Divide and Conquer Algorithms

T. M. Murali

March 13 and 15, 2017
Divide and Conquer Algorithms

- Study three divide and conquer algorithms:
 - Counting inversions.
 - Finding the closest pair of points.
 - Integer multiplication.

- First two problems use clever conquer strategies.
- Third problem uses a clever divide strategy.
Motivation

Inspired by your shopping trends

More top picks for you

- Collaborative filtering: match one user’s preferences to those of other users, e.g., purchases, books, music.
- Meta-search engines: merge results of multiple search engines into a better search result.
Fundamental Question

How do we compare a pair of rankings?

- My ranking of songs: ordered list of integers from 1 to \(n \).
- Your ranking of songs: \(a_1, a_2, \ldots, a_n \), a permutation of the integers from 1 to \(n \).

\[
\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
4 & 1 & 2 & 6 & 8 & 5 & 3 & 9 & 7 & 11 & 12 & 10 \\
\end{array}
\]
Suggestion: two rankings of songs are very similar if they have few inversions.
Suggestion: two rankings of songs are very similar if they have few inversions.

- The second ranking has an *inversion* if there exist \(i, j \) such that \(i < j \) but \(a_i > a_j \).
- The number of inversions \(s \) is a measure of the difference between the rankings.

Question also arises in statistics: *Kendall’s rank correlation* of two lists of numbers is \(1 - 2s / (n(n - 1)) \).
Counting Inversions

Count Inversions

INSTANCE: A list $L = x_1, x_2, \ldots, x_n$ of distinct integers between 1 and n.

SOLUTION: The number of pairs $(i, j), 1 \leq i < j \leq n$ such $x_i > x_j$.
Counting Inversions

COUNT INVERSIONS

INSTANCE: A list \(L = x_1, x_2, \ldots, x_n \) of distinct integers between 1 and \(n \).

SOLUTION: The number of pairs \((i, j), 1 \leq i < j \leq n\) such \(x_i > x_j \).
Count Inversions

INSTANCE: A list $L = x_1, x_2, \ldots, x_n$ of distinct integers between 1 and n.

SOLUTION: The number of pairs $(i, j), 1 \leq i < j \leq n$ such $x_i > x_j$.

```
4 1 2 6 8 5 3 9 7 11 12 10
```
Counting Inversions: Algorithm

- How many inversions can be there in a list of n numbers?
Counting Inversions: Algorithm

- How many inversions can be there in a list of \(n \) numbers? \(\Omega(n^2) \). We cannot afford to compute each inversion explicitly.
Counting Inversions: Algorithm

- How many inversions can be there in a list of n numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?
Counting Inversions: Algorithm

- How many inversions can be there in a list of n numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?
- Candidate algorithm:
 1. Partition L into two lists A and B of size $n/2$ each.
 2. Recursively count the number of inversions in A.
 3. Recursively count the number of inversions in B.
 4. Count the number of inversions involving one element in A and one element in B.

```
4 1 2 6 8 5 3 9 7 11 12 10
```
Counting Inversions: Algorithm

- How many inversions can be there in a list of n numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?
- Candidate algorithm:
 1. Partition L into two lists A and B of size $n/2$ each.
 2. Recursively count the number of inversions in A.
 3. Recursively count the number of inversions in B.
 4. Count the number of inversions involving one element in A and one element in B.

T. M. Murali March 13 and 15, 2017 CS 4104: Divide and Conquer Algorithms
Counting Inversions: Algorithm

- How many inversions can be there in a list of n numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?
- Candidate algorithm:
 1. Partition L into two lists A and B of size $n/2$ each.
 2. Recursively count the number of inversions in A.
 3. Recursively count the number of inversions in B.
 4. Count the number of inversions involving one element in A and one element in B.
Counting Inversions: Algorithm

- How many inversions can be there in a list of n numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?
- Candidate algorithm:
 1. Partition L into two lists A and B of size $n/2$ each.
 2. Recursively count the number of inversions in A.
 3. Recursively count the number of inversions in B.
 4. Count the number of inversions involving one element in A and one element in B.

4 1 2 6 8 5 3 9 7 11 12 10
Counting Inversions: Conquer Step

- Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.

Key idea: problem is much easier if A and B are sorted!

Merge-and-Count procedure:
1. Maintain a current pointer for each list.
2. Maintain a variable count initialised to 0.
3. Initialse each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let a_i and b_j be the elements pointed to by the current pointers.
 2. Append the smaller of the two to the output list.
 3. If $b_j < a_i$, increment count by the number of elements remaining in A.
 4. Advance current in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return count and the merged list.

Running time of this algorithm is $O(m)$.
Counting Inversions: Conquer Step

- Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots, b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.
- Key idea: problem is much easier if A and B are sorted!
Counting Inversions: Conquer Step

- Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.
- Key idea: problem is much easier if A and B are sorted!
- **Merge** procedure:
 1. Maintain a *current* pointer for each list.
 2. Initialise each pointer to the front of the list.
 3. While both lists are nonempty:
 1. Let a_i and b_j be the elements pointed to by the *current* pointers.
 2. Append the smaller of the two to the output list.
 4. Advance *current* in the list containing the smaller element.
 5. Append the rest of the non-empty list to the output.
 6. Return the merged list.

Running time of this algorithm is $O(m)$.

