NP and Computational Intractability

T. M. Murali

April 19, 24, 26, 2017

Algorithm Design

- Patterns
 - Greed.
 - Divide-and-conquer.
 - Dynamic programming.
 - Duality.

 $O(n \log n)$ interval scheduling. $O(n \log n)$ closest pair of points. $O(n^3)$ RNA folding. $O(n^3)$ maximum flow and minimum cuts.

Algorithm Design

Patterns

- Greed.
- Divide-and-conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

 $O(n \log n)$ interval scheduling. $O(n \log n)$ closest pair of points. $O(n^3)$ RNA folding. $O(n^3)$ maximum flow and minimum cuts. IMAGE SEGMENTATION \leq_P MINIMUM *s-t* CUT

Algorithm Design

Patterns

- Greed.
- Divide-and-conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.
- "Anti-patterns"
 - NP-completeness.
 - PSPACE-completeness.
 - Undecidability.

 $O(n \log n)$ interval scheduling. $O(n \log n)$ closest pair of points. $O(n^3)$ RNA folding. $O(n^3)$ maximum flow and minimum cuts. IMAGE SEGMENTATION \leq_P MINIMUM *s*-*t* CUT

> $O(n^k)$ algorithm unlikely. $O(n^k)$ certification algorithm unlikely. No algorithm possible.

• When is an algorithm an efficient solution to a problem?

• When is an algorithm an efficient solution to a problem? When its running time is polynomial in the size of the input.

- When is an algorithm an efficient solution to a problem? When its running time is polynomial in the size of the input.
- A problem is *computationally tractable* if it has a polynomial-time algorithm.

- When is an algorithm an efficient solution to a problem? When its running time is polynomial in the size of the input.
- A problem is *computationally tractable* if it has a polynomial-time algorithm.

Polynomial time	Probably not
Shortest path	Longest path
Matching	3-D matching
Minimum cut	Maximum cut
2-SAT	3-SAT
Planar four-colour	Planar three-colour
Bipartite vertex cover	Vertex cover
Primality testing	Factoring

Problem Classification

- Classify problems based on whether they admit efficient solutions or not.
- Some extremely hard problems cannot be solved efficiently (e.g., chess on an *n*-by-*n* board).

Problem Classification

- Classify problems based on whether they admit efficient solutions or not.
- Some extremely hard problems cannot be solved efficiently (e.g., chess on an *n*-by-*n* board).
- However, classification is unclear for a very large number of discrete computational problems.

Problem Classification

- Classify problems based on whether they admit efficient solutions or not.
- Some extremely hard problems cannot be solved efficiently (e.g., chess on an *n*-by-*n* board).
- However, classification is unclear for a very large number of discrete computational problems.
- We can prove that these problems are fundamentally equivalent and are manifestations of the same problem!

- Goal is to express statements of the type "Problem X is at least as hard as problem Y."
- Use the notion of *reductions*.
- Y is polynomial-time reducible to X (Y $\leq_P X$)

- Goal is to express statements of the type "Problem X is at least as hard as problem Y."
- Use the notion of *reductions*.
- Y is polynomial-time reducible to X (Y ≤_P X) if any arbitrary instance (input) of Y can be solved using a polynomial number of standard operations, plus one call to a black box that solves problem X.

Maximum Bipartite Matching \leq_P Maximum s-t Flow

- Goal is to express statements of the type "Problem X is at least as hard as problem Y."
- Use the notion of *reductions*.
- Y is polynomial-time reducible to X (Y ≤_P X) if any arbitrary instance (input) of Y can be solved using a polynomial number of standard operations, plus one call to a black box that solves problem X.

- Goal is to express statements of the type "Problem X is at least as hard as problem Y."
- Use the notion of *reductions*.
- Y is polynomial-time reducible to X (Y ≤_P X) if any arbitrary instance (input) of Y can be solved using a polynomial number of standard operations, plus one call to a black box that solves problem X.
 - ▶ Maximum Bipartite Matching \leq_P Maximum *s*-*t* Flow
 - ► Image Segmentation \leq_P Minimum *s*-*t* Cut

- Goal is to express statements of the type "Problem X is at least as hard as problem Y."
- Use the notion of *reductions*.
- Y is polynomial-time reducible to X (Y ≤_P X) if any arbitrary instance (input) of Y can be solved using a polynomial number of standard operations, plus one call to a black box that solves problem X.
 - ► MAXIMUM BIPARTITE MATCHING \leq_P MAXIMUM *s*-*t* Flow
 - ► Image Segmentation \leq_P Minimum *s*-*t* Cut
- $Y \leq_P X$ implies that "X is at least as hard as Y."
- Such reductions are *Karp reductions*. *Cook reductions* allow a polynomial number of calls to the black box that solves *X*.

Usefulness of Reductions

• Claim: If $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.

Usefulness of Reductions

- Claim: If $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
- Contrapositive: If $Y \leq_P X$ and Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.
- Informally: If Y is hard, and we can show that Y reduces to X, then the hardness "spreads" to X.

Reduction Strategies

- Simple equivalence.
- Special case to general case.
- Encoding with gadgets.

Optimisation versus Decision Problems

- So far, we have developed algorithms that solve optimisation problems.
 - Compute the *largest* flow.
 - Find the *closest* pair of points.
 - Find the schedule with the *least* completion time.

Optimisation versus Decision Problems

- So far, we have developed algorithms that solve optimisation problems.
 - Compute the *largest* flow.
 - Find the *closest* pair of points.
 - Find the schedule with the *least* completion time.
- Now, we will focus on *decision versions* of problems, e.g., is there a flow with value at least k, for a given value of k?
- Decision problem: answer to every input is yes or no.

PRIMES INSTANCE: A natural number *n* QUESTION: ls *n* prime?

Independent Set and Vertex Cover

- Given an undirected graph G(V, E), a subset S ⊆ V is an *independent set* if no two vertices in S are connected by an edge.
- Given an undirected graph G(V, E), a subset $S \subseteq V$ is a vertex cover if every edge in E is incident on at least one vertex in S.

- Given an undirected graph G(V, E), a subset S ⊆ V is an *independent set* if no two vertices in S are connected by an edge.
- Given an undirected graph G(V, E), a subset $S \subseteq V$ is a vertex cover if every edge in E is incident on at least one vertex in S.

- Given an undirected graph G(V, E), a subset S ⊆ V is an *independent set* if no two vertices in S are connected by an edge.
- Given an undirected graph G(V, E), a subset $S \subseteq V$ is a vertex cover if every edge in E is incident on at least one vertex in S.

INDEPENDENT SET

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain an independent set of size $\geq k$?

Vertex cover

INSTANCE: Undirected graph *G* and an integer *I*

QUESTION: Does G contain a vertex cover of size $\leq l$?

Independent Set and Vertex Cover

- Given an undirected graph G(V, E), a subset S ⊆ V is an *independent set* if no two vertices in S are connected by an edge.
- Given an undirected graph G(V, E), a subset $S \subseteq V$ is a vertex cover if every edge in E is incident on at least one vertex in S.

INDEPENDENT SET

INSTANCE: Undirected graph G and an integer k

QUESTION: Does *G* contain

an independent set of size $\geq k$?

