vertex Cover and Set Cover

Independent Set is a “packing” problem: pack as many vertices as
possible, subject to constraints (the edges).

Vertex Cover is a “covering” problem: cover all edges in the graph with
as few vertices as possible.

There are more general covering problems.

Microbe Cover

INSTANCE: A set U of n
compounds, a collection
M1,M2, . . . ,Ml of microbes,
where each microbe can make a
subset of compounds in U, and
an integer k .

QUESTION: Is there a subset
of ≤ k microbes that can
together make all the
compounds in U?

T. M. Murali April 19, 24, 26, 2017 NP and Computational Intractability



Introduction Reductions NP NP-Complete NP vs. co-NP

Vertex Cover and Set Cover

Independent Set is a “packing” problem: pack as many vertices as
possible, subject to constraints (the edges).

Vertex Cover is a “covering” problem: cover all edges in the graph with
as few vertices as possible.

There are more general covering problems.

Microbe Cover

INSTANCE: A set U of n
compounds, a collection
M1,M2, . . . ,Ml of microbes,
where each microbe can make a
subset of compounds in U, and
an integer k .

QUESTION: Is there a subset
of ≤ k microbes that can
together make all the
compounds in U?

T. M. Murali April 19, 24, 26, 2017 NP and Computational Intractability



Introduction Reductions NP NP-Complete NP vs. co-NP

Vertex Cover ≤P Microbe Cover

Input to Vertex Cover: an undirected graph G (V ,E ) and an integer k.

Let |V | = l .

Create an instance
{
U, {M1,M2, . . .Ml}

}
of Microbe Cover where

I U = E , i.e., each element of U is an edge of G , and
I for each node i ∈ V , create a microbe Mi whose compounds are the set of

edges incident on i .

Claim: U can be covered with ≤ k microbes iff G has a vertex cover with at
≤ k nodes.

Proof strategy:
1 If G has a vertex cover of size ≤ k, then U can be covered with ≤ k microbes.
2 If U can be covered with ≤ k microbes, then G has a vertex cover of size ≤ k.
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Microbe Cover and Set Cover
Microbe Cover

INSTANCE: A set U of n
compounds, a collection
M1,M2, . . . ,Ml of microbes, where
each microbe can make a subset of
compounds in U, and an integer k.

QUESTION: Is there a subset of
≤ k microbes that can together
make all the compounds in U?

Purely combinatorial problem: a “microbe” is just a set of “compounds.”

Set Cover

INSTANCE: A set U of n elements, a
collection S1, S2, . . . , Sm of subsets of U,
and an integer k.

QUESTION: Is there a collection of ≤ k
sets in the collection whose union is U?

T. M. Murali April 19, 24, 26, 2017 NP and Computational Intractability



Introduction Reductions NP NP-Complete NP vs. co-NP

Microbe Cover and Set Cover
Microbe Cover

INSTANCE: A set U of n
compounds, a collection
M1,M2, . . . ,Ml of microbes, where
each microbe can make a subset of
compounds in U, and an integer k.

QUESTION: Is there a subset of
≤ k microbes that can together
make all the compounds in U?

Purely combinatorial problem: a “microbe” is just a set of “compounds.”

Set Cover

INSTANCE: A set U of n elements, a
collection S1, S2, . . . , Sm of subsets of U,
and an integer k.

QUESTION: Is there a collection of ≤ k
sets in the collection whose union is U?

T. M. Murali April 19, 24, 26, 2017 NP and Computational Intractability



Introduction Reductions NP NP-Complete NP vs. co-NP

Boolean Satisfiability

Abstract problems formulated in Boolean notation.

Given a set X = {x1, x2, . . . , xn} of n Boolean variables.

Each variable can take the value 0 or 1.

Term: a variable xi or its negation xi .

Clause of length l : (or) of l distinct terms t1 ∨ t2 ∨ · · · tl .
Truth assignment for X : is a function ν : X → {0, 1}.
An assignment ν satisfies a clause C if it causes at least one term in C to
evaluate to 1 (since C is an or of terms).

An assignment satisfies a collection of clauses C1,C2, . . .Ck if it causes all
clauses to evaluate to 1, i.e., C1 ∧ C2 ∧ · · ·Ck = 1.

