Applications of Network Flow

T. M. Murali

April 12, 17, 19 2017

- Maximum Flow and Minimum Cu
- Two rich algorithmic problems.
- Fundamental problems in combinatorial optimization.
- Beautiful mathematical duality between flows and cuts.
- Numerous non-trivial applications:
 - Bipartite matching.
 - Data mining.
 - Project selection.
 - Airline scheduling.
 - Baseball elimination.
 - Image segmentation.
 - Network connectivity.
 - Open-pit mining.

- Network reliability.
- Distributed computing.
- Egalitarian stable matching.
- Security of statistical data.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- Gene function prediction.

- Two rich algorithmic problems.
- Fundamental problems in combinatorial optimization.
- Beautiful mathematical duality between flows and cuts.
- Numerous non-trivial applications:
 - Bipartite matching.
 - Data mining.
 - Project selection.
 - Airline scheduling.
 - Baseball elimination.
 - Image segmentation.
 - Network connectivity.
 - Open-pit mining.

- Network reliability.
- Distributed computing.
- Egalitarian stable matching.
- Security of statistical data.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- Gene function prediction.

Maximum Flow and Minimum Cut

- Two rich algorithmic problems.
- Fundamental problems in combinatorial optimization.
- Beautiful mathematical duality between flows and cuts.
- Numerous non-trivial applications:
 - Bipartite matching.
 - Data mining.
 - Project selection.
 - Airline scheduling.
 - Baseball elimination
 - Image segmentation.
 - Network connectivity.
 - Open-pit mining.
- We will only sketch proofs. Read details from the textbook.

- Network reliability.
- Distributed computing.
- Egalitarian stable matching.
- Security of statistical data.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- Gene function prediction.

- Bipartite Graph: a graph G(V, E) where $V = X \cup Y$, X and Y are disjoint and $E \subseteq X \times Y$.
- Bipartite graphs model situations in which objects are matched with or assigned to other objects: e.g., marriages, residents/hospitals, jobs/machines.

T. M. Murali Applications of Network Flow April 12, 17, 19 2017

- Bipartite Graph: a graph G(V, E) where $V = X \cup Y$, X and Y are disjoint and $E \subset X \times Y$.
- Bipartite graphs model situations in which objects are matched with or assigned to other objects: e.g., marriages, residents/hospitals, jobs/machines.
- A matching in a bipartite graph G is a set $M \subseteq E$ of edges such that each node of V is incident on at most edge of M.
- A set of edges M is a perfect matching if every node in V is incident on exactly one edge in M.

- Bipartite Graph: a graph G(V, E) where $V = X \cup Y$, X and Y are disjoint and $E \subset X \times Y$.
- Bipartite graphs model situations in which objects are matched with or assigned to other objects: e.g., marriages, residents/hospitals, jobs/machines.
- A matching in a bipartite graph G is a set $M \subseteq E$ of edges such that each node of V is incident on at most edge of M.
- A set of edges M is a perfect matching if every node in V is incident on exactly one edge in M.

- Bipartite Graph: a graph G(V, E) where $V = X \cup Y$, X and Y are disjoint and $E \subset X \times Y$.
- Bipartite graphs model situations in which objects are matched with or assigned to other objects: e.g., marriages, residents/hospitals, jobs/machines.
- A matching in a bipartite graph G is a set $M \subseteq E$ of edges such that each node of V is incident on at most edge of M.
- A set of edges M is a perfect matching if every node in V is incident on exactly one edge in M.

- Bipartite Graph: a graph G(V, E) where $V = X \cup Y$, X and Y are disjoint and $E \subset X \times Y$.
- Bipartite graphs model situations in which objects are matched with or assigned to other objects: e.g., marriages, residents/hospitals, jobs/machines.
- A matching in a bipartite graph G is a set $M \subseteq E$ of edges such that each node of V is incident on at most edge of M.
- A set of edges M is a perfect matching if every node in V is incident on exactly one edge in M.

- Bipartite Graph: a graph G(V, E) where $V = X \cup Y$, X and Y are disjoint and $E \subset X \times Y$.
- Bipartite graphs model situations in which objects are matched with or assigned to other objects: e.g., marriages, residents/hospitals, jobs/machines.
- A matching in a bipartite graph G is a set $M \subseteq E$ of edges such that each node of V is incident on at most edge of M.
- A set of edges M is a perfect matching if every node in V is incident on exactly one edge in M.
 - ▶ The graph in the figure does not have a perfect matching because

- Bipartite Graph: a graph G(V, E) where $V = X \cup Y$, X and Y are disjoint and $E \subset X \times Y$.
- Bipartite graphs model situations in which objects are matched with or assigned to other objects: e.g., marriages, residents/hospitals, jobs/machines.
- A matching in a bipartite graph G is a set $M \subseteq E$ of edges such that each node of V is incident on at most edge of M.
- A set of edges M is a *perfect matching* if every node in V is incident on exactly one edge in M.
 - ▶ The graph in the figure does not have a perfect matching because both y_4 and y_5 are adjacent only to x_5 .

Bipartite Graph Matching Problem

BIPARTITE MATCHING

INSTANCE: A Bipartite graph *G*.

SOLUTION: The matching of largest size in *G*.

Normal Approach for Solving a Problem

- Develop algorithm for computing maximum matchings in bipartite graphs.
- Prove that the algorithm is correct, i.e., for every possible input, it compute the size of the largest matching in the bipartite graph accurately.
- Analyze running time of the algorithm.

Alternative Approach for Solving a Problem

Alternative Approach for Solving a Problem

YOU STEP INTO THIS CHAMBER, SET THE APPROPRIATE DIALS, AND IT TURNS YOU INTO WHATEVER YOU'D LIKE TO BE.

Alternative Approach for Solving a Problem

Algorithm for Bipartite Graph Matching

- Convert G to a flow network G': direct edges from X to Y, add nodes s and t, connect s to each node in X, connect each node in Y to t, set all edge capacities to 1.
- Compute the maximum flow in G'.
- Convert the maximum flow in G' into a matching in G.
- Claim: the value of the maximum flow in G' is the size of the maximum matching in G.
- In general, there is matching with size k in G if and only if there is a (integer-valued) flow of value k in G'.

Strategy for Proving Correctness

Strategy for Proving Correctness

• Matching \Rightarrow flow: if there is a matching with k edges in G, there is an s-t flow of value k in G'.

- Matching \Rightarrow flow: if there is a matching with k edges in G, there is an s-t flow of value k in G'.
- How do we construct this flow?

- Matching \Rightarrow flow: if there is a matching with k edges in G, there is an s-t flow of value k in G'.
- How do we construct this flow?
 - ▶ Consider every edge (u, v) in the matching: $u \in X$ and $v \in Y$.
 - ▶ Send one unit of flow along the path $s \rightarrow u \rightarrow v \rightarrow t$.

- Matching \Rightarrow flow: if there is a matching with k edges in G, there is an s-t flow of value k in G'.
- How do we construct this flow?
 - ▶ Consider every edge (u, v) in the matching: $u \in X$ and $v \in Y$.
 - ▶ Send one unit of flow along the path $s \rightarrow u \rightarrow v \rightarrow t$.
- Why have we constructed a flow?

