
Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Graphs

T. M. Murali

February 1, 3, 6, 8, 2017

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

The Oracle of Bacon

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

https://oracleofbacon.org/

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Graphs

Model pairwise relationships (edges) between objects (nodes).

Useful in a large number of applications: computer networks, the World Wide
Web, ecology (food webs), social networks, software systems, job scheduling,
VLSI circuits, cellular networks, . . .
Other examples: gene and protein networks, our bodies (nervous and
circulatory systems, brains), buildings, transportation networks, . . .
Problems involving graphs have a rich history dating back to Euler.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Graphs

Model pairwise relationships (edges) between objects (nodes).
Useful in a large number of applications:

computer networks, the World Wide
Web, ecology (food webs), social networks, software systems, job scheduling,
VLSI circuits, cellular networks, . . .
Other examples: gene and protein networks, our bodies (nervous and
circulatory systems, brains), buildings, transportation networks, . . .
Problems involving graphs have a rich history dating back to Euler.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Graphs

Model pairwise relationships (edges) between objects (nodes).
Useful in a large number of applications: computer networks, the World Wide
Web, ecology (food webs), social networks, software systems, job scheduling,
VLSI circuits, cellular networks, . . .
Other examples: gene and protein networks, our bodies (nervous and
circulatory systems, brains), buildings, transportation networks, . . .

Problems involving graphs have a rich history dating back to Euler.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Graphs

Model pairwise relationships (edges) between objects (nodes).
Useful in a large number of applications: computer networks, the World Wide
Web, ecology (food webs), social networks, software systems, job scheduling,
VLSI circuits, cellular networks, . . .
Other examples: gene and protein networks, our bodies (nervous and
circulatory systems, brains), buildings, transportation networks, . . .
Problems involving graphs have a rich history dating back to Euler.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Graphs

Model pairwise relationships (edges) between objects (nodes).
Useful in a large number of applications: computer networks, the World Wide
Web, ecology (food webs), social networks, software systems, job scheduling,
VLSI circuits, cellular networks, . . .
Other examples: gene and protein networks, our bodies (nervous and
circulatory systems, brains), buildings, transportation networks, . . .
Problems involving graphs have a rich history dating back to Euler.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Graphs

Model pairwise relationships (edges) between objects (nodes).
Useful in a large number of applications: computer networks, the World Wide
Web, ecology (food webs), social networks, software systems, job scheduling,
VLSI circuits, cellular networks, . . .
Other examples: gene and protein networks, our bodies (nervous and
circulatory systems, brains), buildings, transportation networks, . . .
Problems involving graphs have a rich history dating back to Euler.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

De�nition of a Graph

Undirected graph G = (V ,E): set V of nodes and set E of edges, where
E ⊆ V × V . Elements of E are unordered pairs.

I Say that edge e is incident on u and on v .
I Exactly one edge between any pair of nodes.
I G contains no self loops, i.e., no edges of the form (u, u).

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

De�nition of a Graph
Directed graph G = (V ,E): set V of nodes and set E of edges, where
E ⊆ V × V . Elements of E are ordered pairs.

I e = (u, v): u is the tail of the edge e, v is its head; e is directed from u to v .
I A pair of nodes {u, v} may be connected by two directed edges: (u, v) and

(v , u).
I G contains no self loops.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Paths and Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

A v1-vk path in an undirected graph G = (V ,E) is a sequence P of nodes
v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of nodes
vi , vi+1, 1 ≤ i < k is connected by an edge in E .

A path is simple if all its nodes are distinct.
A cycle is a path where k > 2, the first k − 1 nodes are distinct, and v1 = vk .

I All de�nitions carry over to directed graphs as well.

An undirected graph G is connected if for every pair of nodes u, v ∈ V , there
is a path from u to v in G .
Distance d(u, v) between two nodes u and v is the minimum number of
edges in any u-v path.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Paths and Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

A v1-vk path in an undirected graph G = (V ,E) is a sequence P of nodes
v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of nodes
vi , vi+1, 1 ≤ i < k is connected by an edge in E .