I ν is a satisfying assignment with respect to C1,C2, . . .Ck .
I set of clauses C1,C2, . . .Ck is satisfiable.
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Example

X = {x1, x2, x3, x4}
Terms: x1, x1, x2, x2, x3, x3, x4, x4

Clauses:

x1 ∨ x2 ∨ x3

x2 ∨ x3 ∨ x4

x3 ∨ x4

Assignment: x1 = 1, x2 = 0, x3 = 1, x4 = 0

x1 ∨ x2 ∨ x3

x2 ∨ x3 ∨ x4

x3 ∨ x4

I Not a satisfying assignment

Assignment: x1 = 1, x2 = 0, x3 = 0, x4 = 0

x1 ∨ x2 ∨ x3

x2 ∨ x3 ∨ x4

x3 ∨ x4

I Is a satisfying assignment
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SAT and 3-SAT

3-

Satisfiability Problem (SAT)

INSTANCE: A set of clauses C1,C2, . . .Ck

, each of length three,

over a
set X = {x1, x2, . . . xn} of n variables.

QUESTION: Is there a satisfying truth assignment for X with respect to
C?

SAT and 3-SAT are fundamental combinatorial search problems.

We have to make n independent decisions (the assignments for each variable)
while satisfying a set of constraints.

Satisfying each constraint in isolation is easy, but we have to make our
decisions so that all constraints are satisfied simultaneously.
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Examples of 3-SAT

Example:
I C1 = x1 ∨ 0 ∨ 0
I C2 = x2 ∨ 0 ∨ 0
I C3 = x1 ∨ x2 ∨ 0

1 Is C1 ∧ C2 satisfiable? Yes, by x1 = 1, x2 = 1.

2 Is C1 ∧ C3 satisfiable? Yes, by x1 = 1, x2 = 0.

3 Is C2 ∧ C3 satisfiable? Yes, by x1 = 0, x2 = 1.

4 Is C1 ∧ C2 ∧ C3 satisfiable? No.
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3-SAT and Independent Set

C1 = x1∨x2∨x3

C2 = x1∨x2∨x4

C3 = x1∨x3∨x4

1 Select x1 = 1, x2 = 1, x3 = 1, x4 = 1.
2 Choose one literal from each clause to evaluate to true.

I Choices of selected literals imply x1 = 0, x2 = 0, x4 = 1.

We want to prove 3-SAT ≤P Independent Set.

Two ways to think about 3-SAT:
1 Make an independent 0/1 decision on each variable and succeed if we achieve

one of three ways in which to satisfy each clause.
2 Choose (at least) one term from each clause. Find a truth assignment that

causes each chosen term to evaluate to 1. Ensure that no two terms selected
conflict, e.g., select x2 in C1 and x2 in C2.
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Proving 3-SAT ≤P Independent Set

C1 = x1∨x2∨x3

C2 = x1∨x2∨x4

C3 = x1∨x3∨x4

We are given an instance of 3-SAT with k clauses of length three over n
variables.

Construct an instance of independent set: graph G (V ,E ) with 3k nodes.

I For each clause Ci , 1 ≤ i ≤ k, add a triangle of three nodes vi1, vi2, vi3 and
three edges to G .

I Label each node vij , 1 ≤ j ≤ 3 with the jth term in Ci .
I Add an edge between each pair of nodes whose labels correspond to terms

that conflict.
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Proving 3-SAT ≤P Independent Set

C1 = x1∨x2∨x3

C2 = x1∨x2∨x4

C3 = x1∨x3∨x4

Claim: 3-SAT instance is satisfiable iff G has an independent set of size k.

Satisfiable assignment → independent set of size k: Each triangle in G has at
least one node whose label evaluates to 1. Set S of nodes consisting of one
such node from each triangle forms an independent set of size = k. Why?

Independent set S of size k → satisfiable assignment: the size of this set is k.
How do we construct a satisfying truth assignment from the nodes in the
independent set?

I For each variable xi , only xi or xi is the label of a node in S . Why?
I If xi is the label of a node in S , set xi = 1; else set xi = 0.
I Why is each clause satisfied?
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independent set?