- Matching \Rightarrow flow: if there is a matching with k edges in G, there is an s-t flow of value k in G'.
- How do we construct this flow?
 - ▶ Consider every edge (u, v) in the matching: $u \in X$ and $v \in Y$.
 - ▶ Send one unit of flow along the path $s \rightarrow u \rightarrow v \rightarrow t$.
- Why have we constructed a flow?
 - Capacity constraint:
 - Conservation constraint:

- Matching \Rightarrow flow: if there is a matching with k edges in G, there is an s-t flow of value k in G'.
- How do we construct this flow?
 - ▶ Consider every edge (u, v) in the matching: $u \in X$ and $v \in Y$.
 - ▶ Send one unit of flow along the path $s \rightarrow u \rightarrow v \rightarrow t$.
- Why have we constructed a flow?
 - Capacity constraint: No edge receives a flow > 1 because we started with a matching.
 - Conservation constraint:

- Matching \Rightarrow flow: if there is a matching with k edges in G, there is an s-t flow of value k in G'.
- How do we construct this flow?
 - ▶ Consider every edge (u, v) in the matching: $u \in X$ and $v \in Y$.
 - ▶ Send one unit of flow along the path $s \rightarrow u \rightarrow v \rightarrow t$.
- Why have we constructed a flow?
 - Capacity constraint: No edge receives a flow > 1 because we started with a matching.
 - Conservation constraint: Every node other than s and t has one incoming unit and one outgoing unit of flow because we started with a matching.

T. M. Murali Applications of Network Flow April 12, 17, 19 2017

- Matching \Rightarrow flow: if there is a matching with k edges in G, there is an s-t flow of value k in G'.
- How do we construct this flow?
 - ▶ Consider every edge (u, v) in the matching: $u \in X$ and $v \in Y$.
 - ▶ Send one unit of flow along the path $s \rightarrow u \rightarrow v \rightarrow t$.
- Why have we constructed a flow?
 - Capacity constraint: No edge receives a flow > 1 because we started with a matching.
 - ► Conservation constraint: Every node other than *s* and *t* has one incoming unit and one outgoing unit of flow because we started with a matching.
- What is the value of the flow? *k*, since exactly that many nodes out of *s* carry flow.

• Flow \Rightarrow matching: if there is a flow f' in G' with value k, there is a matching M in G with k edges.

• Flow \Rightarrow matching: if there is a flow f' in G' with value k, there is a matching M in G with k edges.

matching M in G with k edges.

• Flow \Rightarrow matching: if there is a flow f' in G' with value k, there is a

▶ There is an integer-valued flow f' of value $k \Rightarrow$ flow along any edge is 0 or 1.

- matching M in G with k edges.
 - ▶ There is an integer-valued flow f' of value $k \Rightarrow$ flow along any edge is 0 or 1.
 - Let M be the set of edges not incident on s or t with flow equal to 1.

• Flow \Rightarrow matching: if there is a flow f' in G' with value k, there is a

T. M. Murali Applications of Network Flow April 12, 17, 19 2017

- matching M in G with k edges.
 - ▶ There is an integer-valued flow f' of value $k \Rightarrow$ flow along any edge is 0 or 1.
 - Let M be the set of edges not incident on s or t with flow equal to 1.

• Flow \Rightarrow matching: if there is a flow f' in G' with value k, there is a

Claim: M contains k edges.

- matching M in G with k edges.
 - ▶ There is an integer-valued flow f' of value $k \Rightarrow$ flow along any edge is 0 or 1.
 - Let M be the set of edges not incident on s or t with flow equal to 1.

• Flow \Rightarrow matching: if there is a flow f' in G' with value k, there is a

- Claim: M contains k edges.
- Claim: Each node in X (respectively, Y) is the tail (respectively, head) of at most one edge in M.

T. M. Murali Applications of Network Flow April 12, 17, 19 2017

- matching M in G with k edges. • There is an integer-valued flow f' of value $k \Rightarrow$ flow along any edge is 0 or 1.
 - There is an integer-valued flow I of value $K \Rightarrow$ flow along any edge is 0 or 1.
 - ▶ Let *M* be the set of edges not incident on *s* or *t* with flow equal to 1.
 - Claim: M contains k edges.
 - Claim: Each node in X (respectively, Y) is the tail (respectively, head) of at most one edge in M.
- Conclusion: size of the maximum matching in G is equal to the value of the maximum flow in G'; the edges in this matching are those that carry flow from X to Y in G'.

matching M in G with k edges.

• Flow \Rightarrow matching: if there is a flow f' in G' with value k, there is a

- ▶ There is an integer-valued flow f' of value $k \Rightarrow$ flow along any edge is 0 or 1.
- ▶ Let *M* be the set of edges not incident on *s* or *t* with flow equal to 1.
- Claim: M contains k edges.
- Claim: Each node in X (respectively, Y) is the tail (respectively, head) of at most one edge in M.
- Conclusion: size of the maximum matching in G is equal to the value of the maximum flow in G'; the edges in this matching are those that carry flow from X to Y in G'.
- Read the book on what augmenting paths mean in this context.

Running time of Bipartite Graph Matching Algorithm

• Suppose G has m edges and n nodes in X and in Y.

Running time of Bipartite Graph Matching Algorithm

- Suppose G has m edges and n nodes in X and in Y.
- \bullet C < n.
- Ford-Fulkerson algorithm runs in O(mn) time.
- Scaling algorithm takes $O(m^2)$ time (C=1 for this algorithm).

• How do we determine if a bipartite graph G has a perfect matching?

• How do we determine if a bipartite graph *G* has a perfect matching? Find the maximum matching and check if it is perfect.

- How do we determine if a bipartite graph *G* has a perfect matching? Find the maximum matching and check if it is perfect.
- Suppose G has no perfect matching. Can we exhibit a short "certificate" of that fact? What can such certificates look like?

- How do we determine if a bipartite graph *G* has a perfect matching? Find the maximum matching and check if it is perfect.
- Suppose *G* has no perfect matching. Can we exhibit a short "certificate" of that fact? What can such certificates look like?
- G has no perfect matching iff

- How do we determine if a bipartite graph G has a perfect matching? Find the maximum matching and check if it is perfect.
- Suppose G has no perfect matching. Can we exhibit a short "certificate" of that fact? What can such certificates look like?
- G has no perfect matching iff there is a cut in G' with capacity less than n. Therefore, the cut is a certificate.

T. M. Murali Applications of Network Flow April 12, 17, 19 2017

• We would like the certificate in terms of *G*.

- We would like the certificate in terms of G.
 - ▶ For example, two nodes in Y with one incident edge each with the same neighbour in X.

- We would like the certificate in terms of G.
 - ▶ For example, two nodes in Y with one incident edge each with the same neighbour in X.
 - Generally, a subset $A \subseteq X$ with neighbours $\Gamma(A) \subseteq Y$, such that $|A| > |\Gamma(A)|$.
- Hall's Theorem: Let $G(X \cup Y, E)$ be a bipartite graph such that |X| = |Y|. Then G either has a perfect matching or there is a subset $A \subseteq Y$ such that $|A| > |\Gamma(A)|$. A perfect matching or such a subset can be computed in O(mn) time.