T. M. Murali March 13 and 15, 2017 CS 4104: Divide and Conquer Algorithms
Counting Inversions: Conquer Step

- Given lists \(A = a_1, a_2, \ldots, a_m \) and \(B = b_1, b_2, \ldots b_m \), compute the number of pairs \(a_i \) and \(b_j \) such \(a_i > b_j \).
- Key idea: problem is much easier if \(A \) and \(B \) are sorted!
- **Merge-and-Count** procedure:
 1. Maintain a *current* pointer for each list.
 2. Maintain a variable *count* initialised to 0.
 3. Initialise each pointer to the front of the list.
 4. While both lists are nonempty:
 1. Let \(a_i \) and \(b_j \) be the elements pointed to by the *current* pointers.
 2. Append the smaller of the two to the output list.
 3. If \(b_j < a_i \), increment *count* by the number of elements remaining in \(A \).
 4. Advance *current* in the list containing the smaller element.
 5. Append the rest of the non-empty list to the output.
 6. Return *count* and the merged list.
Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.

Key idea: problem is much easier if A and B are sorted!

Merge-and-Count procedure:

1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let a_i and b_j be the elements pointed to by the *current* pointers.
 2. Append the smaller of the two to the output list.
 3. If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 4. Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return *count* and the merged list.

Running time of this algorithm is $O(m)$.
Counting Inversions: Conquer Step

Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.

Key idea: problem is much easier if A and B are sorted!

Merge-and-Count procedure:

1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let a_i and b_j be the elements pointed to by the *current* pointers.
 2. Append the smaller of the two to the output list.
 3. If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 4. Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return *count* and the merged list.

Running time of this algorithm is $O(m)$.
Counting Inversions: Conquer Step

Given lists \(A = a_1, a_2, \ldots, a_m \) and \(B = b_1, b_2, \ldots b_m \), compute the number of pairs \(a_i \) and \(b_j \) such \(a_i > b_j \).

Key idea: problem is much easier if \(A \) and \(B \) are sorted!

Merge-and-Count procedure:

1. Maintain a current pointer for each list.
2. Maintain a variable count initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let \(a_i \) and \(b_j \) be the elements pointed to by the current pointers.
 2. Append the smaller of the two to the output list.
 3. If \(b_j < a_i \), increment count by the number of elements remaining in \(A \).
 4. Advance current in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return count and the merged list.

Running time of this algorithm is \(O(m) \).
Counting Inversions: Conquer Step

Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.

Key idea: problem is much easier if A and B are sorted!

Merge-and-Count procedure:

1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let a_i and b_j be the elements pointed to by the *current* pointers.
 2. Append the smaller of the two to the output list.
 3. If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 4. Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return *count* and the merged list.

Running time of this algorithm is $O(m)$.
Counting Inversions: Conquer Step

Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.

Key idea: problem is much easier if A and B are sorted!

Merge-and-Count procedure:

1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let a_i and b_j be the elements pointed to by the current pointers.
 2. Append the smaller of the two to the output list.
 3. If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 4. Advance current in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return *count* and the merged list.

Running time of this algorithm is $O(m)$.
Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.

Key idea: problem is much easier if A and B are sorted!

Merge-and-Count procedure:

1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let a_i and b_j be the elements pointed to by the *current* pointers.
 2. Append the smaller of the two to the output list.
 3. If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 4. Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return *count* and the merged list.

Running time of this algorithm is $O(m)$.
Counting Inversions: Conquer Step

Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.

Key idea: problem is much easier if A and B are sorted!

Merge-and-Count procedure:
1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let a_i and b_j be the elements pointed to by the *current* pointers.
 2. Append the smaller of the two to the output list.
 3. If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 4. Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return *count* and the merged list.

Running time of this algorithm is $O(m)$.

$\text{count} = 4$

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>3</th>
<th>7</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
</table>
Counting Inversions: Conquer Step

Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.

Key idea: problem is much easier if A and B are sorted!

Merge-and-Count procedure:

1. Maintain a current pointer for each list.
2. Maintain a variable count initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let a_i and b_j be the elements pointed to by the current pointers.
 2. Append the smaller of the two to the output list.
 3. If $b_j < a_i$, increment count by the number of elements remaining in A.
 4. Advance current in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return count and the merged list.

Running time of this algorithm is $O(m)$.

Given lists $A = 4, 12, 6, 85, 3, 9, 7, 11, 12$ and $B = 10$, we have count = 4.
Counting Inversions: Conquer Step

count = 5

Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.

Key idea: problem is much easier if A and B are sorted!

Merge-and-Count procedure:

1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let a_i and b_j be the elements pointed to by the *current* pointers.
 2. Append the smaller of the two to the output list.
 3. If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 4. Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return *count* and the merged list.

Running time of this algorithm is $O(m)$.
Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots, b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.

Key idea: problem is much easier if A and B are sorted!

Merge-and-Count procedure:

1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let a_i and b_j be the elements pointed to by the *current* pointers.
 2. Append the smaller of the two to the output list.
 3. If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 4. Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return *count* and the merged list.

Running time of this algorithm is $O(m)$.

Counting Inversions: Conquer Step

$count = 5$

1 2 4 5 6 8 3 7 9 10 11 12
Counting Inversions: Conquer Step

Given lists \(A = a_1, a_2, \ldots, a_m \) and \(B = b_1, b_2, \ldots b_m \), compute the number of pairs \(a_i \) and \(b_j \) such \(a_i > b_j \).

Key idea: problem is much easier if \(A \) and \(B \) are sorted!

Merge-and-Count procedure:

1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let \(a_i \) and \(b_j \) be the elements pointed to by the *current* pointers.
 2. Append the smaller of the two to the output list.
 3. If \(b_j < a_i \), increment *count* by the number of elements remaining in \(A \).
 4. Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return *count* and the merged list.

Running time of this algorithm is \(O(m) \).
Counting Inversions: Conquer Step

Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.

Key idea: problem is much easier if A and B are sorted!

Merge-and-Count procedure:

1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let a_i and b_j be the elements pointed to by the *current* pointers.
 2. Append the smaller of the two to the output list.
 3. If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 4. Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return *count* and the merged list.

Running time of this algorithm is $O(m)$.