Vertex cover

INSTANCE: Undirected graph *G* and an integer *l*

QUESTION: Does G contain a

vertex cover of size $\leq I$?

• Demonstrate simple equivalence between these two problems.

- Given an undirected graph G(V, E), a subset S ⊆ V is an *independent set* if no two vertices in S are connected by an edge.
- Given an undirected graph G(V, E), a subset $S \subseteq V$ is a vertex cover if every edge in E is incident on at least one vertex in S.

INDEPENDENT SET

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain an independent set of size $\geq k$?

Vertex cover

INSTANCE: Undirected graph *G* and an integer *I*

QUESTION: Does G contain a

vertex cover of size $\leq I$?

- Demonstrate simple equivalence between these two problems.
- Claim: INDEPENDENT SET \leq_P VERTEX COVER and VERTEX COVER \leq_P INDEPENDENT SET.

Strategy for Proving Indep. Set \leq_P Vertex Cover

Strategy for Proving Indep. Set \leq_P Vertex Cover

- Start with an arbitrary instance of INDEPENDENT SET: an undirected graph G(V, E) and an integer k.
- From G(V, E) and k, create an instance of VERTEX COVER: an undirected graph G'(V', E') and an integer I.
- G' related to G in some way.
- I can depend upon k and size of G.

Prove that G(V, E) has an independent set of size ≥ k iff G'(V', E') has a vertex cover of size ≤ l.

Strategy for Proving Indep. Set \leq_P Vertex Cover

- Start with an arbitrary instance of INDEPENDENT SET: an undirected graph G(V, E) and an integer k.
- **2** From G(V, E) and k, create an instance of VERTEX COVER: an undirected graph G'(V', E') and an integer I.
- ► G' related to G in some way.
- I can depend upon k and size of G.

- Solution Prove that G(V, E) has an independent set of size $\geq k$ iff G'(V', E') has a vertex cover of size < I.
- Transformation and proof must be correct for all possible graphs G(V, E)and all possible values of k.
- Why is the proof an iff statement?

Reason for Two-Way Proof

• Why is the proof an iff statement?

Reason for Two-Way Proof

- Why is the proof an iff statement? In the reduction, we are using black box for VERTEX COVER to solve INDEPENDENT SET.
 - (i) If there is an independent set size $\geq k$, we must be sure that there is a vertex cover of size $\leq l$, so that we know that the black box will find this vertex cover.
 - (ii) If the black box finds a vertex cover of size $\leq I$, we must be sure we can construct an independent set of size $\geq k$ from this vertex cover.

• Create an instance of VERTEX COVER: same undirected graph G(V, E) and integer l = n - k.

cover of size $\leq n - k$.

Proof: S is an independent set in G iff V - S is a vertex cover in G.

Proof: S is an independent set in G iff V - S is a vertex cover in G.

• Same idea proves that VERTEX COVER \leq_P INDEPENDENT SET

Vertex Cover and Set Cover

- INDEPENDENT SET is a "packing" problem: pack as many vertices as possible, subject to constraints (the edges).
- VERTEX COVER is a "covering" problem: cover all edges in the graph with as few vertices as possible.
- There are more general covering problems.

MICROBE COVER

INSTANCE: A set *U* of *n* compounds, a collection M_1, M_2, \ldots, M_l of microbes, where each microbe can make a subset of compounds in *U*, and an integer *k*.

QUESTION: Is there a subset of $\leq k$ microbes that can together make all the compounds in *U*?

Vertex Cover and Set Cover

- INDEPENDENT SET is a "packing" problem: pack as many vertices as possible, subject to constraints (the edges).
- VERTEX COVER is a "covering" problem: cover all edges in the graph with as few vertices as possible.
- There are more general covering problems.

MICROBE COVER

INSTANCE: A set *U* of *n* compounds, a collection M_1, M_2, \ldots, M_l of microbes, where each microbe can make a subset of compounds in *U*, and an integer *k*.

QUESTION: Is there a subset of $\leq k$ microbes that can together make all the compounds in *U*?

Vertex Cover and Set Cover

- INDEPENDENT SET is a "packing" problem: pack as many vertices as possible, subject to constraints (the edges).
- VERTEX COVER is a "covering" problem: cover all edges in the graph with as few vertices as possible.
- There are more general covering problems.

MICROBE COVER

INSTANCE: A set U of n compounds, a collection M_1, M_2, \ldots, M_l of microbes, where each microbe can make a subset of compounds in U, and an integer k.

QUESTION: Is there a subset of $\leq k$ microbes that can together make all the compounds in *U*?

Vertex Cover \leq_P Microbe Cover

- Input to VERTEX COVER: an undirected graph G(V, E) and an integer k.
- Let |V| = I.
- Create an instance $\{U, \{M_1, M_2, \dots, M_l\}\}$ of MICROBE COVER where

n = 10, l = 7

- Input to VERTEX COVER: an undirected graph G(V, E) and an integer k.
- Let |V| = I.
- Create an instance $\{U, \{M_1, M_2, \dots, M_l\}\}$ of MICROBE COVER where
 - U = E, i.e., each element of U is an edge of G, and
 - ▶ for each node $i \in V$, create a microbe M_i whose compounds are the set of edges incident on i.

$$n = 10, l = 7$$

- Input to VERTEX COVER: an undirected graph G(V, E) and an integer k.
- Let |V| = I.
- Create an instance $\{U, \{M_1, M_2, \dots, M_l\}\}$ of MICROBE COVER where
 - U = E, i.e., each element of U is an edge of G, and
 - ▶ for each node $i \in V$, create a microbe M_i whose compounds are the set of edges incident on i.
- Claim: U can be covered with $\leq k$ microbes iff G has a vertex cover with at
 - $\leq k$ nodes.
- Proof strategy:
 - If G has a vertex cover of size $\leq k$, then U can be covered with $\leq k$ microbes.
 - **2** If U can be covered with $\leq k$ microbes, then G has a vertex cover of size $\leq k$.

Microbe Cover and Set Cover

MICROBE COVER

INSTANCE: A set U of n compounds, a collection M_1, M_2, \ldots, M_l of microbes, where each microbe can make a subset of compounds in U, and an integer k.

QUESTION: Is there a subset of < k microbes that can together make all the compounds in U?

Purely combinatorial problem: a "microbe" is just a set of "compounds."

Microbe Cover and Set Cover

MICROBE COVER

INSTANCE: A set *U* of *n* compounds, a collection M_1, M_2, \ldots, M_l of microbes, where each microbe can make a subset of compounds in *U*, and an integer *k*.

QUESTION: Is there a subset of $\leq k$ microbes that can together make all the compounds in *U*?

n = 10, l = 6

• Purely combinatorial problem: a "microbe" is just a set of "compounds." SET COVER

INSTANCE: A set *U* of *n* elements, a collection S_1, S_2, \ldots, S_m of subsets of *U*, and an integer *k*.

QUESTION: Is there a collection of $\leq k$ sets in the collection whose union is *U*?

Boolean Satisfiability

• Abstract problems formulated in Boolean notation.