T. M. Murali Applications of Network Flow April 12, 17, 19 2017

- We would like the certificate in terms of G.
 - ▶ For example, two nodes in Y with one incident edge each with the same neighbour in X.
 - Generally, a subset $A \subseteq X$ with neighbours $\Gamma(A) \subseteq Y$, such that $|A| > |\Gamma(A)|$.
- Hall's Theorem: Let $G(X \cup Y, E)$ be a bipartite graph such that |X| = |Y|. Then G either has a perfect matching or there is a subset $A \subseteq Y$ such that $|A| > |\Gamma(A)|$. A perfect matching or such a subset can be computed in O(mn) time. Read proof in the textbook.

T. M. Murali Applications of Network Flow April 12, 17, 19 2017

Edge-Disjoint Paths

• A set of paths in a graph *G* is *edge disjoint* if each edge in *G* appears in at most one path.

Edge-Disjoint Paths

• A set of paths in a graph *G* is *edge disjoint* if each edge in *G* appears in at most one path.

DIRECTED EDGE-DISJOINT PATHS

INSTANCE: Directed graph G(V, E) with two distinguished nodes s and t.

SOLUTION: The maximum number of edge-disjoint paths between s and t.

• Convert G into a flow network:

- Convert *G* into a flow network: *s* is the source, *t* is the sink, each edge has capacity 1.
- Claim: There are k edge-disjoint paths from s to t in a directed graph G if and only if the maximum value of an s-t flow in G is $\geq k$.

- Convert *G* into a flow network: *s* is the source, *t* is the sink, each edge has capacity 1.
- Claim: There are k edge-disjoint paths from s to t in a directed graph G if and only if the maximum value of an s-t flow in G is $\geq k$.
- Paths \Rightarrow flow: if there are k edge-disjoint paths from s to t,

- Convert *G* into a flow network: *s* is the source, *t* is the sink, each edge has capacity 1.
- Claim: There are k edge-disjoint paths from s to t in a directed graph G if and only if the maximum value of an s-t flow in G is $\geq k$.
- Paths ⇒ flow: if there are k edge-disjoint paths from s to t, send one unit of flow along each to yield a flow with value k.

- Convert *G* into a flow network: *s* is the source, *t* is the sink, each edge has capacity 1.
- Claim: There are k edge-disjoint paths from s to t in a directed graph G if and only if the maximum value of an s-t flow in G is $\geq k$.
- Paths ⇒ flow: if there are k edge-disjoint paths from s to t, send one unit of flow along each to yield a flow with value k.
- Flow ⇒ paths: Suppose there is an integer-valued flow of value at least k.
 Are there k edge-disjoint paths? If so, what are they?

- Convert *G* into a flow network: *s* is the source, *t* is the sink, each edge has capacity 1.
- Claim: There are k edge-disjoint paths from s to t in a directed graph G if and only if the maximum value of an s-t flow in G is $\geq k$.
- Paths ⇒ flow: if there are k edge-disjoint paths from s to t, send one unit of flow along each to yield a flow with value k.
- Flow ⇒ paths: Suppose there is an integer-valued flow of value at least k. Are there k edge-disjoint paths? If so, what are they?
- Construct k edge-disjoint paths from a flow of value $\geq k$ as follows:
 - ▶ There is an integral flow. Therefore, flow on each edge is 0 or 1.

- Convert *G* into a flow network: *s* is the source, *t* is the sink, each edge has capacity 1.
- Claim: There are k edge-disjoint paths from s to t in a directed graph G if and only if the maximum value of an s-t flow in G is $\geq k$.
- Paths ⇒ flow: if there are k edge-disjoint paths from s to t, send one unit of flow along each to yield a flow with value k.
- Flow ⇒ paths: Suppose there is an integer-valued flow of value at least k. Are there k edge-disjoint paths? If so, what are they?
- Construct k edge-disjoint paths from a flow of value $\geq k$ as follows:
 - ▶ There is an integral flow. Therefore, flow on each edge is 0 or 1.
 - ▶ Claim: if f is a 0-1 valued flow of value $\nu(f) = k$, then the set of edges with flow f(e) = 1 contains a set of k edge-disjoint paths.

- Claim: if f is a 0-1 valued flow of value $\nu(f)=k$, then the set of edges with flow f(e)=1 contains a set of k edge-disjoint paths.
- Prove by induction on the number of edges in f that carry flow. Let this number be $\kappa(f)$.

Base case: $\nu = 0$. Nothing to prove.

- Claim: if f is a 0-1 valued flow of value $\nu(f) = k$, then the set of edges with flow f(e) = 1 contains a set of k edge-disjoint paths.
- Prove by induction on the number of edges in f that carry flow. Let this number be $\kappa(f)$.

Base case: $\nu = 0$. Nothing to prove.

Inductive hypothesis: For every flow f' in G with

- (a) value $\nu(f') < k$ carrying flow on $\kappa(f') < \kappa(f)$ edges or
- (b) value $\nu(f') = k$ carrying flow on $\kappa(f') < \kappa(f)$ edges, the set of edges with f'(e) = 1 contains a set of $\nu(f')$

edge-disjoint s-t paths.

- Claim: if f is a 0-1 valued flow of value $\nu(f) = k$, then the set of edges with flow f(e) = 1 contains a set of k edge-disjoint paths.
- Prove by induction on the number of edges in f that carry flow. Let this number be $\kappa(f)$.

Base case: $\nu = 0$. Nothing to prove.

Inductive hypothesis: For every flow f' in G with

- (a) value $\nu(f') < k$ carrying flow on $\kappa(f') < \kappa(f)$ edges or
- (b) value $\nu(f') = k$ carrying flow on $\kappa(f') < \kappa(f)$ edges, the set of edges with f'(e) = 1 contains a set of $\nu(f')$

the set of edges with F(e) = 1 contains a set of $\mathcal{D}(F)$ edge-disjoint s-t paths.

Inductive step: Construct a set of k s-t paths from f. Work out on the board.

- Claim: if f is a 0-1 valued flow of value $\nu(f)=k$, then the set of edges with flow f(e)=1 contains a set of k edge-disjoint paths.
- Prove by induction on the number of edges in f that carry flow. Let this number be $\kappa(f)$.

Base case: $\nu = 0$. Nothing to prove.

Inductive hypothesis: For every flow f' in G with

- (a) value $\nu(f') < k$ carrying flow on $\kappa(f') < \kappa(f)$ edges or
- (b) value $\nu(f') = k$ carrying flow on $\kappa(f') < \kappa(f)$ edges,

the set of edges with f'(e) = 1 contains a set of $\nu(f')$ edge-disjoint s-t paths.

Inductive step: Construct a set of k s-t paths from f. Work out on the board.

- Note: Formulating the inductive hypothesis precisely can be tricky.
- Strategy is to try to prove the inductive step first.
- During this proof, you will observe two types of "smaller" flows:
 - (i) When you succeed in finding an s-t path, you get a new flow f' that is smaller, i.e., $\nu(f') < k$ carrying flow on fewer edges, i.e., $\kappa(f') < \kappa(f)$.
 - (ii) When you run into a cycle, you get a new flow f' with $\nu(f') = k$ but carrying flow on fewer edges, i.e., $\kappa(f') < \kappa(f)$ edges.