I For each variable xi , only xi or xi is the label of a node in S . Why?
I If xi is the label of a node in S , set xi = 1; else set xi = 0.
I Why is each clause satisfied?
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Transitivity of Reductions

Claim: If Z ≤P Y and Y ≤P X, then Z ≤P X.

We have shown

3-SAT ≤P Independent Set ≤P Vertex Cover ≤P Set Cover
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Introduction Reductions NP NP-Complete NP vs. co-NP

Finding vs. Certifying

Is it easy to check if a given set of vertices in an undirected graph forms an
independent set of size at least k?

Is it easy to check if a particular truth assignment satisfies a set of clauses?

We draw a contrast between finding a solution and checking a solution (in
polynomial time).

Since we have not been able to develop efficient algorithms to solve many
decision problems, let us turn our attention to whether we can check if a
proposed solution is correct.
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Introduction Reductions NP NP-Complete NP vs. co-NP

Problems and Algorithms

Primes
INSTANCE: A natural number n
QUESTION: Is n prime?

Decision problem X : for every input s, answer X (s) is yes or no.

An algorithm A for a decision problem receives an input s and returns
A(s) ∈ {yes, no}.
An algorithm A solves the problem X if for every input s,

I if X (s) = yes then A(s) = yes and
I if X (s) = no then A(s) = no

A has a polynomial running time if there is a polynomial function p(·) such
that for every input s, A terminates on s in at most O(p(|s|)) steps.

I There is an algorithm such that p(|s|) = |s|12 for PRIMES (Agarwal, Kayal,
Saxena, 2002, improved to |s|6 by Pomerance and Lenstra, 2005).

P: set of problems X for which there is a polynomial time algorithm.

A decision problem X is in P iff there is an algorithm A with polynomial running
time that solves X .
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Efficient Certification

A “checking” algorithm for a decision problem X has a different structure
from an algorithm that solves X .

Checking algorithm needs input s as well as a separate “certificate” t that
contains evidence that X (s) = yes.

An algorithm B is an efficient certifier for a problem X if
1 B is a polynomial time algorithm that takes two inputs s and t and
2 for all inputs s

F X (s) = yes iff there is a certificate t such that B(s, t) = yes and
F the size of t is polynomial in the size of s.

Certifier’s job is to take a candidate certificate (t) that s ∈ X and check in
polynomial time whether t is a correct certificate.

Certificate t must be “short” so that certifier can run in polynomial time.

Certifier does not care about how to find these certificates.
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NP

P: set of problems X for which there is a polynomial time algorithm.

NP is the set of all problems for which there exists an efficient certifier.

3-SAT ∈ NP:

I Certificate t:

a truth assignment to the variables

.
I Certifier B:

checks whether assignment causes each clause to evaluate to true

.

Independent Set ∈ NP:

I Certificate t:

a set of at least k vertices

.
I Certifier B:

checks that no pair of these vertices are connected by an edge

.

Set Cover ∈ NP:

I Certificate t:

a list of k sets from the collection

.
I Certifier B:

checks if their union of these sets is U

.
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P vs. NP
Claim: P ⊆ NP.

I Let X be any problem in P.
I There is a polynomial time algorithm A that solves X .
I B ignores t and simply returns A(s). Why is B an efficient certifier?

Is P = NP or is NP − P 6= ∅?

One of the major unsolved problems in
computer science. $1M prize offered by Clay Mathematics Institute.

P

NP
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Summary

P

NP

P ⊆ NP
3-SAT, VertexCover, SetCover, IndependentSet are in NP.

3-SAT ≤P Independent Set ≤P Vertex Cover ≤P Set Cover

What is the structure of the problems in NP?
1 Is there a sequence of problems X1,X2,X3, . . . in NP, such that

X1 ≤P X2 ≤P X3 ≤P . . .?
2 Are there two problems X1 and X2 in NP such that there is no problem

X ∈ NP where X1 ≤P X and X2 ≤P X?
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NP-Complete and NP-Hard Problems

What are the hardest problems in NP?

A problem X is NP-Complete if

(i) X ∈ NP and

(ii) for every problem Y ∈ NP,
Y ≤P X .