Boolean Satisfiability

- Abstract problems formulated in Boolean notation.
- Given a set $X = \{x_1, x_2, \dots, x_n\}$ of *n* Boolean variables.
- Each variable can take the value 0 or 1.
- Term: a variable x_i or its negation $\overline{x_i}$.
- Clause of length I: (or) of I distinct terms $t_1 \vee t_2 \vee \cdots \iota_l$.
- *Truth assignment* for X: is a function $\nu : X \to \{0, 1\}$.
- An assignment ν satisfies a clause C if it causes at least one term in C to evaluate to 1 (since C is an or of terms).
- An assignment *satisfies* a collection of clauses C_1, C_2, \ldots, C_k if it causes all clauses to evaluate to 1, i.e., $C_1 \wedge C_2 \wedge \cdots \wedge C_k = 1$.
 - ν is a satisfying assignment with respect to $C_1, C_2, \ldots C_k$.
 - set of clauses $C_1, C_2, \ldots C_k$ is satisfiable.

- $X = \{x_1, x_2, x_3, x_4\}$
- Terms: $x_1, \overline{x_1}, x_2, \overline{x_2}, x_3, \overline{x_3}, x_4, \overline{x_4}$

- $X = \{x_1, x_2, x_3, x_4\}$
- Terms: $x_1, \overline{x_1}, x_2, \overline{x_2}, x_3, \overline{x_3}, x_4, \overline{x_4}$
- Clauses:
 - $\begin{array}{c} x_1 \lor \overline{x_2} \lor \overline{x_3} \\ x_2 \lor \overline{x_3} \lor x_4 \\ x_3 \lor \overline{x_4} \end{array}$

- $X = \{x_1, x_2, x_3, x_4\}$
- Terms: $x_1, \overline{x_1}, x_2, \overline{x_2}, x_3, \overline{x_3}, x_4, \overline{x_4}$
- Clauses:
 - $\begin{array}{c} x_1 \lor \overline{x_2} \lor \overline{x_3} \\ x_2 \lor \overline{x_3} \lor x_4 \\ x_3 \lor \overline{x_4} \end{array}$
- Assignment: $x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0$

- $X = \{x_1, x_2, x_3, x_4\}$
- Terms: $x_1, \overline{x_1}, x_2, \overline{x_2}, x_3, \overline{x_3}, x_4, \overline{x_4}$
- Clauses:
 - $\begin{array}{c} x_1 \lor \overline{x_2} \lor \overline{x_3} \\ x_2 \lor \overline{x_3} \lor x_4 \\ x_3 \lor \overline{x_4} \end{array}$
- Assignment: $x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0$
 - $\begin{array}{c} \mathbf{x}_1 \lor \overline{\mathbf{x}_2} \lor \overline{\mathbf{x}_3} \\ \mathbf{x}_2 \lor \overline{\mathbf{x}_3} \lor \mathbf{x}_4 \\ \mathbf{x}_3 \lor \overline{\mathbf{x}_4} \end{array}$
 - Not a satisfying assignment

- $X = \{x_1, x_2, x_3, x_4\}$
- Terms: $x_1, \overline{x_1}, x_2, \overline{x_2}, x_3, \overline{x_3}, x_4, \overline{x_4}$
- Clauses:
 - $\begin{array}{c} x_1 \lor \overline{x_2} \lor \overline{x_3} \\ x_2 \lor \overline{x_3} \lor x_4 \\ x_3 \lor \overline{x_4} \end{array}$
- Assignment: $x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0$
 - $\begin{array}{c} \mathbf{x}_1 \lor \overline{\mathbf{x}_2} \lor \overline{\mathbf{x}_3} \\ \mathbf{x}_2 \lor \overline{\mathbf{x}_3} \lor \mathbf{x}_4 \\ \mathbf{x}_3 \lor \overline{\mathbf{x}_4} \end{array}$
 - Not a satisfying assignment
- Assignment: $x_1 = 1, x_2 = 0, x_3 = 0, x_4 = 0$

- $X = \{x_1, x_2, x_3, x_4\}$
- Terms: $x_1, \overline{x_1}, x_2, \overline{x_2}, x_3, \overline{x_3}, x_4, \overline{x_4}$
- Clauses:
 - $\begin{array}{c} x_1 \lor \overline{x_2} \lor \overline{x_3} \\ x_2 \lor \overline{x_3} \lor x_4 \\ x_3 \lor \overline{x_4} \end{array}$
- Assignment: $x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0$
 - $\begin{array}{c} \mathbf{x}_1 \lor \overline{\mathbf{x}_2} \lor \overline{\mathbf{x}_3} \\ \mathbf{x}_2 \lor \overline{\mathbf{x}_3} \lor \mathbf{x}_4 \\ \mathbf{x}_3 \lor \overline{\mathbf{x}_4} \end{array}$
 - Not a satisfying assignment
- Assignment: $x_1 = 1, x_2 = 0, x_3 = 0, x_4 = 0$
 - $\begin{array}{c} x_1 \lor \overline{x_2} \lor \overline{x_3} \\ x_2 \lor \overline{x_3} \lor x_4 \\ x_3 \lor \overline{x_4} \end{array}$
 - Is a satisfying assignment

SAT and 3-SAT

SATISFIABILITY PROBLEM (SAT)

INSTANCE: A set of clauses $C_1, C_2, \dots C_k$ over a set $X = \{x_1, x_2, \dots x_n\}$ of *n* variables.

QUESTION: Is there a satisfying truth assignment for X with respect to C?

SAT and 3-SAT

3-Satisfiability Problem (SAT)

INSTANCE: A set of clauses $C_1, C_2, ..., C_k$, each of length three, over a set $X = \{x_1, x_2, ..., x_n\}$ of *n* variables.

QUESTION: Is there a satisfying truth assignment for X with respect to C?

SAT and 3-SAT

3-Satisfiability Problem (SAT)

INSTANCE: A set of clauses $C_1, C_2, ..., C_k$, each of length three, over a set $X = \{x_1, x_2, ..., x_n\}$ of *n* variables.

QUESTION: Is there a satisfying truth assignment for X with respect to C?

- SAT and 3-SAT are fundamental combinatorial search problems.
- We have to make *n* independent decisions (the assignments for each variable) while satisfying a set of constraints.
- Satisfying each constraint in isolation is easy, but we have to make our decisions so that all constraints are satisfied simultaneously.

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $\blacktriangleright \quad C_3 = \overline{x_1} \vee \overline{x_2} \vee 0$

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $\bullet \quad C_3 = \overline{x_1} \vee \overline{x_2} \vee 0$
- Is $C_1 \wedge C_2$ satisfiable?

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $\bullet \quad C_3 = \overline{x_1} \vee \overline{x_2} \vee 0$
- Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $\bullet \quad C_3 = \overline{x_1} \vee \overline{x_2} \vee 0$
- Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- **2** Is $C_1 \wedge C_3$ satisfiable?

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $\bullet \quad C_3 = \overline{x_1} \vee \overline{x_2} \vee 0$
- Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- 2 Is $C_1 \wedge C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $\bullet \quad C_3 = \overline{x_1} \vee \overline{x_2} \vee 0$
- Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- **2** Is $C_1 \wedge C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.
- **3** Is $C_2 \wedge C_3$ satisfiable?