$\text{count } = 5$

$4 \quad 12 \quad 6 \quad 85 \quad 3 \quad 9 \quad 7 \quad 11 \quad 12 \quad 10$
Counting Inversions: Final Algorithm

Sort-and-Count(L)

If the list has one element then
there are no inversions
Else
Divide the list into two halves:
A contains the first $\lfloor n/2 \rfloor$ elements
B contains the remaining $\lceil n/2 \rceil$ elements
$(r_A, A) = \text{Sort-and-Count}(A)$
$(r_B, B) = \text{Sort-and-Count}(B)$
$(r, L) = \text{Merge-and-Count}(A, B)$
Endif
Return $r = r_A + r_B + r$, and the sorted list L
Counting Inversions: Final Algorithm

Sort-and-Count(L)

If the list has one element then

there are no inversions

Else

Divide the list into two halves:

A contains the first $\lfloor n/2 \rfloor$ elements

B contains the remaining $\lceil n/2 \rceil$ elements

(r_A, A) = Sort-and-Count(A)

(r_B, B) = Sort-and-Count(B)

(r, L) = Merge-and-Count(A, B)

Endif

Return $r = r_A + r_B + r$, and the sorted list L

Running time $T(n)$ of the algorithm is $O(n \log n)$ because

$T(n) \leq 2T(n/2) + O(n)$.
Counting Inversions: Correctness of Sort-and-Count

Prove by induction. Strategy: every inversion in the data is counted exactly once.

Base case: $n = 1$.

Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of $n - 1$ or fewer numbers.

Inductive step: Pick an arbitrary k and l such that $k < l$ but $x_k > x_l$.

When is this inversion counted by the algorithm?

1. $k, l \leq \lfloor n/2 \rfloor$: $x_k, x_l \in A$, counted in r_A.
2. $k, l \geq \lceil n/2 \rceil$: $x_k, x_l \in B$, counted in r_B.
3. $k \leq \lfloor n/2 \rfloor$, $l \geq \lceil n/2 \rceil$: $x_k \in A$, $x_l \in B$. Is this inversion counted by Merge-and-Count? Yes, when x_l is output.

Why is no non-inversion counted, i.e., Why does every pair counted correspond to an inversion?

When x_l is output, it is smaller than all remaining elements in A, since A is sorted.
Counting Inversions: Correctness of Sort-and-Count

- Prove by induction. **Strategy:** every inversion in the data is counted exactly once.
- Base case: $n = 1$.
- Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of $n - 1$ or fewer numbers.
- Inductive step: Pick an arbitrary k and l such that $k < l$ but $x_k > x_l$. When is this inversion counted by the algorithm?
 - $k, l \leq \lfloor n/2 \rfloor$:
 - $k, l \geq \lceil n/2 \rceil$:
 - $k \leq \lfloor n/2 \rfloor, l \geq \lceil n/2 \rceil$:
Counting Inversions: Correctness of Sort-and-Count

- Prove by induction. **Strategy:** every inversion in the data is counted exactly once.
- Base case: $n = 1$.
- Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of $n - 1$ or fewer numbers.
- Inductive step: Pick an arbitrary k and l such that $k < l$ but $x_k > x_l$. When is this inversion counted by the algorithm?
 - $k, l \leq \lfloor n/2 \rfloor$: $x_k, x_l \in A$, counted in r_A.
 - $k, l \geq \lceil n/2 \rceil$: $x_k, x_l \in B$, counted in r_B.
 - $k \leq \lfloor n/2 \rfloor, l \geq \lceil n/2 \rceil$: Is this inversion counted by **Merge-and-Count**?

 - Yes, when x_l is output.

- Why is no non-inversion counted, i.e., Why does every pair counted correspond to an inversion?

When x_l is output, it is smaller than all remaining elements in A, since A is sorted.
Counting Inversions: Correctness of Sort-and-Count

- Prove by induction. **Strategy:** every inversion in the data is counted exactly once.
- Base case: \(n = 1 \).
- Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of \(n - 1 \) or fewer numbers.
- Inductive step: Pick an arbitrary \(k \) and \(l \) such that \(k < l \) but \(x_k > x_l \). When is this inversion counted by the algorithm?
 - \(k, l \leq \lfloor n/2 \rfloor \): \(x_k, x_l \in A \), counted in \(r_A \).
 - \(k, l \geq \lceil n/2 \rceil \): \(x_k, x_l \in B \), counted in \(r_B \).
 - \(k \leq \lfloor n/2 \rfloor, l \geq \lceil n/2 \rceil \): \(x_k \in A, x_l \in B \). Is this inversion counted by **Merge-and-Count**?

```
count = 5
4 12 6 85 3 9 7 11 12
```
Counting Inversions: Correctness of Sort-and-Count

- Prove by induction. Strategy: every inversion in the data is counted exactly once.
- Base case: \(n = 1 \).
- Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of \(n - 1 \) or fewer numbers.
- Inductive step: Pick an arbitrary \(k \) and \(l \) such that \(k < l \) but \(x_k > x_l \). When is this inversion counted by the algorithm?
 - \(k, l \leq \left\lfloor \frac{n}{2} \right\rfloor \): \(x_k, x_l \in A \), counted in \(r_A \).
 - \(k, l \geq \left\lceil \frac{n}{2} \right\rceil \): \(x_k, x_l \in B \), counted in \(r_B \).
 - \(k \leq \left\lfloor \frac{n}{2} \right\rfloor, l \geq \left\lceil \frac{n}{2} \right\rceil \): \(x_k \in A, x_l \in B \). Is this inversion counted by \texttt{MERGE-AND-COUNT}? Yes, when \(x_l \) is output.
Counting Inversions: Correctness of Sort-and-Count