A problem X is NP-Hard if

(i) for every problem Y ∈ NP,
Y ≤P X .

P NPc

NP NP-hard

Claim: Suppose X is NP-Complete. Then X ∈ P iff P = NP.

Corollary: If there is any problem in NP that cannot be solved in polynomial
time, then no NP-Complete problem can be solved in polynomial time.

Does even one NP-Complete problem exist?! If it does, how can we prove
that every problem in NP reduces to this problem?
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Circuit Satisfiability

Cook-Levin Theorem: Circuit Satisfiability is NP-Complete.

A circuit K is a labelled, directed acyclic graph such that
1 the sources in K are labelled with constants (0 or 1) or the name of a distinct

variable (the inputs to the circuit).
2 every other node is labelled with one Boolean operator ∧, ∨, or ¬.
3 a single node with no outgoing edges represents the output of K .

Circuit Satisfiability

INSTANCE: A circuit K .

QUESTION: Is there a truth
assignment to the inputs that causes
the output to have value 1?

Skip proof; read textbook or Chapter 2.6 of Garey and Johnson.
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Proving Circuit Satisfiability is NP-Complete

Take an arbitrary problem X ∈ NP and show that
X ≤P Circuit Satisfiability.

Claim we will not prove: any algorithm that takes a fixed number n of bits as
input and produces a yes/no answer

1 can be represented by an equivalent circuit and
2 if the running time of the algorithm is polynomial in n, the size of the circuit is

a polynomial in n.

To show X ≤P Circuit Satisfiability, given an input s of length n, we
want to determine whether s ∈ X using a black box that solves Circuit
Satisfiability.

What do we know about X? It has an efficient certifier B(·, ·).

To determine whether s ∈ X , we ask “Is there a certificate t of length p(n)
such that B(s, t) = yes?”
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Proving Circuit Satisfiability is NP-Complete

To determine whether s ∈ X , we ask “Is there a certificate t of length p(|s|)
such that B(s, t) = yes?”

View B(·, ·) as an algorithm on n + p(n) bits.

Convert B to a polynomial-sized circuit K with n + p(n) sources.
1 First n sources are hard-coded with the bits of s.
2 The remaining p(n) sources labelled with variables representing the bits of t.

s ∈ X iff there is an assignment of the input bits of K that makes K
satisfiable.
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Example of Transformation to Circuit Satisfiability

Does a graph G on n nodes have a two-node independent set?

s encodes the graph G with
(
n
2

)
bits.

t encodes the independent set with n bits.

Certifier needs to check if
1 at least two bits in t are set to 1 and
2 no two bits in t are set to 1 if they form the ends of an edge (the

corresponding bit in s is set to 1).
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Example of Transformation to Circuit Satisfiability

Suppose G contains three nodes u, v , and w with v connected to u and w .
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Asymmetry of Certification

Definition of efficient certification and NP is fundamentally asymmetric:
I An input s is a “yes” instance iff there exists a short certificate t such that

B(s, t) = yes.
I An input s is a “no” instance iff for all short certificates t, B(s, t) = no.

The
definition of NP does not guarantee a short proof for “no” instances.
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co-NP

For a decision problem X , its complementary problem X is the set of inputs s
such that s ∈ X iff s 6∈ X .

If X ∈ P, then X ∈ P.

If X ∈ NP, then is X ∈ NP? Unclear in general.

A problem X belongs to the class co-NP iff X belongs to NP.

NPc

co-NP NP NP-hard

Open problem: Is NP = co-NP?

Claim: If NP 6= co-NP then P 6= NP.
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Good Characterisations: the Class NP ∩ co-NP
If a problem belongs to both NP and co-NP, then

I When the answer is yes, there is a short proof.
I When the answer is no, there is a short proof.

Problems in NP ∩ co-NP have a good characterisation.

Example is the problem of determining if a flow network contains a flow of
value at least ν, for some given value of ν.

I Yes: construct a flow of value at least ν.
I No: demonstrate a cut with capacity less than ν.

P NPc

co-NP NP NP-hard

Claim: P ⊆ NP ∩ co-NP.

Open problem: Is P = NP ∩ co-NP?
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