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $\bullet \quad C_3 = \overline{x_1} \vee \overline{x_2} \vee 0$
- Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- **2** Is $C_1 \wedge C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.
- **③** Is $C_2 \wedge C_3$ satisfiable? Yes, by $x_1 = 0, x_2 = 1$.

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $\bullet \quad C_3 = \overline{x_1} \vee \overline{x_2} \vee 0$
- Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- **2** Is $C_1 \wedge C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.
- **③** Is $C_2 \wedge C_3$ satisfiable? Yes, by $x_1 = 0, x_2 = 1$.
- Is $C_1 \wedge C_2 \wedge C_3$ satisfiable?

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $\bullet \quad C_3 = \overline{x_1} \vee \overline{x_2} \vee 0$
- Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- **2** Is $C_1 \wedge C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.
- **③** Is $C_2 \wedge C_3$ satisfiable? Yes, by $x_1 = 0, x_2 = 1$.
- Is $C_1 \wedge C_2 \wedge C_3$ satisfiable? No.

- $C_1 = x_1 \vee \overline{x_2} \vee \overline{x_3}$
- $C_2 = \overline{x_1} \lor x_2 \lor x_4$
- $C_3 = \overline{x_1} \lor x_3 \lor \overline{x_4}$
- We want to prove $3\text{-SAT} \leq_P \text{INDEPENDENT SET}$.

- $C_1 = \underline{x_1} \vee \overline{x_2} \vee \overline{x_3} \quad \textbf{ Select } x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 1.$
- $C_2 = \overline{x_1} \vee \underline{x_2} \vee \underline{x_4}$
- $C_3 = \overline{x_1} \vee \underline{x_3} \vee \overline{x_4}$
- We want to prove 3-SAT \leq_P INDEPENDENT SET.
- Two ways to think about 3-SAT:
 - Make an independent 0/1 decision on each variable and succeed if we achieve one of three ways in which to satisfy each clause.

$$C_1 = x_1 \lor \overline{x_2} \lor \overline{x_3}$$

 Select $x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 1$

② Choose one literal from each clause to evaluate to true.

 $C_2 = \overline{x_1} \lor x_2 \lor x_4$ $C_3 = \overline{x_1} \lor x_3 \lor \overline{x_4}$

- We want to prove 3-SAT \leq_P INDEPENDENT SET.
- Two ways to think about 3-SAT:
 - Make an independent 0/1 decision on each variable and succeed if we achieve one of three ways in which to satisfy each clause.
 - Choose (at least) one term from each clause. Find a truth assignment that causes each chosen term to evaluate to 1. Ensure that no two terms selected conflict, e.g., select x₂ in C₁ and x₂ in C₂.

$$C_1 = x_1 \lor \overline{x_2} \lor \overline{x_3}$$
$$C_2 = \overline{x_1} \lor x_2 \lor \overline{x_4}$$

 $C_3 = \overline{x_1} \lor x_3 \lor \overline{x_4}$

- Select $x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 1$.
- One one literal from each clause to evaluate to true.

• Choices of selected literals imply $x_1 = 0, x_2 = 0, x_4 = 1$.

- We want to prove $3\text{-SAT} \leq_P \text{INDEPENDENT SET}$.
- Two ways to think about 3-SAT:
 - Make an independent 0/1 decision on each variable and succeed if we achieve one of three ways in which to satisfy each clause.
 - Choose (at least) one term from each clause. Find a truth assignment that causes each chosen term to evaluate to 1. Ensure that no two terms selected conflict, e.g., select x
 ₂ in C₁ and x₂ in C₂.

- $C_1 = x_1 \lor \overline{x_2} \lor \overline{x_3}$ $C_2 = \overline{x_1} \lor x_2 \lor x_4$
- $C_3 = \overline{x_1} \lor x_3 \lor \overline{x_4}$
- We are given an instance of 3-SAT with *k* clauses of length three over *n* variables.
- Construct an instance of independent set: graph G(V, E) with 3k nodes.

- We are given an instance of 3-SAT with k clauses of length three over n variables.
- Construct an instance of independent set: graph G(V, E) with 3k nodes.
 - For each clause C_i , $1 \le i \le k$, add a triangle of three nodes v_{i1} , v_{i2} , v_{i3} and three edges to G.
 - ▶ Label each node v_{ij} , $1 \le j \le 3$ with the *j*th term in C_i .

- We are given an instance of 3-SAT with k clauses of length three over n variables.
- Construct an instance of independent set: graph G(V, E) with 3k nodes.
 - For each clause C_i, 1 ≤ i ≤ k, add a triangle of three nodes v_{i1}, v_{i2}, v_{i3} and three edges to G.
 - Label each node v_{ij} , $1 \le j \le 3$ with the *j*th term in C_i .
 - Add an edge between each pair of nodes whose labels correspond to terms that conflict.

• Claim: 3-SAT instance is satisfiable iff G has an independent set of size k.

- Claim: 3-SAT instance is satisfiable iff G has an independent set of size k.
- Satisfiable assignment \rightarrow independent set of size k:

- Claim: 3-SAT instance is satisfiable iff G has an independent set of size k.
- Satisfiable assignment → independent set of size k: Each triangle in G has at least one node whose label evaluates to 1. Set S of nodes consisting of one such node from each triangle forms an independent set of size = k. Why?

- Claim: 3-SAT instance is satisfiable iff G has an independent set of size k.
- Satisfiable assignment → independent set of size k: Each triangle in G has at least one node whose label evaluates to 1. Set S of nodes consisting of one such node from each triangle forms an independent set of size = k. Why?
- Independent set S of size $k \rightarrow$ satisfiable assignment:

- Claim: 3-SAT instance is satisfiable iff G has an independent set of size k.
- Satisfiable assignment → independent set of size k: Each triangle in G has at least one node whose label evaluates to 1. Set S of nodes consisting of one such node from each triangle forms an independent set of size = k. Why?
- Independent set S of size k → satisfiable assignment: the size of this set is k. How do we construct a satisfying truth assignment from the nodes in the independent set?

- Claim: 3-SAT instance is satisfiable iff G has an independent set of size k.
- Satisfiable assignment → independent set of size k: Each triangle in G has at least one node whose label evaluates to 1. Set S of nodes consisting of one such node from each triangle forms an independent set of size = k. Why?
- Independent set S of size k → satisfiable assignment: the size of this set is k. How do we construct a satisfying truth assignment from the nodes in the independent set?
 - For each variable x_i , only x_i or $\overline{x_i}$ is the label of a node in S. Why?

- Claim: 3-SAT instance is satisfiable iff G has an independent set of size k.
- Satisfiable assignment → independent set of size k: Each triangle in G has at least one node whose label evaluates to 1. Set S of nodes consisting of one such node from each triangle forms an independent set of size = k. Why?
- Independent set S of size k → satisfiable assignment: the size of this set is k. How do we construct a satisfying truth assignment from the nodes in the independent set?
 - For each variable x_i , only x_i or $\overline{x_i}$ is the label of a node in S. Why?
 - If x_i is the label of a node in S, set $x_i = 1$; else set $x_i = 0$.
 - Why is each clause satisfied?