- Prove by induction. **Strategy:** every inversion in the data is counted exactly once.
- **Base case:** $n = 1$.
- **Inductive hypothesis:** Algorithm counts number of inversions correctly for all sets of $n - 1$ or fewer numbers.
- **Inductive step:** Pick an arbitrary k and l such that $k < l$ but $x_k > x_l$. When is this inversion counted by the algorithm?
 - $k, l \leq \lfloor n/2 \rfloor$: $x_k, x_l \in A$, counted in r_A.
 - $k, l \geq \lceil n/2 \rceil$: $x_k, x_l \in B$, counted in r_B.
 - $k \leq \lfloor n/2 \rfloor, l \geq \lceil n/2 \rceil$: $x_k \in A, x_l \in B$. Is this inversion counted by **Merge-and-Count**? Yes, when x_l is output.
 - Why is no non-inversion counted, i.e., **Why does every pair counted correspond to an inversion?**

```
count = 5
4 12 6 8 5 3 9 7 11 12
```

T. M. Murali March 13 and 15, 2017 CS 4104: Divide and Conquer Algorithms
Counting Inversions: Correctness of Sort-and-Count

- Prove by induction. Strategy: every inversion in the data is counted exactly once.
- Base case: $n = 1$.
- Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of $n - 1$ or fewer numbers.
- Inductive step: Pick an arbitrary k and l such that $k < l$ but $x_k > x_l$. When is this inversion counted by the algorithm?
 - $k, l \leq \lfloor n/2 \rfloor$: $x_k, x_l \in A$, counted in r_A.
 - $k, l \geq \lceil n/2 \rceil$: $x_k, x_l \in B$, counted in r_B.
 - $k \leq \lfloor n/2 \rfloor, l \geq \lceil n/2 \rceil$: $x_k \in A, x_l \in B$. Is this inversion counted by \texttt{Merge-and-Count}? Yes, when x_l is output.
 - Why is no non-inversion counted, i.e., Why does every pair counted correspond to an inversion? When x_l is output, it is smaller than all remaining elements in A, since A is sorted.

\[
\text{count} = 5
\]
Integer Multiplication

Multiply Integers

INSTANCE: Two n-digit binary integers x and y

SOLUTION: The product xy
Integer Multiplication

MULTIPLY INTEGERS

INSTANCE: Two \(n \)-digit binary integers \(x \) and \(y \)

SOLUTION: The product \(xy \)

- Multiply two \(n \)-digit integers.
Integer Multiplication

Multiply Integers

INSTANCE: Two n-digit binary integers x and y

SOLUTION: The product xy

- Multiply two n-digit integers.
- Result has at most $2n$ digits.
Integer Multiplication

MULTIPLY INTEGERS

INSTANCE: Two n-digit binary integers x and y

SOLUTION: The product xy

- Multiply two n-digit integers.
- Result has at most $2n$ digits.
- Algorithm we learnt in school takes $O(n^2)$ operations.

The product xy

$$\begin{array}{c}
\begin{array}{c}
\text{1100} \\
\times \text{1101}
\end{array} \\
\hline
\begin{array}{c}
\text{1100} \\
\times \text{13} \\
\hline
\begin{array}{c}
\text{12} \\
\times \text{13}
\end{array}
\end{array}
\end{array}$$

\[\begin{array}{c}
\hline
\text{36} \\
\text{12} \\
\hline
\text{156}
\end{array} \quad \begin{array}{c}
\text{1100} \\
\times \text{1100}
\end{array} \quad \begin{array}{c}
\text{0000} \\
\text{1100}
\end{array} \quad \begin{array}{c}
\text{10011100}
\end{array} \]

\(\text{(a)} \quad \text{(b)} \)

Figure 5.8 The elementary-school algorithm for multiplying two integers, in (a) decimal and (b) binary representation.
Multiply Integers

INSTANCE: Two \(n \)-digit binary integers \(x \) and \(y \)

SOLUTION: The product \(xy \)

- Multiply two \(n \)-digit integers.
- Result has at most \(2n \) digits.
- Algorithm we learnt in school takes \(O(n^2) \) operations.
 Size of the input is not 2 but \(2n \),

![Multiplication Example](image)

Figure 5.8 The elementary-school algorithm for multiplying two integers, in (a) decimal and (b) binary representation.
Divide-and-Conquer Idea

- Let us use divide and conquer
Divide-and-Conquer Idea

- Let us use divide and conquer by splitting each number into first \(n/2 \) bits and last \(n/2 \) bits.
- Let \(x \) be split into \(x_0 \) (lower-order bits) and \(x_1 \) (higher-order bits) and \(y \) into \(y_0 \) (lower-order bits) and \(y_1 \) (higher-order bits).
Divide-and-Conquer Idea

- Let us use divide and conquer by splitting each number into first $n/2$ bits and last $n/2$ bits.
- Let x be split into x_0 (lower-order bits) and x_1 (higher-order bits) and y into y_0 (lower-order bits) and y_1 (higher-order bits).

$$xy = (x_12^{n/2} + x_0)(y_12^{n/2} + y_0) =$$
Divide-and-Conquer Idea

- Let us use divide and conquer by splitting each number into first $n/2$ bits and last $n/2$ bits.
- Let x be split into x_0 (lower-order bits) and x_1 (higher-order bits) and y into y_0 (lower-order bits) and y_1 (higher-order bits).

$$xy = (x_12^{n/2} + x_0)(y_12^{n/2} + y_0)$$

$$= x_1y_12^n + (x_1y_0 + x_0y_1)2^{n/2} + x_0y_0$$
Divide-and-Conquer Algorithm

\[xy = x_1 y_1 2^n + (x_1 y_0 + x_0 y_1)2^{n/2} + x_0 y_0 \]

- **n** bits
- **n/2** bits

What is the running time of the conquer step?

Each of \(x_1 y_1\), \(x_0 y_0\), \(x_1 y_0\), \(x_0 y_1\) has \(n/2\) bits, so we can add their products in \(O(n^2)\) time.