Running Time of the Edge-Disjoint Paths Algorithm

• Given a flow of value k, how quickly can we determine the k edge-disjoint paths?

Running Time of the Edge-Disjoint Paths Algorithm

- Given a flow of value k, how quickly can we determine the k edge-disjoint paths? O(mn) time.
- Corollary: The Ford-Fulkerson algorithm can be used to find a maximum set of edge-disjoint s-t paths in a directed graph G in O(mn) time.

Certificate for Edge-Disjoint Paths Algorithm

• A set $F \subseteq E$ of edge separates s and t if the graph (V, E - F) contains no s-t paths.

Certificate for Edge-Disjoint Paths Algorithm

- A set $F \subseteq E$ of edge separates s and t if the graph (V, E F) contains no s-t paths.
- Menger's Theorem: In every directed graph with nodes s and t, the
 maximum number of edge-disjoint s-t paths is equal to the minimum number
 of edges whose removal disconnects s from t.

• Can extend the theorem to undirected graphs.

- Can extend the theorem to *undirected* graphs.
- Replace each edge with two directed edges of capacity 1 and apply the algorithm for directed graphs.

- Can extend the theorem to *undirected* graphs.
- Replace each edge with two directed edges of capacity 1 and apply the algorithm for directed graphs.
- Problem: Both counterparts of an undirected edge (u, v) may be used by different edge-disjoint paths in the directed graph.

- Can extend the theorem to *undirected* graphs.
- Replace each edge with two directed edges of capacity 1 and apply the algorithm for directed graphs.
 Problem: Both counterparts of an undirected edge (u, v) may be used by
- Problem: Both counterparts of an undirected edge (u, v) may be used by different edge-disjoint paths in the directed graph.
- Can obtain an integral flow where only one of the directed counterparts of (u, v) has non-zero flow.

- Can extend the theorem to *undirected* graphs.
- Replace each edge with two directed edges of capacity 1 and apply the algorithm for directed graphs.
- Problem: Both counterparts of an undirected edge (u, v) may be used by different edge-disjoint paths in the directed graph.
- Can obtain an integral flow where only one of the directed counterparts of (u, v) has non-zero flow.
- We can find the maximum number of edge-disjoint paths in O(mn) time.
- We can prove a version of Menger's theorem for undirected graphs: in every undirected graph with nodes s and t, the maximum number of edge-disjoint s-t paths is equal to the minimum number of edges whose removal separates s from t.

Image Segmentation

- A fundamental problem in computer vision is that of segmenting an image into coherent regions.
- A basic segmentation problem is that of partitioning an image into a foreground and a background: label each pixel in the image as belonging to the foreground or the background.
 - Note that the image on the right shows segmentation into multiple regions but we are interested in the segmentation into two regions.

Formulating the Image Segmentation Problem

Edge (i,j): penalty $p_{i,j}$ Pixel i: a_i,b_i Pixel j: a_j,b_j

- Let V be the set of pixels in an image.
- Let *E* be the set of pairs of neighbouring pixels.
- V and E yield an undirected graph G(V, E).

Formulating the Image Segmentation Problem

- Let V be the set of pixels in an image.
- Let *E* be the set of pairs of neighbouring pixels.
- V and E yield an undirected graph G(V, E).
- Each pixel i has a likelihood $a_i > 0$ that it belongs to the foreground and a likelihood $b_i > 0$ that it belongs to the background.
- These likelihoods are specified in the input to the problem.

Formulating the Image Segmentation Problem

- Let V be the set of pixels in an image.
- Let E be the set of pairs of neighbouring pixels.
- V and E yield an undirected graph G(V, E).
- Each pixel i has a likelihood $a_i > 0$ that it belongs to the foreground and a likelihood $b_i > 0$ that it belongs to the background.
- These likelihoods are specified in the input to the problem.
- We want the foreground/background boundary to be smooth:

Formulating the Image Segmentation Problem

- Let V be the set of pixels in an image.
- Let *E* be the set of pairs of neighbouring pixels.
- V and E yield an undirected graph G(V, E).
- Each pixel i has a likelihood $a_i > 0$ that it belongs to the foreground and a likelihood $b_i > 0$ that it belongs to the background.
- These likelihoods are specified in the input to the problem.
- We want the foreground/background boundary to be smooth: For each pair (i,j) of pixels, there is a separation penalty $p_{ij} \ge 0$ for placing one of them in the foreground and the other in the background.

The Image Segmentation Problem

Edge (i, j): penalty $p_{i,j}$

IMAGE SEGMENTATION

INSTANCE: Pixel graphs G(V, E), likelihood functions $a, b: V \to \mathbb{R}^+$,

penalty function $p: E \to \mathbb{R}^+$

SOLUTION: Optimum labelling: partition of the pixels into two sets A and B that maximises

$$q(A, B) = \sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}| = 1}} p_{ij}$$

Developing an Algorithm for Image Segmentation

Edge (i, j): penalty $p_{i,j}$

$$q(A, B) = \sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}| = 1}} p_{ij}$$

- There is a similarity between cuts and labellings.
- But there are differences:
 - ▶ We are maximising an objective function rather than minimising it.
 - ▶ There is no source or sink in the segmentation problem.
 - We have values on the nodes.
 - The graph is undirected.

Maximization to Minimization

• Let
$$Q = \sum_i (a_i + b_i)$$
.

Maximization to Minimization

- Let $Q = \sum_i (a_i + b_i)$.
- Notice that $\sum_{i \in A} a_i + \sum_{i \in B} b_i = Q \sum_{i \in A} b_i \sum_{i \in B} a_i$.
- Therefore, maximising

$$q(A,B) = \sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{\substack{(i,j) \in E \\ |A \cup \{i,j\}| = 1}} p_{ij}$$

$$= Q - \sum_{i \in A} b_i - \sum_{j \in B} a_j - \sum_{\substack{(i,j) \in E \\ |A \cap \{i,i\}| = 1}} p_{ij}$$

is identical to minimising

$$q'(A,B) = \sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}|=1}} p_i$$

T. M. Murali Applications of Network Flow April 12, 17, 19 2017

Solving the Other Issues

• Solve the other issues like we did earlier.

Solving the Other Issues

- Solve the other issues like we did earlier.
- Add a new "super-source" s to represent the foreground.
- Add a new "super-sink" t to represent the background.

Solving the Other Issues

- Solve the other issues like we did earlier.
- Add a new "super-source" s to represent the foreground.
- Add a new "super-sink" t to represent the background.
- Connect s and t to every pixel and assign capacity a_i to edge (s, i) and capacity b_i to edge (i, t).
- Direct edges away from s and into t.
- Replace each edge (i, j) in E with two directed edges of capacity p_{ii}.

- Let G' be this flow network and (A, B) an s-t cut.
- What does the capacity of the cut represent?

- Let G' be this flow network and (A, B) an s-t cut.
- What does the capacity of the cut represent?
- Edges crossing the cut are of three types:

Figure 7.19 An s-t cut on a graph constructed from four pixels. Note how the three types of terms in the expression for q'(A,B) are captured by the cut.