Transitivity of Reductions

• Claim: If $Z \leq_P Y$ and $Y \leq_P X$, then $Z \leq_P X$.

Transitivity of Reductions

- Claim: If $Z \leq_P Y$ and $Y \leq_P X$, then $Z \leq_P X$.
- We have shown

3-SAT \leq_P Independent Set \leq_P Vertex Cover \leq_P Set Cover

Finding vs. Certifying

- Is it easy to check if a given set of vertices in an undirected graph forms an independent set of size at least *k*?
- Is it easy to check if a particular truth assignment satisfies a set of clauses?

Finding vs. Certifying

- Is it easy to check if a given set of vertices in an undirected graph forms an independent set of size at least *k*?
- Is it easy to check if a particular truth assignment satisfies a set of clauses?
- We draw a contrast between *finding* a solution and *checking* a solution (in polynomial time).
- Since we have not been able to develop efficient algorithms to solve many decision problems, let us turn our attention to whether we can check if a proposed solution is correct.

PRIMES **INSTANCE:** A natural number *n* **QUESTION:** Is *n* prime?

• Decision problem X: for every input s, answer X(s) is yes or no.

PRIMES INSTANCE: A natural number *n* QUESTION: Is *n* prime?

- Decision problem X: for every input s, answer X(s) is yes or no.
- An algorithm A for a decision problem receives an input s and returns $A(s) \in {\text{yes}, \text{no}}$.
- An algorithm A solves the problem X if for every input s,
 - if X(s) = yes then A(s) = yes and
 - if X(s) = no then A(s) = no

PRIMES **INSTANCE:** A natural number *n* **QUESTION:** Is *n* prime?

- Decision problem X: for every input s, answer X(s) is yes or no.
- An algorithm A for a decision problem receives an input s and returns $A(s) \in {\text{yes}, \text{no}}$.
- An algorithm A solves the problem X if for every input s,
 - if X(s) = yes then A(s) = yes and
 - if X(s) = no then A(s) = no
- A has a *polynomial running time* if there is a polynomial function $p(\cdot)$ such that for every input s, A terminates on s in at most O(p(|s|)) steps.
 - ▶ There is an algorithm such that $p(|s|) = |s|^{12}$ for PRIMES (Agarwal, Kayal, Saxena, 2002, improved to $|s|^6$ by Pomerance and Lenstra, 2005).

PRIMES INSTANCE: A natural number *n* QUESTION: Is *n* prime?

- Decision problem X: for every input s, answer X(s) is yes or no.
- An algorithm A for a decision problem receives an input s and returns $A(s) \in {\text{yes}, \text{no}}$.
- An algorithm A solves the problem X if for every input s,
 - if X(s) = yes then A(s) = yes and
 - if X(s) =no then A(s) =no
- A has a *polynomial running time* if there is a polynomial function $p(\cdot)$ such that for every input s, A terminates on s in at most O(p(|s|)) steps.
 - ► There is an algorithm such that $p(|s|) = |s|^{12}$ for PRIMES (Agarwal, Kayal, Saxena, 2002, improved to $|s|^6$ by Pomerance and Lenstra, 2005).
- \mathcal{P} : set of problems X for which there is a polynomial time algorithm.

PRIMES INSTANCE: A natural number *n* QUESTION: Is *n* prime?

- Decision problem X: for every input s, answer X(s) is yes or no.
- An algorithm A for a decision problem receives an input s and returns $A(s) \in {\text{yes}, \text{no}}$.
- An algorithm A solves the problem X if for every input s,
 - if X(s) = yes then A(s) = yes and
 - if X(s) = no then A(s) = no
- A has a *polynomial running time* if there is a polynomial function $p(\cdot)$ such that for every input s, A terminates on s in at most O(p(|s|)) steps.
 - ► There is an algorithm such that $p(|s|) = |s|^{12}$ for PRIMES (Agarwal, Kayal, Saxena, 2002, improved to $|s|^6$ by Pomerance and Lenstra, 2005).
- \mathcal{P} : set of problems X for which there is a polynomial time algorithm.

A decision problem X is in \mathcal{P} iff there is an algorithm A with polynomial running time that solves X.

- A "checking" algorithm for a decision problem X has a different structure from an algorithm that solves X.
- Checking algorithm needs input s as well as a separate "certificate" t that contains evidence that X(s) = yes.

- A "checking" algorithm for a decision problem X has a different structure from an algorithm that solves X.
- Checking algorithm needs input s as well as a separate "certificate" t that contains evidence that X(s) = yes.
- An algorithm *B* is an *efficient certifier* for a problem *X* if
 - **(**) B is a polynomial time algorithm that takes two inputs s and t and
 - If or all inputs s
 - * X(s) = yes iff there is a certificate t such that B(s, t) = yes and
 - * the size of t is polynomial in the size of s.

- A "checking" algorithm for a decision problem X has a different structure from an algorithm that solves X.
- Checking algorithm needs input s as well as a separate "certificate" t that contains evidence that X(s) = yes.
- An algorithm B is an *efficient certifier* for a problem X if
 - **(**) B is a polynomial time algorithm that takes two inputs s and t and
 - If or all inputs s
 - * X(s) = yes iff there is a certificate t such that B(s, t) = yes and
 - * the size of t is polynomial in the size of s.
- Certifier's job is to take a candidate certificate (t) that $s \in X$ and check in polynomial time whether t is a correct certificate.
- Certificate *t* must be "short" so that certifier can run in polynomial time.

- A "checking" algorithm for a decision problem X has a different structure from an algorithm that solves X.
- Checking algorithm needs input s as well as a separate "certificate" t that contains evidence that X(s) = yes.
- An algorithm *B* is an *efficient certifier* for a problem *X* if
 - **(**) B is a polynomial time algorithm that takes two inputs s and t and
 - If or all inputs s
 - * X(s) = yes iff there is a certificate t such that B(s, t) = yes and
 - * the size of t is polynomial in the size of s.
- Certifier's job is to take a candidate certificate (t) that $s \in X$ and check in polynomial time whether t is a correct certificate.
- Certificate *t* must be "short" so that certifier can run in polynomial time.
- Certifier does not care about how to find these certificates.

• \mathcal{P} : set of problems X for which there is a polynomial time algorithm.

- \mathcal{P} : set of problems X for which there is a polynomial time algorithm.
- $\bullet \ \mathcal{NP}$ is the set of all problems for which there exists an efficient certifier.
- 3-SAT $\in \mathcal{NP}$:

- \mathcal{P} : set of problems X for which there is a polynomial time algorithm.
- $\bullet~\mathcal{NP}$ is the set of all problems for which there exists an efficient certifier.
- $3\text{-}SAT \in \mathcal{NP}$:
 - Certificate *t*: a truth assignment to the variables.
 - Certifier B:

- \mathcal{P} : set of problems X for which there is a polynomial time algorithm.
- $\bullet~\mathcal{NP}$ is the set of all problems for which there exists an efficient certifier.
- $3\text{-}SAT \in \mathcal{NP}$:
 - Certificate *t*: a truth assignment to the variables.
 - Certifier *B*: checks whether assignment causes each clause to evaluate to true.