What is the running time \(T(n)\)?

\[T(n) \leq 4T(n/2) + cn \leq O(n^2) \]
Divide-and-Conquer Algorithm

Algorithm:

1. Compute x_1y_1, x_1y_0, x_0y_1, and x_0y_0 recursively.
2. Merge the answers, i.e.,
 - Multiple x_1y_1 by 2^n
 - Add x_1y_0 and x_0y_1 and multiple this sum by $2^{n/2}$
 - Add these two numbers to x_0y_0

$$xy = x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$$
Divide-and-Conquer Algorithm

\[xy = x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0 \]

- **Algorithm:**
 1. Compute \(x_1y_1, x_1y_0, x_0y_1, \) and \(x_0y_0 \) recursively.
 2. Merge the answers, i.e.,
 - Multiple \(x_1y_1 \) by \(2^n \)
 - Add \(x_1y_0 \) and \(x_0y_1 \) and multiple this sum by \(2^{n/2} \)
 - Add these two numbers to \(x_0y_0 \)

- What is the running time of the conquer step?

\[T(n) \leq 4T\left(\frac{n}{2}\right) + cn \leq O(n^2) \]
Divide-and-Conquer Algorithm

\[xy = x_1 y_1 \cdot 2^n + (x_1 y_0 + x_0 y_1) \cdot 2^{n/2} + x_0 y_0 \]

- **Algorithm:**
 1. Compute \(x_1 y_1, x_1 y_0, x_0 y_1, \) and \(x_0 y_0 \) recursively.
 2. Merge the answers, i.e.,
 - Multiply \(x_1 y_1 \) by \(2^n \)
 - Add \(x_1 y_0 \) and \(x_0 y_1 \) and multiple this sum by \(2^{n/2} \)
 - Add these two numbers to \(x_0 y_0 \)

- **What is the running time of the conquer step?**
 - Each of \(x_1, x_0, y_1, y_0 \) has \(n/2 \) bits, so we can add their products in \(O(n) \) time.
Divide-and-Conquer Algorithm

\[xy = x_1 y_1 2^n + (x_1 y_0 + x_0 y_1)2^{n/2} + x_0 y_0 \]

\[n \text{ bits} \rightarrow n/2 \text{ bits} \]

- **Algorithm:**
 1. Compute \(x_1 y_1, x_1 y_0, x_0 y_1, \) and \(x_0 y_0\) recursively.
 2. Merge the answers, i.e.,
 1. Multiple \(x_1 y_1\) by \(2^n\)
 2. Add \(x_1 y_0\) and \(x_0 y_1\) and multiple this sum by \(2^{n/2}\)
 3. Add these two numbers to \(x_0 y_0\)

- **What is the running time of the conquer step?**
 - Each of \(x_1, x_0, y_1, y_0\) has \(n/2\) bits, so we can add their products in \(O(n)\) time.

- **What is the running time \(T(n)\)?**

\[T(n) \leq 4T(n/2) + cn \leq O(n^2) \]
Divide-and-Conquer Algorithm

\[xy = x_1 y_1 \ 2^n + (x_1 y_0 + x_0 y_1) 2^{n/2} + x_0 y_0 \]

- Algorithm:
 1. Compute \(x_1 y_1, x_1 y_0, x_0 y_1 \), and \(x_0 y_0 \) recursively.
 2. Merge the answers, i.e.,
 1. Multiple \(x_1 y_1 \) by \(2^n \)
 2. Add \(x_1 y_0 \) and \(x_0 y_1 \) and multiple this sum by \(2^{n/2} \)
 3. Add these two numbers to \(x_0 y_0 \)

- What is the running time of the conquer step?
 - Each of \(x_1, x_0, y_1, y_0 \) has \(n/2 \) bits, so we can add their products in \(O(n) \) time.

- What is the running time \(T(n) \)?
 \[T(n) \leq 4 T(n/2) + cn \leq O(n^2) \]
Improving the Algorithm

- Four sub-problems lead to an $O(n^2)$ algorithm.
- How can we reduce the number of sub-problems?
Improving the Algorithm

- Four sub-problems lead to an $O(n^2)$ algorithm.
- How can we reduce the number of sub-problems?
 - No need to compute x_1y_0 and x_0y_1 independently; we just need their sum.

\[
(x_0 + x_1)(y_0 + y_1) = x_1y_1 + (x_1y_0 + x_0y_1) + x_0y_0
\]

\[
(x_1y_0 + x_0y_1) = (x_0 + x_1)(y_0 + y_1) - x_1y_1 - x_0y_0
\]

- Compute x_1y_1, x_0y_0 and $(x_0 + x_1)(y_0 + y_1)$ recursively and then compute $(x_1y_0 + x_0y_1)$ by subtraction.
- Strategy: simple arithmetic manipulations.
Final Algorithm

Recursive-Multiply(x,y):

Write \(x = x_1 \cdot 2^{n/2} + x_0 \)

\[y = y_1 \cdot 2^{n/2} + y_0 \]

Compute \(x_1 + x_0 \) and \(y_1 + y_0 \)

\(p = \text{Recursive-Multiply}(x_1 + x_0, \ y_1 + y_0) \)

\(x_1y_1 = \text{Recursive-Multiply}(x_1, y_1) \)

\(x_0y_0 = \text{Recursive-Multiply}(x_0, y_0) \)

Return \(x_1y_1 \cdot 2^{n} + (p - x_1y_1 - x_0y_0) \cdot 2^{n/2} + x_0y_0 \)
Final Algorithm

Recursive-Multiply(x,y):

Write \(x = x_1 \cdot 2^{n/2} + x_0 \)
\(y = y_1 \cdot 2^{n/2} + y_0 \)