- Let G' be this flow network and (A, B) an s-t cut.
- What does the capacity of the cut represent?
- Edges crossing the cut are of three types:
 - ▶ $(s, w), w \in B$ contributes a_w .
 - ▶ $(u, t), u \in A$ contributes b_u .
 - ▶ $(u, w), u \in A, w \in B$ contributes p_{uw} .

Figure 7.19 An s-t cut on a graph constructed from four pixels. Note how the three types of terms in the expression for q'(A, B) are captured by the cut.

- Let G' be this flow network and (A, B) an s-t cut.
- What does the capacity of the cut represent?
- Edges crossing the cut are of three types:
 - ▶ $(s, w), w \in B$ contributes a_w .
 - ▶ $(u, t), u \in A$ contributes b_u .
 - ▶ $(u, w), u \in A, w \in B$ contributes p_{uw} .

Figure 7.19 An s-t cut on a graph constructed from four pixels. Note how the three types of terms in the expression for q'(A, B) are captured by the cut.

$$c(A,B) = \sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}|=1}} p_{ij} = q'(A,B).$$

T. M. Murali April 12, 17, 19 2017 Applications of Network Flow

Solving the Image Segmentation Problem

- The capacity of a s-t cut c(A, B) exactly measures the quantity q'(A, B).
- To maximise q(A, B), we simply compute the s-t cut (A, B) of minimum capacity.
- Deleting s and t from the cut yields the desired segmentation of the image.

Extension of Max-Flow Problem

- Suppose we have a set S of multiple sources and a set T of multiple sinks.
- Each source can send flow to any sink.
- Let us not maximise flow here but formulate the problem in terms of demands and supplies.

• We are given a graph G(V, E) with capacity function $c: E \to \mathbb{Z}^+$ and a demand function $d: V \to \mathbb{Z}$:

- We are given a graph G(V, E) with capacity function $c: E \to \mathbb{Z}^+$ and a demand function $d: V \to \mathbb{Z}$:
 - d_v > 0: node is a sink, it has a "demand" for d_v units of flow.
 - d_v < 0: node is a source, it has a "supply" of -d_v units of flow.
 - d_v = 0: node simply receives and transmits flow.

- We are given a graph G(V, E) with capacity function $c: E \to \mathbb{Z}^+$ and a demand function $d: V \to \mathbb{Z}$:
 - d_v > 0: node is a sink, it has a "demand" for d_v units of flow.
 - ▶ $d_v < 0$: node is a source, it has a "supply" of $-d_v$ units of flow.
 - d_v = 0: node simply receives and transmits flow.
 - S is the set of nodes with negative demand and T is the set of nodes with positive demand.

- We are given a graph G(V, E) with capacity function $c: E \to \mathbb{Z}^+$ and a demand function $d:V\to\mathbb{Z}$:
 - $d_{v} > 0$: node is a sink, it has a "demand" for d_v units of flow.
 - $d_v < 0$: node is a source, it has a "supply" of $-d_{\nu}$ units of flow.
 - $d_v = 0$: node simply receives and transmits flow
 - S is the set of nodes with negative demand and T is the set of nodes with positive demand

• A circulation with demands is a function $f: E \to \mathbb{R}^+$ that satisfies

- We are given a graph G(V, E) with capacity function $c: E \to \mathbb{Z}^+$ and a demand function $d:V\to\mathbb{Z}$:
 - $d_{v} > 0$: node is a sink, it has a "demand" for d_v units of flow.
 - $d_v < 0$: node is a source, it has a "supply" of $-d_{\nu}$ units of flow.
 - $d_v = 0$: node simply receives and transmits flow
 - S is the set of nodes with negative demand and T is the set of nodes with positive demand

- A circulation with demands is a function $f: E \to \mathbb{R}^+$ that satisfies
 - (i) (Capacity conditions) For each $e \in E$, 0 < f(e) < c(e).
 - (ii) (Demand conditions) For each node v, $f^{in}(v) f^{out}(v) = d_v$.

T. M. Murali Applications of Network Flow April 12, 17, 19 2017

- We are given a graph G(V, E) with capacity function $c: E \to \mathbb{Z}^+$ and a demand function $d: V \to \mathbb{Z}$:
 - d_v > 0: node is a sink, it has a "demand" for d_v units of flow.
 - ▶ $d_v < 0$: node is a source, it has a "supply" of $-d_v$ units of flow.
 - $d_v = 0$: node simply receives and transmits flow.
 - S is the set of nodes with negative demand and T is the set of nodes with positive demand.

- ullet A *circulation* with demands is a function $f:E o\mathbb{R}^+$ that satisfies
 - (i) (Capacity conditions) For each $e \in E$, $0 \le f(e) \le c(e)$.
 - (ii) (Demand conditions) For each node v, $f^{in}(v) f^{out}(v) = d_v$.

CIRCULATION WITH DEMANDS

INSTANCE: A directed graph G(V, E), $c : E \to \mathbb{Z}^+$, and $d : V \to \mathbb{Z}$.

SOLUTION: Does a *feasible* circulation exist, i.e., it meets the capacity and demand conditions?

Properties of Feasible Circulations

• Claim: if there exists a feasible circulation with demands, then $\sum_{\nu} d_{\nu} = 0$.

T. M. Murali April 12, 17, 19 2017 Applications of Network Flow

Properties of Feasible Circulations

- Claim: if there exists a feasible circulation with demands, then $\sum_{\nu} d_{\nu} = 0$.
- Corollary: $\sum_{v,d_v>0} d_v = \sum_{v,d_v<0} -d_v$. Let D denote this common value.

Mapping Circulation to Maximum Flow

- ullet Create a new graph G'=G and
 - (i) create two new nodes in G': a source s^* and a sink t^* ;
 - (ii) connect s^* to each node v in S using an edge with capacity $-d_v$;
 - (iii) connect each node v in T to t^* using an edge with capacity d_v .

Figure 7.14 Reducing the Circulation Problem to the Maximum-Flow Problem.

• We will look for a maximum s^*-t^* flow f in G'; $\nu(f)$

• We will look for a maximum s^*-t^* flow f in G'; $\nu(f) \leq D$.

- We will look for a maximum s^*-t^* flow f in G'; $\nu(f) \leq D$.
- Circulation \Rightarrow flow.

- We will look for a maximum s^*-t^* flow f in G'; $\nu(f) \leq D$.
- Circulation \Rightarrow flow. If there is a feasible circulation, we send $-d_v$ units of flow along each edge (s^*, v) and d_v units of flow along each edge (v, t^*) . The value of this flow is D. (Prove it yourself.)

- We will look for a maximum s^*-t^* flow f in G'; $\nu(f) \leq D$.
- Circulation \Rightarrow flow. If there is a feasible circulation, we send $-d_{\nu}$ units of flow along each edge (s^*, v) and d_v units of flow along each edge (v, t^*) . The value of this flow is D. (Prove it yourself.)
- Flow \Rightarrow circulation. If there is an s^*-t^* flow of value D in G'.

- We will look for a maximum s^*-t^* flow f in G'; $\nu(f) \leq D$.
- Circulation \Rightarrow flow. If there is a feasible circulation, we send $-d_{\nu}$ units of flow along each edge (s^*, v) and d_v units of flow along each edge (v, t^*) . The value of this flow is D. (Prove it yourself.)
- Flow \Rightarrow circulation. If there is an s^* - t^* flow of value D in G', edges incident on s^* and on t^* must be saturated with flow. Deleting these edges from G'yields a feasible circulation in G. (Prove it yourself.)