- \mathcal{P} : set of problems X for which there is a polynomial time algorithm.
- $\bullet~\mathcal{NP}$ is the set of all problems for which there exists an efficient certifier.
- 3-SAT $\in \mathcal{NP}$:
 - Certificate *t*: a truth assignment to the variables.
 - Certifier *B*: checks whether assignment causes each clause to evaluate to true.
- INDEPENDENT SET $\in \mathcal{NP}$:
 - Certificate t:
 - Certifier *B*:

- \mathcal{P} : set of problems X for which there is a polynomial time algorithm.
- $\bullet~\mathcal{NP}$ is the set of all problems for which there exists an efficient certifier.
- 3-SAT $\in \mathcal{NP}$:
 - Certificate *t*: a truth assignment to the variables.
 - Certifier *B*: checks whether assignment causes each clause to evaluate to true.
- INDEPENDENT SET $\in \mathcal{NP}$:
 - Certificate t: a set of at least k vertices.
 - Certifier *B*:

- \mathcal{P} : set of problems X for which there is a polynomial time algorithm.
- $\bullet~\mathcal{NP}$ is the set of all problems for which there exists an efficient certifier.
- 3-SAT $\in \mathcal{NP}$:
 - Certificate *t*: a truth assignment to the variables.
 - ► Certifier *B*: checks whether assignment causes each clause to evaluate to true.
- INDEPENDENT SET $\in \mathcal{NP}$:
 - Certificate *t*: a set of at least *k* vertices.
 - Certifier *B*: checks that no pair of these vertices are connected by an edge.

- \mathcal{P} : set of problems X for which there is a polynomial time algorithm.
- $\bullet~\mathcal{NP}$ is the set of all problems for which there exists an efficient certifier.
- $3\text{-}SAT \in \mathcal{NP}$:
 - Certificate *t*: a truth assignment to the variables.
 - ► Certifier *B*: checks whether assignment causes each clause to evaluate to true.
- INDEPENDENT SET $\in \mathcal{NP}$:
 - Certificate *t*: a set of at least *k* vertices.
 - ► Certifier *B*: checks that no pair of these vertices are connected by an edge.

.

- Set Cover $\in \mathcal{NP}$:
 - Certificate t:
 - Certifier *B*:

- \mathcal{P} : set of problems X for which there is a polynomial time algorithm.
- $\bullet~\mathcal{NP}$ is the set of all problems for which there exists an efficient certifier.
- 3-SAT $\in \mathcal{NP}$:
 - Certificate *t*: a truth assignment to the variables.
 - ► Certifier *B*: checks whether assignment causes each clause to evaluate to true.
- INDEPENDENT SET $\in \mathcal{NP}$:
 - Certificate *t*: a set of at least *k* vertices.
 - ► Certifier *B*: checks that no pair of these vertices are connected by an edge.
- Set Cover $\in \mathcal{NP}$:
 - Certificate t: a list of k sets from the collection.
 - Certifier *B*:

- \mathcal{P} : set of problems X for which there is a polynomial time algorithm.
- $\bullet~\mathcal{NP}$ is the set of all problems for which there exists an efficient certifier.
- $3\text{-SAT} \in \mathcal{NP}$:
 - Certificate *t*: a truth assignment to the variables.
 - Certifier *B*: checks whether assignment causes each clause to evaluate to true.
- INDEPENDENT SET $\in \mathcal{NP}$:
 - Certificate *t*: a set of at least *k* vertices.
 - Certifier *B*: checks that no pair of these vertices are connected by an edge.
- Set Cover $\in \mathcal{NP}$:
 - Certificate *t*: a list of *k* sets from the collection.
 - Certifier *B*: checks if their union of these sets is *U*.

• Claim: $\mathcal{P} \subseteq \mathcal{NP}$.

- Claim: $\mathcal{P} \subseteq \mathcal{NP}$.
 - Let X be any problem in \mathcal{P} .
 - There is a polynomial time algorithm A that solves X.

- Claim: $\mathcal{P} \subseteq \mathcal{NP}$.
 - Let X be any problem in \mathcal{P} .
 - There is a polynomial time algorithm A that solves X.
 - B ignores t and simply returns A(s). Why is B an efficient certifier?

• Claim: $\mathcal{P} \subseteq \mathcal{NP}$.

- Let X be any problem in \mathcal{P} .
- There is a polynomial time algorithm A that solves X.
- B ignores t and simply returns A(s). Why is B an efficient certifier?
- Is $\mathcal{P} = \mathcal{NP}$ or is $\mathcal{NP} \mathcal{P} \neq \emptyset$?

• Claim: $\mathcal{P} \subseteq \mathcal{NP}$.

- Let X be any problem in \mathcal{P} .
- There is a polynomial time algorithm A that solves X.
- B ignores t and simply returns A(s). Why is B an efficient certifier?
- Is $\mathcal{P} = \mathcal{NP}$ or is $\mathcal{NP} \mathcal{P} \neq \emptyset$? One of the major unsolved problems in computer science.

T. M. Murali

April 19, 24, 26, 2017

NP and Computational Intractability

• Claim: $\mathcal{P} \subseteq \mathcal{NP}$.

- Let X be any problem in \mathcal{P} .
- There is a polynomial time algorithm A that solves X.
- B ignores t and simply returns A(s). Why is B an efficient certifier?
- Is P = NP or is NP P ≠ Ø? One of the major unsolved problems in computer science. \$1M prize offered by Clay Mathematics Institute.

- $\mathcal{P} \subseteq \mathcal{NP}$
- 3-SAT, VERTEXCOVER, SETCOVER, INDEPENDENTSET are in \mathcal{NP} .
- 3-SAT \leq_P Independent Set \leq_P Vertex Cover \leq_P Set Cover

- $\mathcal{P} \subseteq \mathcal{NP}$
- 3-SAT, VERTEXCOVER, SETCOVER, INDEPENDENTSET are in \mathcal{NP} .
- 3-SAT \leq_P Independent Set \leq_P Vertex Cover \leq_P Set Cover
- What is the structure of the problems in \mathcal{NP} ?

- $\mathcal{P} \subseteq \mathcal{NP}$
- 3-SAT, VERTEXCOVER, SETCOVER, INDEPENDENTSET are in \mathcal{NP} .
- 3-SAT \leq_P Independent Set \leq_P Vertex Cover \leq_P Set Cover
- What is the structure of the problems in \mathcal{NP} ?
 - Is there a sequence of problems X_1, X_2, X_3, \ldots in \mathcal{NP} , such that $X_1 \leq_P X_2 \leq_P X_3 \leq_P \ldots$?

- $\mathcal{P} \subseteq \mathcal{NP}$
- 3-SAT, VERTEXCOVER, SETCOVER, INDEPENDENTSET are in \mathcal{NP} .
- 3-SAT \leq_P Independent Set \leq_P Vertex Cover \leq_P Set Cover
- What is the structure of the problems in \mathcal{NP} ?
 - Is there a sequence of problems X_1, X_2, X_3, \ldots in \mathcal{NP} , such that $X_1 \leq_P X_2 \leq_P X_3 \leq_P \ldots$?
 - are there two problems X₁ and X₂ in \mathcal{NP} such that there is no problem X ∈ \mathcal{NP} where X₁ ≤_P X and X₂ ≤_P X?