Compute \(x_1 + x_0 \) and \(y_1 + y_0 \)

\(p = \text{Recursive-Multiply}(x_1 + x_0, y_1 + y_0) \)

\(x_1y_1 = \text{Recursive-Multiply}(x_1, y_1) \)

\(x_0y_0 = \text{Recursive-Multiply}(x_0, y_0) \)

Return \(x_1y_1 \cdot 2^n + (p - x_1y_1 - x_0y_0) \cdot 2^{n/2} + x_0y_0 \)

- We have three sub-problems of size \(n/2 \).
- What is the running time \(T(n) \)?

\[
T(n) \leq 3T(n/2) + cn
\]
Final Algorithm

Recursive-Multiply(x,y):
 Write \(x = x_1 \cdot 2^{n/2} + x_0 \)
 \(y = y_1 \cdot 2^{n/2} + y_0 \)
 Compute \(x_1 + x_0 \) and \(y_1 + y_0 \)
 \(p = \text{Recursive-Multiply}(x_1 + x_0, y_1 + y_0) \)
 \(x_1y_1 = \text{Recursive-Multiply}(x_1, y_1) \)
 \(x_0y_0 = \text{Recursive-Multiply}(x_0, y_0) \)
 Return \(x_1y_1 \cdot 2^n + (p - x_1y_1 - x_0y_0) \cdot 2^{n/2} + x_0y_0 \)

- We have three sub-problems of size \(n/2 \).
- What is the running time \(T(n) \)?

\[
T(n) \leq 3T(n/2) + cn \\
\leq O(n^{\log_2 3}) = O(n^{1.59})
\]
Computational Geometry

- Algorithms for geometric objects: points, lines, segments, triangles, spheres, polyhedra, ...
- Started in 1975 by Shamos and Hoey.
- Problems studied have applications in a vast number of fields: ecology, molecular biology, statistics, computational finance, computer graphics, computer vision, ...
Computational Geometry

- Algorithms for geometric objects: points, lines, segments, triangles, spheres, polyhedra, ldots.
- Started in 1975 by Shamos and Hoey.
- Problems studied have applications in a vast number of fields: ecology, molecular biology, statistics, computational finance, computer graphics, computer vision, . . .

Closest Pair of Points

INSTANCE: A set P of n points in the plane

SOLUTION: The pair of points in P that are the closest to each other.
Computational Geometry

- Algorithms for geometric objects: points, lines, segments, triangles, spheres, polyhedra, ...
- Started in 1975 by Shamos and Hoey.
- Problems studied have applications in a vast number of fields: ecology, molecular biology, statistics, computational finance, computer graphics, computer vision, ...

Closest Pair of Points

INSTANCE: A set P of n points in the plane

SOLUTION: The pair of points in P that are the closest to each other.

- At first glance, it seems any algorithm must take $\Omega(n^2)$ time.
- Shamos and Hoey figured out an ingenious $O(n \log n)$ divide and conquer algorithm.
Closest Pair: Set-up

- Let \(P = \{p_1, p_2, \ldots, p_n\} \) with \(p_i = (x_i, y_i) \).
- Use \(d(p_i, p_j) \) to denote the Euclidean distance between \(p_i \) and \(p_j \). For a specific pair of points, can compute \(d(p_i, p_j) \) in \(O(1) \) time.
- Goal: find the pair of points \(p_i \) and \(p_j \) that minimise \(d(p_i, p_j) \).
Closest Pair: Set-up

- Let $P = \{p_1, p_2, \ldots, p_n\}$ with $p_i = (x_i, y_i)$.
- Use $d(p_i, p_j)$ to denote the Euclidean distance between p_i and p_j. For a specific pair of points, can compute $d(p_i, p_j)$ in $O(1)$ time.
- Goal: find the pair of points p_i and p_j that minimise $d(p_i, p_j)$.
- How do we solve the problem in 1D?
Closest Pair: Set-up

- Let $P = \{p_1, p_2, \ldots, p_n\}$ with $p_i = (x_i, y_i)$.
- Use $d(p_i, p_j)$ to denote the Euclidean distance between p_i and p_j. For a specific pair of points, can compute $d(p_i, p_j)$ in $O(1)$ time.
- Goal: find the pair of points p_i and p_j that minimise $d(p_i, p_j)$.
- How do we solve the problem in 1D?
 - Sort: closest pair must be adjacent in the sorted order.
Closest Pair: Set-up

- Let $P = \{p_1, p_2, \ldots, p_n\}$ with $p_i = (x_i, y_i)$.
- Use $d(p_i, p_j)$ to denote the Euclidean distance between p_i and p_j. For a specific pair of points, can compute $d(p_i, p_j)$ in $O(1)$ time.
- Goal: find the pair of points p_i and p_j that minimise $d(p_i, p_j)$.
- How do we solve the problem in 1D?
 - Sort: closest pair must be adjacent in the sorted order.
 - Divide and conquer after sorting: closest pair must be closest of
 1. closest pair in left half: distance δ_l.
 2. closest pair in right half: distance δ_r.
 3. closest among pairs that span the left and right halves and are at most $\min(\delta_l, \delta_r)$ apart. How many such pairs do we need to consider?
Closest Pair: Set-up

- Let \(P = \{p_1, p_2, \ldots, p_n\} \) with \(p_i = (x_i, y_i) \).
- Use \(d(p_i, p_j) \) to denote the Euclidean distance between \(p_i \) and \(p_j \). For a specific pair of points, can compute \(d(p_i, p_j) \) in \(O(1) \) time.
- Goal: find the pair of points \(p_i \) and \(p_j \) that minimise \(d(p_i, p_j) \).
- How do we solve the problem in 1D?
 - Sort: closest pair must be adjacent in the sorted order.
 - Divide and conquer after sorting: closest pair must be closest of
 - closest pair in left half: distance \(\delta_l \).
 - closest pair in right half: distance \(\delta_r \).
 - closest among pairs that span the left and right halves and are at most \(\min(\delta_l, \delta_r) \) apart. How many such pairs do we need to consider? Just one!
Closest Pair: Set-up