- We will look for a maximum s^*-t^* flow f in G'; $\nu(f) \leq D$.
- Circulation \Rightarrow flow. If there is a feasible circulation, we send $-d_v$ units of flow along each edge (s^*, v) and d_v units of flow along each edge (v, t^*) . The value of this flow is D. (Prove it yourself.)
- Flow \Rightarrow circulation. If there is an s^*-t^* flow of value D in G', edges incident on s^* and on t^* must be saturated with flow. Deleting these edges from G' yields a feasible circulation in G. (Prove it yourself.)
- We have proved that there is a feasible circulation with demands in G iff the maximum s^*-t^* flow in G' has value D.

• We want to force the flow to use certain edges.

- We want to force the flow to use certain edges.
- We are given a graph G(V, E) with a capacity c(e) and a lower bound $0 \le l(e) \le c(e)$ on each edge and a demand d_v on each vertex.

- We want to force the flow to use certain edges.
- We are given a graph G(V, E) with a capacity c(e) and a lower bound $0 \le l(e) \le c(e)$ on each edge and a demand d_v on each vertex.
- A *circulation* with demands and lower bounds is a function $f: E \to \mathbb{R}^+$ that satisfies

- We want to force the flow to use certain edges.
- We are given a graph G(V, E) with a capacity c(e) and a lower bound $0 \le l(e) \le c(e)$ on each edge and a demand d_v on each vertex.
- A *circulation* with demands and lower bounds is a function $f: E \to \mathbb{R}^+$ that satisfies
 - (i) (Capacity conditions) For each $e \in E$, $I(e) \le f(e) \le c(e)$.
 - (ii) (Demand conditions) For each node v, $f^{in}(v) f^{out}(v) = d_v$.

T. M. Murali April 12, 17, 19 2017 Applications of Network Flow

- We want to force the flow to use certain edges.
- We are given a graph G(V, E) with a capacity c(e) and a lower bound $0 \le l(e) \le c(e)$ on each edge and a demand d_v on each vertex.
- A circulation with demands and lower bounds is a function $f: E \to \mathbb{R}^+$ that satisfies
 - (i) (Capacity conditions) For each $e \in E$, $I(e) \le f(e) \le c(e)$.
 - (ii) (Demand conditions) For each node v, $f^{in}(v) f^{out}(v) = d_v$.
- Problem we want to solve: Is there a feasible circulation?

Algorithm for Circulation with Lower Bounds

• Strategy is to reduce the problem to one with no lower bounds on edges.

- Strategy is to reduce the problem to one with no lower bounds on edges.
- Suppose we define a circulation f_0 that satisfies lower bounds on all edges, i.e., set $f_0(e) = I(e)$ for all $e \in E$. What can go wrong?

- Strategy is to reduce the problem to one with no lower bounds on edges.
- Suppose we define a circulation f_0 that satisfies lower bounds on all edges, i.e., set $f_0(e) = I(e)$ for all $e \in E$. What can go wrong?
- Demand conditions may be violated. Let $L_{v} = f_{0}^{\text{in}}(v) - f_{0}^{\text{out}}(v) = \sum_{e \text{ into } v} I(e) - \sum_{e \text{ out of } v} I(e).$

- Strategy is to reduce the problem to one with no lower bounds on edges.
- Suppose we define a circulation f_0 that satisfies lower bounds on all edges, i.e., set $f_0(e) = I(e)$ for all $e \in E$. What can go wrong?
- Demand conditions may be violated. Let $L_v = f_0^{\text{in}}(v) - f_0^{\text{out}}(v) = \sum_{e \text{ into } v} I(e) - \sum_{e \text{ out of } v} I(e).$
- If $L_v \neq d_v$, we can superimpose a circulation f_1 on top of f_0 such that $f_1^{\text{in}}(v) - f_1^{\text{out}}(v) = d_v - L_v$.

- Strategy is to reduce the problem to one with no lower bounds on edges.
- Suppose we define a circulation f_0 that satisfies lower bounds on all edges, i.e., set $f_0(e) = I(e)$ for all $e \in E$. What can go wrong?
- Demand conditions may be violated. Let $L_v = f_0^{\text{in}}(v) f_0^{\text{out}}(v) = \sum_{e \text{ into } v} I(e) \sum_{e \text{ out of } v} I(e)$.
- If $L_v \neq d_v$, we can superimpose a circulation f_1 on top of f_0 such that $f_1^{\text{in}}(v) f_1^{\text{out}}(v) = d_v L_v$.
- How much capacity do we have left on each edge?

- Strategy is to reduce the problem to one with no lower bounds on edges.
- Suppose we define a circulation f_0 that satisfies lower bounds on all edges, i.e., set $f_0(e) = I(e)$ for all $e \in E$. What can go wrong?
- Demand conditions may be violated. Let $L_v = f_0^{\text{in}}(v) f_0^{\text{out}}(v) = \sum_{e \text{ into } v} I(e) \sum_{e \text{ out of } v} I(e)$.
- If $L_v \neq d_v$, we can superimpose a circulation f_1 on top of f_0 such that $f_1^{\text{in}}(v) f_1^{\text{out}}(v) = d_v L_v$.
- How much capacity do we have left on each edge? c(e) I(e).

- Strategy is to reduce the problem to one with no lower bounds on edges.
- Suppose we define a circulation f_0 that satisfies lower bounds on all edges, i.e., set $f_0(e) = I(e)$ for all $e \in E$. What can go wrong?
- Demand conditions may be violated. Let $L_v = f_0^{\text{in}}(v) f_0^{\text{out}}(v) = \sum_{e \text{ into } v} I(e) \sum_{e \text{ out of } v} I(e)$.
- If $L_v \neq d_v$, we can superimpose a circulation f_1 on top of f_0 such that $f_1^{\text{in}}(v) f_1^{\text{out}}(v) = d_v L_v$.
- How much capacity do we have left on each edge? c(e) I(e).
- Approach: define a new graph G' with the same nodes and edges: each edge e has lower bound 0, capacity c(e) l(e); demand of each node v is $d_v L_v$.
- Claim: there is a feasible circulation in G iff there is a feasible circulation in G'. Read the proof in the textbook.

Airline Scheduling

- Airlines face very complex computational problems.
- Produce schedules for thousands of routes.
- Make these schedules efficient in terms of crew allocation, equipment usage, fuel costs, customer satisfaction, etc.

Airline Scheduling

- Airlines face very complex computational problems.
- Produce schedules for thousands of routes.
- Make these schedules efficient in terms of crew allocation, equipment usage, fuel costs, customer satisfaction, etc.
- Modelling these problems realistically is out of the scope of the course.
- We will focus on a "toy" problem that cleanly captures some of the resource allocation problems they have to deal with.

Creating Flight Schedules

- Desire to serve *m* specific flight segments.
- Each flight segment (or flight) specified by four parameters: origin airport, destination airport, departure time, arrival time.