A path is simple if all its nodes are distinct.
A cycle is a path where k > 2, the first k − 1 nodes are distinct, and v1 = vk .

I All de�nitions carry over to directed graphs as well.

An undirected graph G is connected if for every pair of nodes u, v ∈ V , there
is a path from u to v in G .
Distance d(u, v) between two nodes u and v is the minimum number of
edges in any u-v path.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Paths and Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

A v1-vk path in an undirected graph G = (V ,E) is a sequence P of nodes
v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of nodes
vi , vi+1, 1 ≤ i < k is connected by an edge in E .

A path is simple if all its nodes are distinct.
A cycle is a path where k > 2, the first k − 1 nodes are distinct, and v1 = vk .

I All de�nitions carry over to directed graphs as well.

An undirected graph G is connected if for every pair of nodes u, v ∈ V , there
is a path from u to v in G .
Distance d(u, v) between two nodes u and v is the minimum number of
edges in any u-v path.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Paths and Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

A v1-vk path in an undirected graph G = (V ,E) is a sequence P of nodes
v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of nodes
vi , vi+1, 1 ≤ i < k is connected by an edge in E .
A path is simple if all its nodes are distinct.

A cycle is a path where k > 2, the first k − 1 nodes are distinct, and v1 = vk .

I All de�nitions carry over to directed graphs as well.

An undirected graph G is connected if for every pair of nodes u, v ∈ V , there
is a path from u to v in G .
Distance d(u, v) between two nodes u and v is the minimum number of
edges in any u-v path.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Paths and Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

A v1-vk path in an undirected graph G = (V ,E) is a sequence P of nodes
v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of nodes
vi , vi+1, 1 ≤ i < k is connected by an edge in E .
A path is simple if all its nodes are distinct.
A cycle is a path where k > 2, the first k − 1 nodes are distinct, and v1 = vk .

I All de�nitions carry over to directed graphs as well.

An undirected graph G is connected if for every pair of nodes u, v ∈ V , there
is a path from u to v in G .
Distance d(u, v) between two nodes u and v is the minimum number of
edges in any u-v path.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Paths and Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

A v1-vk path in an undirected graph G = (V ,E) is a sequence P of nodes
v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of nodes
vi , vi+1, 1 ≤ i < k is connected by an edge in E .
A path is simple if all its nodes are distinct.
A cycle is a path where k > 2, the first k − 1 nodes are distinct, and v1 = vk .

I All de�nitions carry over to directed graphs as well.

An undirected graph G is connected if for every pair of nodes u, v ∈ V , there
is a path from u to v in G .
Distance d(u, v) between two nodes u and v is the minimum number of
edges in any u-v path.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Paths and Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

A v1-vk path in an undirected graph G = (V ,E) is a sequence P of nodes
v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of nodes
vi , vi+1, 1 ≤ i < k is connected by an edge in E .
A path is simple if all its nodes are distinct.
A cycle is a path where k > 2, the first k − 1 nodes are distinct, and v1 = vk .

I All de�nitions carry over to directed graphs as well.

An undirected graph G is connected if for every pair of nodes u, v ∈ V , there
is a path from u to v in G .

Distance d(u, v) between two nodes u and v is the minimum number of
edges in any u-v path.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Paths and Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

A v1-vk path in an undirected graph G = (V ,E) is a sequence P of nodes
v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of nodes
vi , vi+1, 1 ≤ i < k is connected by an edge in E .
A path is simple if all its nodes are distinct.
A cycle is a path where k > 2, the first k − 1 nodes are distinct, and v1 = vk .

I All de�nitions carry over to directed graphs as well.

An undirected graph G is connected if for every pair of nodes u, v ∈ V , there
is a path from u to v in G .