- Let \(P = \{p_1, p_2, \ldots, p_n\} \) with \(p_i = (x_i, y_i) \).
- Use \(d(p_i, p_j) \) to denote the Euclidean distance between \(p_i \) and \(p_j \). For a specific pair of points, can compute \(d(p_i, p_j) \) in \(O(1) \) time.
- Goal: find the pair of points \(p_i \) and \(p_j \) that minimise \(d(p_i, p_j) \).
- How do we solve the problem in 1D?
 - Sort: closest pair must be adjacent in the sorted order.
 - Divide and conquer after sorting: closest pair must be closest of
 - closest pair in left half: distance \(\delta_l \).
 - closest pair in right half: distance \(\delta_r \).
 - closest among pairs that span the left and right halves and are at most \(\min(\delta_l, \delta_r) \) apart. How many such pairs do we need to consider? Just one!
- Generalize the second idea to 2D.
Closest Pair: Algorithm Skeleton

1. Divide P into two sets Q and R of $n/2$ points such that each point in Q has x-coordinate less than any point in R.
2. Recursively compute closest pair in Q and in R, respectively.
Closest Pair: Algorithm Skeleton

1. Divide P into two sets Q and R of $n/2$ points such that each point in Q has x-coordinate less than any point in R.
2. Recursively compute closest pair in Q and in R, respectively.
3. Let δ_Q be the distance computed for Q, δ_R be the distance computed for R, and $\delta = \min(\delta_Q, \delta_R)$.
Closest Pair: Algorithm Skeleton

1. Divide P into two sets Q and R of $n/2$ points such that each point in Q has x-coordinate less than any point in R.

2. Recursively compute closest pair in Q and in R, respectively.

3. Let δ_Q be the distance computed for Q, δ_R be the distance computed for R, and $\delta = \min(\delta_Q, \delta_R)$.

4. Compute pair (q, r) of points such that $q \in Q$, $r \in R$, $d(q, r) < \delta$ and $d(q, r)$ is the smallest possible.
Closest Pair: Proof Sketch

- Prove by induction: Let \((s, t)\) be the closest pair.
 1. both are in \(Q\): computed correctly by recursive call.
 2. both are in \(R\): computed correctly by recursive call.
 3. one is in \(Q\) and the other is in \(R\): computed correctly in \(O(n)\) time by the procedure we will discuss.

- Strategy: Pairs of points for which we do not compute the distance between cannot be the closest pair.

- Overall running time is \(O(n \log n)\).
Closest Pair: Conquer Step

- Line L passes through right-most point in Q.
- Let S be the set of points within distance δ of L. (In image, $\delta = \delta_R$.)
Closest Pair: Conquer Step

- Line L passes through right-most point in Q.
- Let S be the set of points within distance δ of L. (In image, $\delta = \delta_R$.)
- Claim: There exist $q \in Q$, $r \in R$ such that $d(q, r) < \delta$ if and only if $q, r \in S$.

$$\delta = \min(\delta_Q, \delta_R)$$
Closest Pair: Conquer Step

- Line L passes through right-most point in Q.
- Let S be the set of points within distance δ of L. (In image, $\delta = \delta_R$.)
- Claim: There exist $q \in Q$, $r \in R$ such that $d(q, r) < \delta$ if and only if $q, r \in S$.
- Corollary: If $t \in Q - S$ or $u \in R - S$, then (t, u) cannot be the closest pair.
Closest Pair: Packing Argument

- Intuition: “too many” points in S that are closer than δ to each other
 \Rightarrow there must be a pair in Q or in R that are less than δ apart.
Closest Pair: Packing Argument

- Intuition: “too many” points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.

- Let S_y denote the set of points in S sorted by increasing y-coordinate and let s_y denote the y-coordinate of a point $s \in S$.

Claim: If there exist $s, s' \in S$ such that $d(s, s') < \delta$ then s and s' are at most 15 indices apart in S_y.

Converse of the claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y, then $s'_y - s_y \geq \delta$.

Use the claim in the algorithm: For every point $s \in S_y$, compute distances only to the next 15 points in S_y. Other pairs of points cannot be candidates for the closest pair.
Closest Pair: Packing Argument

- Intuition: “too many” points in \(S \) that are closer than \(\delta \) to each other \(\Rightarrow \) there must be a pair in \(Q \) or in \(R \) that are less than \(\delta \) apart.
- Let \(S_y \) denote the set of points in \(S \) sorted by increasing \(y \)-coordinate and let \(s_y \) denote the \(y \)-coordinate of a point \(s \in S \).
- Claim: If there exist \(s, s' \in S \) such that \(d(s, s') < \delta \) then \(s \) and \(s' \) are at most 15 indices apart in \(S_y \).
Closest Pair: Packing Argument

- Intuition: “too many” points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.

- Let S_y denote the set of points in S sorted by increasing y-coordinate and let s_y denote the y-coordinate of a point $s \in S$.

- Claim: If there exist $s, s' \in S$ such that $d(s, s') < \delta$ then s and s' are at most 15 indices apart in S_y.

- Converse of the claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y, then $s'_y - s_y \geq \delta$.
Closest Pair: Packing Argument

- Intuition: “too many” points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.

- Let S_y denote the set of points in S sorted by increasing y-coordinate and let s_y denote the y-coordinate of a point $s \in S$.

- Claim: If there exist $s, s' \in S$ such that $d(s, s') < \delta$ then s and s' are at most 15 indices apart in S_y.