Creating Flight Schedules

- Desire to serve *m* specific flight segments.
- Each flight segment (or flight) specified by four parameters: origin airport, destination airport, departure time, arrival time.
- We can use a single plane for flight i and later for flight j if
 - (i) the destination of i is the same as the origin of i and there is enough time to perform maintenance on the plane between the two flights, or
 - (ii) we can add a flight that takes the plane from the destination of i to the origin of i with enough time for maintenance.
- Goal is to schedule all m flights using at most k planes.

• Flight *j* is *reachable* from flight *i* if the same plane can be used for both flights subject to the constraints described earlier.

• Flight *j* is *reachable* from flight *i* if the same plane can be used for both flights subject to the constraints described earlier.

• Flight *j* is *reachable* from flight *i* if the same plane can be used for both flights subject to the constraints described earlier.

• Flight *j* is *reachable* from flight *i* if the same plane can be used for both flights subject to the constraints described earlier.

- Flight *j* is *reachable* from flight *i* if the same plane can be used for both flights subject to the constraints described earlier.
- Assume input includes pairs (i, j) of reachable flights, i.e., in each pair j is reachable from i.

• Flight *j* is *reachable* from flight *i* if the same plane can be used for both flights subject to the constraints described earlier.

AIRLINE SCHEDULING

INSTANCE: Set S of m flight segments (u_i, v_i) , $1 \le i \le m$, a set R of reachable pairs of flights (i,j), $1 \le i,j \le m$, and an integer bound kSOLUTION:

The dotted circles are meant only to illustrate the new flights added.

AIRLINE SCHEDULING

INSTANCE: Set *S* of *m* flight segments (u_i, v_i) , $1 \le i \le m$, a set *R* of reachable pairs of flights (i, j), $1 \le i, j \le m$, and an integer bound *k* **SOLUTION:** Feasible scheduling:

- (a) Set T of $n \ge 0$ new flight segments (u_i, v_i) , $1 \le j \le n$ and
- (b) A partition of $S \cup T$ into at most k sequences such that in each sequence, flight i is reachable from flight i-1, for all $1 < i \le l$, where l is the length of the sequence.

AIRLINE SCHEDULING

INSTANCE: Set S of m flight segments (u_i, v_i) , $1 \le i \le m$, a set R of reachable pairs of flights (i, j), $1 \le i, j \le m$, and an integer bound k **SOLUTION:** Feasible scheduling:

- (a) Set T of $n \ge 0$ new flight segments (u_i, v_i) , $1 \le j \le n$ and
- (b) A partition of $S \cup T$ into at most k sequences such that in each sequence, flight i is reachable from flight i-1, for all $1 < i \le l$, where *I* is the length of the sequence.
- Where are flight departure and arrival times in the input?

AIRLINE SCHEDULING

INSTANCE: Set S of m flight segments (u_i, v_i) , $1 \le i \le m$, a set R of reachable pairs of flights (i, j), $1 \le i, j \le m$, and an integer bound k **SOLUTION:** Feasible scheduling:

- (a) Set T of $n \ge 0$ new flight segments (u_i, v_i) , $1 \le i \le n$ and
- (b) A partition of $S \cup T$ into at most k sequences such that in each sequence, flight i is reachable from flight i-1, for all $1 < i \le l$, where *I* is the length of the sequence.
- Where are flight departure and arrival times in the input? In a flight segment, u_i specifies both origin airport and departure time; v_i specifies both arrival airport and arrival time.

- Nodes in the flow network are airports.
- Planes correspond to units of flow.

- Nodes in the flow network are airports.
- Planes correspond to units of flow.
- Each flight corresponds to an edge. How do we ensure each flight is served by exactly one plane?

- Nodes in the flow network are airports.
- Planes correspond to units of flow.
- Each flight corresponds to an edge. How do we ensure each flight is served by exactly one plane? Lower bound of 1 and a capacity of 1.

- Nodes in the flow network are airports.
- Planes correspond to units of flow.
- Each flight corresponds to an edge. How do we ensure each flight is served by exactly one plane? Lower bound of 1 and a capacity of 1.
- How do we represent reachability? If (i, j) is a reachable pair, there is an edge from v_i to u_i with lower bound of 0 and a capacity of 1.

Nodes:

- For each flight i, graph G has two nodes u_i and v_i .
- ullet G also contains a distinct source node s and a sink node t.

Nodes: • For each flight i, graph G has two nodes u_i and v_i .

ullet G also contains a distinct source node s and a sink node t.

Edges: Serve each flight For each $i \in S$ (flight), G contains an edge directed from u_i to v_i with a lower bound of 1 and a capacity of 1.

Nodes: • For each flight i, graph G has two nodes u_i and v_i .

• G also contains a distinct source node s and a sink node t.

Edges: Serve each flight For each $i \in S$ (flight), G contains an edge directed from u_i to v_i with a lower bound of 1 and a capacity of 1.

Same plane for flights i and j For each $(i,j) \in R$, G contains an edge directed from v_i to u_i with a lower bound of 0 and a capacity of 1.

Nodes: • For each flight i, graph G has two nodes u_i and v_i .

• G also contains a distinct source node s and a sink node t.

Edges: Serve each flight For each $i \in S$ (flight), G contains an edge directed from u_i to v_i with a lower bound of 1 and a capacity of 1.

Same plane for flights i and j For each $(i,j) \in R$, G contains an edge directed from v_i to u_i with a lower bound of 0 and a capacity of 1.

Start a plane with any flight For each $i \in S$, G contains an edge directed from s to u_i with a lower bound of 0 and a capacity of 1.

• For each flight i, graph G has two nodes u_i and v_i . Nodes:

• G also contains a distinct source node s and a sink node t.

Edges: Serve each flight For each $i \in S$ (flight), G contains an edge directed from u_i to v_i with a lower bound of 1 and a capacity of 1.

> Same plane for flights i and j For each $(i,j) \in R$, G contains an edge directed from v_i to u_i with a lower bound of 0 and a capacity of 1.

> Start a plane with any flight For each $i \in S$, G contains an edge directed from s to u_i with a lower bound of 0 and a capacity of 1.

> End a plane with any flight For each $j \in S$, G contains an edge directed from v_i to t with a lower bound of 0 and a capacity of 1.

- For each flight i, graph G has two nodes u_i and v_i . Nodes:
 - G also contains a distinct source node s and a sink node t.
- Edges: Serve each flight For each $i \in S$ (flight), G contains an edge directed from u_i to v_i with a lower bound of 1 and a capacity of 1.
 - Same plane for flights i and j For each $(i,j) \in R$, G contains an edge directed from v_i to u_i with a lower bound of 0 and a capacity of 1.
 - Start a plane with any flight For each $i \in S$, G contains an edge directed from s to u_i with a lower bound of 0 and a capacity of 1.
 - End a plane with any flight For each $j \in S$, G contains an edge directed from v_i to t with a lower bound of 0 and a capacity of 1.
 - Excess planes G contains an edge directed from s to t with lower bound 0 and capacity k.

• For each flight i, graph G has two nodes u_i and v_i . Nodes:

• G also contains a distinct source node s and a sink node t.

Edges: Serve each flight For each $i \in S$ (flight), G contains an edge directed from u_i to v_i with a lower bound of 1 and a capacity of 1.

Same plane for flights i and j For each $(i,j) \in R$, G contains an edge directed from v_i to u_i with a lower bound of 0 and a capacity of 1.