$\mathcal{NP}\text{-}\textbf{Complete} \text{ and } \mathcal{NP}\text{-}\textbf{Hard} \text{ Problems}$

 \bullet What are the hardest problems in $\mathcal{NP}?$

$\mathcal{NP}\text{-}\textbf{Complete} \text{ and } \mathcal{NP}\text{-}\textbf{Hard} \text{ Problems}$

- What are the hardest problems in $\mathcal{NP}?$
- A problem X is \mathcal{NP} -Complete if
 - (i) $X \in \mathcal{NP}$ and
 - (ii) for every problem $Y \in \mathcal{NP}$, $Y \leq_P X$.

A problem X is \mathcal{NP} -Hard if

(i) for every problem $Y \in \mathcal{NP}$, $Y \leq_P X$.

\mathcal{NP} -Complete and \mathcal{NP} -Hard Problems

- What are the hardest problems in \mathcal{NP} ?
- A problem X is \mathcal{NP} -Complete if
 - (i) $X \in \mathcal{NP}$ and
 - $Y \leq_{P} X$.

A problem X is \mathcal{NP} -Hard if

• Claim: Suppose X is \mathcal{NP} -Complete. Then $X \in \mathcal{P}$ iff $\mathcal{P} = \mathcal{NP}$.

\mathcal{NP} -Complete and \mathcal{NP} -Hard Problems

- What are the hardest problems in \mathcal{NP} ?
- A problem X is \mathcal{NP} -Complete if
 - (i) $X \in \mathcal{NP}$ and
 - (ii) for every problem $Y \in \mathcal{NP}$, $Y \leq_{P} X$.

A problem X is \mathcal{NP} -Hard if

- Claim: Suppose X is \mathcal{NP} -Complete. Then $X \in \mathcal{P}$ iff $\mathcal{P} = \mathcal{NP}$.
- Corollary: If there is any problem in \mathcal{NP} that cannot be solved in polynomial time, then no \mathcal{NP} -Complete problem can be solved in polynomial time.

\mathcal{NP} -Complete and \mathcal{NP} -Hard Problems

- What are the hardest problems in \mathcal{NP} ?
- A problem X is \mathcal{NP} -Complete if
 - (i) $X \in \mathcal{NP}$ and
 - (ii) for every problem $Y \in \mathcal{NP}$, $Y \leq_{P} X$.

A problem X is \mathcal{NP} -Hard if

- Claim: Suppose X is \mathcal{NP} -Complete. Then $X \in \mathcal{P}$ iff $\mathcal{P} = \mathcal{NP}$.
- Corollary: If there is any problem in \mathcal{NP} that cannot be solved in polynomial time, then no \mathcal{NP} -Complete problem can be solved in polynomial time.
- Does even one \mathcal{NP} -Complete problem exist?! If it does, how can we prove that *every* problem in \mathcal{NP} reduces to this problem?

Circuit Satisfiability

 \bullet Cook-Levin Theorem: CIRCUIT SATISFIABILITY is $\mathcal{NP}\text{-}\mathsf{Complete}.$

Circuit Satisfiability

- Cook-Levin Theorem: CIRCUIT SATISFIABILITY is \mathcal{NP} -Complete.
- A circuit K is a labelled, directed acyclic graph such that
 - the *sources* in *K* are labelled with constants (0 or 1) or the name of a distinct variable (the *inputs* to the circuit).
 - **2** every other node is labelled with one Boolean operator \land , \lor , or \neg .
 - \bigcirc a single node with no outgoing edges represents the *output* of *K*.

 $\ensuremath{\textit{Figure}}$ 8.4 A circuit with three inputs, two additional sources that have assigned truth values, and one output.

Circuit Satisfiability

- Cook-Levin Theorem: CIRCUIT SATISFIABILITY is \mathcal{NP} -Complete.
- A circuit K is a labelled, directed acyclic graph such that
 - the *sources* in *K* are labelled with constants (0 or 1) or the name of a distinct variable (the *inputs* to the circuit).
 - **2** every other node is labelled with one Boolean operator \land , \lor , or \neg .
 - \bigcirc a single node with no outgoing edges represents the *output* of *K*.

CIRCUIT SATISFIABILITY

INSTANCE: A circuit *K*. **QUESTION:** Is there a truth assignment to the inputs that causes the output to have value 1?

Figure 8.4 A circuit with three inputs, two additional sources that have assigned truth values, and one output.

▶ Skip proof; read textbook or Chapter 2.6 of Garey and Johnson.

Proving Circuit Satisfiability is $\mathcal{NP}\text{-}\text{Complete}$

Proving Circuit Satisfiability is \mathcal{NP} -Complete

• Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}.$

Proving Circuit Satisfiability is \mathcal{NP} -Complete

- Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}$.
- Claim we will not prove: any algorithm that takes a fixed number *n* of bits as input and produces a yes/no answer
 - I can be represented by an equivalent circuit and
 - **②** if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.

Proving Circuit Satisfiability is $\mathcal{NP}\text{-}\text{Complete}$

- Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}.$
- Claim we will not prove: any algorithm that takes a fixed number *n* of bits as input and produces a yes/no answer
 - Can be represented by an equivalent circuit and
 - if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.
- To show $X \leq_P \text{CIRCUIT SATISFIABILITY}$, given an input *s* of length *n*, we want to determine whether $s \in X$ using a black box that solves CIRCUIT SATISFIABILITY.

- Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}.$
- Claim we will not prove: any algorithm that takes a fixed number *n* of bits as input and produces a yes/no answer
 - I can be represented by an equivalent circuit and
 - if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.
- To show $X \leq_P \text{CIRCUIT SATISFIABILITY}$, given an input *s* of length *n*, we want to determine whether $s \in X$ using a black box that solves CIRCUIT SATISFIABILITY.
- What do we know about X?

- Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}.$
- Claim we will not prove: any algorithm that takes a fixed number *n* of bits as input and produces a yes/no answer
 - I can be represented by an equivalent circuit and
 - if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.
- To show $X \leq_P \text{CIRCUIT SATISFIABILITY}$, given an input *s* of length *n*, we want to determine whether $s \in X$ using a black box that solves CIRCUIT SATISFIABILITY.
- What do we know about X? It has an efficient certifier $B(\cdot, \cdot)$.

- Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}.$
- Claim we will not prove: any algorithm that takes a fixed number *n* of bits as input and produces a yes/no answer
 - I can be represented by an equivalent circuit and
 - if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.
- To show $X \leq_P \text{CIRCUIT SATISFIABILITY}$, given an input *s* of length *n*, we want to determine whether $s \in X$ using a black box that solves CIRCUIT SATISFIABILITY.
- What do we know about X? It has an efficient certifier $B(\cdot, \cdot)$.
- To determine whether $s \in X$, we ask "Is there a certificate t of length p(n) such that B(s,t) = yes?"