- Converse of the claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y, then $s'_y - s_y \geq \delta$.

- Use the claim in the algorithm: For every point $s \in S_y$, compute distances only to the next 15 points in S_y.

- Other pairs of points cannot be candidates for the closest pair.
Claim: If there exist \(s, s' \in S \) such that \(s' \) appears 16 or more indices after \(s \) in \(S_y \), then \(s'_y - s_y \geq \delta \).
Closest Pair: Proof of Packing Argument

- Claim: If there exist \(s, s' \in S \) such that \(s' \) appears 16 or more indices after \(s \) in \(S_y \), then \(s'_y - s_y \geq \delta \).
- Pack the plane with squares of side \(\delta / 2 \).
Closest Pair: Proof of Packing Argument

- Claim: If there exist \(s, s' \in S \) such that \(s' \) appears 16 or more indices after \(s \) in \(S_y \), then \(s'_y - s_y \geq \delta \).
- Pack the plane with squares of side \(\delta / 2 \).
- Each square contains at most one point.
Closest Pair: Proof of Packing Argument

- **Claim:** If there exist \(s, s' \in S \) such that \(s' \) appears 16 or more indices after \(s \) in \(S_y \), then \(s'_y - s_y \geq \delta \).
- Pack the plane with squares of side \(\delta/2 \).
- Each square contains at most one point.
- Let \(s \) lie in one of the squares.

\[
\begin{align*}
\delta/2 \\
\delta/2 \\
\delta/2 \\
\end{align*}
\]
Closest Pair: Proof of Packing Argument

- Claim: If there exist \(s, s' \in S \) such that \(s' \) appears 16 or more indices after \(s \) in \(S_y \), then \(s'_y - s_y \geq \delta \).
- Pack the plane with squares of side \(\delta/2 \).
- Each square contains at most one point.
- Let \(s \) lie in one of the squares.
- Any point in the third row of the packing below \(s \) has a \(y \)-coordinate at least \(\delta \) more than \(s_y \).
Closest Pair: Proof of Packing Argument

Claim: If there exist \(s, s' \in S \) such that \(s' \) appears 16 or more indices after \(s \) in \(S_y \), then \(s'_y - s_y \geq \delta \).

Pack the plane with squares of side \(\delta/2 \).

Each square contains at most one point.

Let \(s \) lie in one of the squares.

Any point in the third row of the packing below \(s \) has a \(y \)-coordinate at least \(\delta \) more than \(s_y \).

We get a count of 12 or more indices (textbook says 16).
Closest Pair: Final Algorithm

Closest-Pair(\(P\))
Construct \(P_x\) and \(P_y\) (\(O(n \log n)\) time)
\((p'_0, p'_1) = \text{Closest-Pair-Rec}(P_x, P_y)\)

Closest-Pair-Rec(\(P_x\), \(P_y\))
If \(|P| \leq 3\) then
find closest pair by measuring all pairwise distances
Endif

Construct \(Q_x\), \(Q_y\), \(R_x\), \(R_y\) (\(O(n)\) time)
\((q'_0, q'_1) = \text{Closest-Pair-Rec}(Q_x, Q_y)\)
\((r'_0, r'_1) = \text{Closest-Pair-Rec}(R_x, R_y)\)

\(\delta = \min(d(q'_0, q'_1), d(r'_0, r'_1))\)

\(x' = \text{maximum} \ x\)-coordinate of a point in set \(Q\)
\(L = \{(x, y) : x = x'\}\)
\(S = \text{points in} \ P \text{ within distance} \ \delta \text{ of} \ L.\)

Construct \(S_y\) (\(O(n)\) time)
For each point \(s \in S_y\), compute distance from \(s\)
to each of next 15 points in \(S_y\).
Let \(s, s'\) be pair achieving minimum of these distances
(\(O(n)\) time)

If \(d(s, s') < \delta\) then
Return \((s, s')\)
Else if \(d(q'_0, q'_1) < d(r'_0, r'_1)\) then
Return \((q'_0, q'_1)\)
Else
Return \((r'_0, r'_1)\)
Endif
Closest-Pair: Final Algorithm

Closest-Pair\((P) \)

Construct \(P_x \) and \(P_y \) \((O(n \log n) \text{ time}) \)
\((p_0^*, p_1^*) = \text{Closest-Pair-Rec}(P_x, P_y) \)

Closest-Pair-Rec\((P_x, P_y) \)

If \(|P| \leq 3\) then

find closest pair by measuring all pairwise distances

Endif

Construct \(Q_x \), \(Q_y \), \(R_x \), \(R_y \) \((O(n) \text{ time}) \)
\((q_0^*, q_1^*) = \text{Closest-Pair-Rec}(Q_x, Q_y) \)
\((r_0^*, r_1^*) = \text{Closest-Pair-Rec}(R_x, R_y) \)

\[\delta = \min(d(q_0^*, q_1^*), d(r_0^*, r_1^*)) \]
\[x^* = \text{maximum } x\text{-coordinate of a point in set } Q \]
Closest Pair: Final Algorithm

\[x^* = \text{maximum } x\text{-coordinate of a point in set } Q \]

\[L = \{(x,y) : x = x^*\} \]

\[S = \text{points in } P \text{ within distance } \delta \text{ of } L. \]

Construct \(S_y \) \((O(n) \text{ time}) \)

For each point \(s \in S_y \), compute distance from \(s \)

to each of next 15 points in \(S_y \)

Let \(s, s' \) be pair achieving minimum of these distances

\((O(n) \text{ time}) \)

If \(d(s,s') < \delta \) then

Return \((s,s')\)

Else if \(d(q_0^*,q_1^*) < d(r_0^*,r_1^*) \) then

Return \((q_0^*,q_1^*)\)

Else

Return \((r_0^*,r_1^*)\)

Endif