Start a plane with any flight For each $i \in S$, G contains an edge directed from s to u_i with a lower bound of 0 and a capacity of 1.

End a plane with any flight For each $j \in S$, G contains an edge directed from v_i to t with a lower bound of 0 and a capacity of 1.

Excess planes G contains an edge directed from s to t with lower bound 0 and capacity k.

Demands: Node s has demand -k, node t has demand k, all other nodes have demand 0.

Nodes: • For each flight i, graph G has two nodes u_i and v_i .

ullet G also contains a distinct source node s and a sink node t.

Edges: Serve each flight For each $i \in S$ (flight), G contains an edge directed from u_i to v_i with a lower bound of 1 and a capacity of 1.

Same plane for flights i and j For each $(i,j) \in R$, G contains an edge directed from v_i to u_j with a lower bound of 0 and a capacity of 1.

Start a plane with any flight For each $i \in S$, G contains an edge directed from s to u_i with a lower bound of 0 and a capacity of 1.

End a plane with any flight For each $j \in S$, G contains an edge directed from v_j to t with a lower bound of 0 and a capacity of 1.

Excess planes G contains an edge directed from s to t with lower bound 0 and capacity k.

Demands: Node s has demand -k, node t has demand k, all other nodes have demand 0.

Goal: Compute whether *G* has a feasible circulation.

Example of Circulation Formulation

The image does not show the edge between s and t.

Proof of Correctness: Part 1

 Claim: We can schedule all flights in S using at most k planes iff G has a feasible circulation.

- Claim: We can schedule all flights in S using at most k planes iff G has a feasible circulation.
- Feasible schedule with $k' \leq k$ planes \Rightarrow feasible circulation:

- Claim: We can schedule all flights in S using at most k planes iff G has a feasible circulation.
- Feasible schedule with $k' \leq k$ planes \Rightarrow feasible circulation:
 - ▶ Each plane $I, 1 \le I \le k'$ flies along a particular path P_I of flights unique to that plane, starting at city s_I and ending at city t_I .
 - ▶ Send one unit of flow along the edges of that path P_l and along the edges (s, s_l) and (t_l, t) .

- Claim: We can schedule all flights in S using at most k planes iff G has a feasible circulation.
- Feasible schedule with $k' \leq k$ planes \Rightarrow feasible circulation:
 - ▶ Each plane $I, 1 \le I \le k'$ flies along a particular path P_I of flights unique to that plane, starting at city s_I and ending at city t_I .
 - ▶ Send one unit of flow along the edges of that path P_l and along the edges (s, s_l) and (t_l, t) .

- Claim: We can schedule all flights in S using at most k planes iff G has a feasible circulation.
- Feasible schedule with $k' \leq k$ planes \Rightarrow feasible circulation:
 - ▶ Each plane l, 1 < l < k' flies along a particular path P_l of flights unique to that plane, starting at city s_l and ending at city t_l .
 - Send one unit of flow along the edges of that path P_I and along the edges (s, s_l) and (t_l, t) .

- Claim: We can schedule all flights in S using at most k planes iff G has a feasible circulation.
- Feasible schedule with $k' \leq k$ planes \Rightarrow feasible circulation:
 - ▶ Each plane $I, 1 \le I \le k'$ flies along a particular path P_I of flights unique to that plane, starting at city s_I and ending at city t_I .
 - ▶ Send one unit of flow along the edges of that path P_l and along the edges (s, s_l) and (t_l, t) .

- Claim: We can schedule all flights in S using at most k planes iff G has a feasible circulation.
- Feasible schedule with $k' \leq k$ planes \Rightarrow feasible circulation:
 - ▶ Each plane $l, 1 \le l \le k'$ flies along a particular path P_l of flights unique to that plane, starting at city s_l and ending at city t_l .
 - ▶ Send one unit of flow along the edges of that path P_l and along the edges (s, s_l) and (t_l, t) .
 - ▶ To satisfy excess demands at s and t, send k k' units of flow along (s, t).
 - Why does the resulting circulation satisfy all demand, lower bound, and capacity constraints?

Proof of Correctness: Part 2

• Claim: We can schedule all flights in S using at most k planes iff G has a feasible circulation.

- Claim: We can schedule all flights in S using at most k planes iff G has a feasible circulation.
- Feasible circulation ⇒ feasible schedule:

- Claim: We can schedule all flights in S using at most k planes iff G has a feasible circulation.
- Feasible circulation ⇒ feasible schedule:
 - ▶ Flow on each edge must be 0 or 1. Flow on the edges for flights must be 1.

T. M. Murali April 12, 17, 19 2017 Applications of Network Flow

- Claim: We can schedule all flights in S using at most k planes iff G has a feasible circulation.
- Feasible circulation ⇒ feasible schedule:
 - ▶ Flow on each edge must be 0 or 1. Flow on the edges for flights must be 1.
 - ▶ Suppose total flow out of s other than the edge (s, t) is k' < k.

- Claim: We can schedule all flights in S using at most k planes iff G has a feasible circulation.
- Feasible circulation ⇒ feasible schedule:
 - Flow on each edge must be 0 or 1. Flow on the edges for flights must be 1.
 - ▶ Suppose total flow out of s other than the edge (s, t) is $k' \le k$.
 - Claim: at most k' planes suffice to satisfy all flights.

- Claim: We can schedule all flights in S using at most k planes iff G has a feasible circulation.
- Feasible circulation ⇒ feasible schedule:
 - ▶ Flow on each edge must be 0 or 1. Flow on the edges for flights must be 1.
 - ▶ Suppose total flow out of s other than the edge (s, t) is $k' \le k$.
 - \triangleright Claim: at most k' planes suffice to satisfy all flights.
 - ▶ Convert set of edges that carry flow into k' edge-disjoint s-t paths.

T. M. Murali April 12, 17, 19 2017 Applications of Network Flow

- Claim: We can schedule all flights in S using at most k planes iff G has a feasible circulation.
- Feasible circulation ⇒ feasible schedule:
 - ▶ Flow on each edge must be 0 or 1. Flow on the edges for flights must be 1.
 - Suppose total flow out of s other than the edge (s, t) is k' < k.
 - Claim: at most k' planes suffice to satisfy all flights.
 - Convert set of edges that carry flow into k' edge-disjoint s-t paths.
 - ▶ Each path starts at exactly one of the k' edges of the form (s, u), $u \neq t$ that carry flow. Use the proof for the edge-disjoint paths problem to compute path.

T. M. Murali Applications of Network Flow April 12, 17, 19 2017

- Claim: We can schedule all flights in S using at most k planes iff G has a feasible circulation.
- Feasible circulation ⇒ feasible schedule:
 - ▶ Flow on each edge must be 0 or 1. Flow on the edges for flights must be 1.
 - ▶ Suppose total flow out of s other than the edge (s, t) is $k' \le k$.
 - Claim: at most k' planes suffice to satisfy all flights.
 - ▶ Convert set of edges that carry flow into k' edge-disjoint s-t paths.
 - ▶ Each path starts at exactly one of the k' edges of the form (s, u), $u \neq t$ that carry flow. Use the proof for the edge-disjoint paths problem to compute path.

Output these paths. Paths define extra flight segments automatically.