NP-Complete

Proving Circuit Satisfiability is \mathcal{NP} -Complete

• To determine whether $s \in X$, we ask "Is there a certificate t of length p(|s|) such that B(s, t) = yes?"

NP-Complete

Proving Circuit Satisfiability is \mathcal{NP} -Complete

- To determine whether $s \in X$, we ask "Is there a certificate t of length p(|s|) such that B(s, t) = yes?"
- View $B(\cdot, \cdot)$ as an algorithm on n + p(n) bits.
- Convert B to a polynomial-sized circuit K with n + p(n) sources.
 - First n sources are hard-coded with the bits of s.
 - 2 The remaining p(n) sources labelled with variables representing the bits of t.

NP-Complete

Proving Circuit Satisfiability is \mathcal{NP} -Complete

- To determine whether $s \in X$, we ask "Is there a certificate t of length p(|s|) such that B(s,t) = yes?"
- View $B(\cdot, \cdot)$ as an algorithm on n + p(n) bits.
- Convert B to a polynomial-sized circuit K with n + p(n) sources.
 - First n sources are hard-coded with the bits of s.
 - 2 The remaining p(n) sources labelled with variables representing the bits of t.
- s ∈ X iff there is an assignment of the input bits of K that makes K satisfiable.

• Does a graph G on n nodes have a two-node independent set?

- Does a graph G on n nodes have a two-node independent set?
- s encodes the graph G with $\binom{n}{2}$ bits.
- *t* encodes the independent set with *n* bits.
- Certifier needs to check if
 - at least two bits in t are set to 1 and
 - on two bits in t are set to 1 if they form the ends of an edge (the corresponding bit in s is set to 1).

• Suppose G contains three nodes u, v, and w with v connected to u and w.

• Suppose G contains three nodes u, v, and w with v connected to u and w.

Asymmetry of Certification

- \bullet Definition of efficient certification and \mathcal{NP} is fundamentally asymmetric:
 - An input s is a "yes" instance iff there exists a short certificate t such that B(s, t) = yes.
 - An input s is a "no" instance iff for all short certificates t, B(s, t) = no.

Asymmetry of Certification

- \bullet Definition of efficient certification and \mathcal{NP} is fundamentally asymmetric:
 - An input s is a "yes" instance iff there exists a short certificate t such that B(s, t) = yes.
 - An input s is a "no" instance iff for all short certificates t, B(s,t) = no. The definition of NP does not guarantee a short proof for "no" instances.

For a decision problem X, its complementary problem X is the set of inputs s such that s ∈ X iff s ∉ X.

- For a decision problem X, its complementary problem X is the set of inputs s such that s ∈ X iff s ∉ X.
- If $X \in \mathcal{P}$,

- For a decision problem X, its complementary problem X is the set of inputs s such that s ∈ X iff s ∉ X.
- If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$.

- For a decision problem X, its complementary problem X is the set of inputs s such that s ∈ X iff s ∉ X.
- If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$.
- If $X \in \mathcal{NP}$, then is $\overline{X} \in \mathcal{NP}$?

- For a decision problem X, its complementary problem X is the set of inputs s such that s ∈ X iff s ∉ X.
- If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$.
- If $X \in \mathcal{NP}$, then is $\overline{X} \in \mathcal{NP}$? Unclear in general.
- A problem X belongs to the class co-NP iff \overline{X} belongs to NP.

- For a decision problem X, its complementary problem X is the set of inputs s such that s ∈ X iff s ∉ X.
- If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$.
- If $X \in \mathcal{NP}$, then is $\overline{X} \in \mathcal{NP}$? Unclear in general.
- A problem X belongs to the class co-NP iff \overline{X} belongs to NP. **CO-NP NP NP-hard NPC**
- Open problem: Is $\mathcal{NP} = \text{co-}\mathcal{NP}$?

- For a decision problem X, its complementary problem X is the set of inputs s such that s ∈ X iff s ∉ X.
- If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$.
- If $X \in \mathcal{NP}$, then is $\overline{X} \in \mathcal{NP}$? Unclear in general.
- A problem X belongs to the class co-NP iff \overline{X} belongs to NP. **CO-NP NP NP-hard NPC**
- Open problem: Is $\mathcal{NP} = \text{co-}\mathcal{NP}$?
- Claim: If $\mathcal{NP} \neq \text{co-}\mathcal{NP}$ then $\mathcal{P} \neq \mathcal{NP}$.

Good Characterisations: the Class $\mathcal{NP}\cap\text{co-}\mathcal{NP}$

- \bullet If a problem belongs to both \mathcal{NP} and co- $\mathcal{NP},$ then
 - When the answer is yes, there is a short proof.
 - When the answer is no, there is a short proof.

Good Characterisations: the Class $\mathcal{NP}\cap\text{co-}\mathcal{NP}$

- \bullet If a problem belongs to both \mathcal{NP} and co- $\mathcal{NP},$ then
 - When the answer is yes, there is a short proof.
 - When the answer is no, there is a short proof.
- \bullet Problems in $\mathcal{NP}\cap \text{co-}\mathcal{NP}$ have a good characterisation.

Good Characterisations: the Class $\mathcal{NP}\cap\text{co-}\mathcal{NP}$

- \bullet If a problem belongs to both \mathcal{NP} and co- $\mathcal{NP},$ then
 - When the answer is yes, there is a short proof.
 - When the answer is no, there is a short proof.
- \bullet Problems in $\mathcal{NP}\cap \text{co-}\mathcal{NP}$ have a good characterisation.
- Example is the problem of determining if a flow network contains a flow of value at least ν , for some given value of ν .
 - Yes: construct a flow of value at least ν .
 - No: demonstrate a cut with capacity less than ν .
Good Characterisations: the Class $\mathcal{NP}\cap\text{co-}\mathcal{NP}$

- \bullet If a problem belongs to both \mathcal{NP} and co- $\mathcal{NP},$ then
 - When the answer is yes, there is a short proof.
 - When the answer is no, there is a short proof.
- Problems in $\mathcal{NP} \cap \text{co-}\mathcal{NP}$ have a good characterisation.
- Example is the problem of determining if a flow network contains a flow of value at least ν , for some given value of ν .
 - Yes: construct a flow of value at least v.
 - No: demonstrate a cut with capacity less than ν .

• Claim: $\mathcal{P} \subseteq \mathcal{NP} \cap \text{co-}\mathcal{NP}$.

Good Characterisations: the Class $\mathcal{NP}\cap\text{co-}\mathcal{NP}$

- \bullet If a problem belongs to both \mathcal{NP} and co- $\mathcal{NP},$ then
 - When the answer is yes, there is a short proof.
 - When the answer is no, there is a short proof.
- Problems in $\mathcal{NP} \cap \text{co-}\mathcal{NP}$ have a good characterisation.
- Example is the problem of determining if a flow network contains a flow of value at least ν , for some given value of ν .
 - Yes: construct a flow of value at least v.
 - No: demonstrate a cut with capacity less than ν .

- Claim: $\mathcal{P} \subseteq \mathcal{NP} \cap \text{co-}\mathcal{NP}$.
- Open problem: Is $\mathcal{P} = \mathcal{NP} \cap \text{co-}\mathcal{NP}$?