Distance d(u, v) between two nodes u and v is the minimum number of
edges in any u-v path.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Paths and Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

A v1-vk path in an undirected graph G = (V ,E) is a sequence P of nodes
v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of nodes
vi , vi+1, 1 ≤ i < k is connected by an edge in E .
A path is simple if all its nodes are distinct.
A cycle is a path where k > 2, the first k − 1 nodes are distinct, and v1 = vk .

I All de�nitions carry over to directed graphs as well.

An undirected graph G is connected if for every pair of nodes u, v ∈ V , there
is a path from u to v in G .
Distance d(u, v) between two nodes u and v is the minimum number of
edges in any u-v path.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Trees

An undirected graph is a tree if it is connected and does not contain a cycle.

For any pair of nodes in a tree, there is a unique path connecting them.
Rooting a tree T : pick some node r in the tree and orient each edge of T
“away” from r , i.e., for each node v 6= r , define parent of v to be the node u
that directly precedes v on the path from r to v .

I Node w is a child of node v if v is a parent of w .
I Node w is a descendant of node v (or v is an ancestor of w) if v lies on the

r -w path.
I Node x is a leaf if it has no descendants.

Examples of (rooted) trees: organisational hierarchy, class hierarchies in
object-oriented languages.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Trees

An undirected graph is a tree if it is connected and does not contain a cycle.
For any pair of nodes in a tree, there is a unique path connecting them.

Rooting a tree T : pick some node r in the tree and orient each edge of T
“away” from r , i.e., for each node v 6= r , define parent of v to be the node u
that directly precedes v on the path from r to v .

I Node w is a child of node v if v is a parent of w .
I Node w is a descendant of node v (or v is an ancestor of w) if v lies on the

r -w path.
I Node x is a leaf if it has no descendants.

Examples of (rooted) trees: organisational hierarchy, class hierarchies in
object-oriented languages.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Trees

An undirected graph is a tree if it is connected and does not contain a cycle.
For any pair of nodes in a tree, there is a unique path connecting them.
Rooting a tree T : pick some node r in the tree and orient each edge of T
“away” from r , i.e., for each node v 6= r , define parent of v to be the node u
that directly precedes v on the path from r to v .

I Node w is a child of node v if v is a parent of w .
I Node w is a descendant of node v (or v is an ancestor of w) if v lies on the

r -w path.
I Node x is a leaf if it has no descendants.

Examples of (rooted) trees: organisational hierarchy, class hierarchies in
object-oriented languages.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Trees

An undirected graph is a tree if it is connected and does not contain a cycle.
For any pair of nodes in a tree, there is a unique path connecting them.
Rooting a tree T : pick some node r in the tree and orient each edge of T
“away” from r , i.e., for each node v 6= r , define parent of v to be the node u
that directly precedes v on the path from r to v .

I Node w is a child of node v if v is a parent of w .
I Node w is a descendant of node v (or v is an ancestor of w) if v lies on the

r -w path.
I Node x is a leaf if it has no descendants.

Examples of (rooted) trees: organisational hierarchy, class hierarchies in
object-oriented languages.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Trees

An undirected graph is a tree if it is connected and does not contain a cycle.
For any pair of nodes in a tree, there is a unique path connecting them.
Rooting a tree T : pick some node r in the tree and orient each edge of T
“away” from r , i.e., for each node v 6= r , define parent of v to be the node u
that directly precedes v on the path from r to v .

I Node w is a child of node v if v is a parent of w .
I Node w is a descendant of node v (or v is an ancestor of w) if v lies on the

r -w path.
I Node x is a leaf if it has no descendants.

Examples of (rooted) trees:

organisational hierarchy, class hierarchies in
object-oriented languages.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Trees

An undirected graph is a tree if it is connected and does not contain a cycle.
For any pair of nodes in a tree, there is a unique path connecting them.
Rooting a tree T : pick some node r in the tree and orient each edge of T
“away” from r , i.e., for each node v 6= r , define parent of v to be the node u
that directly precedes v on the path from r to v .

I Node w is a child of node v if v is a parent of w .
I Node w is a descendant of node v (or v is an ancestor of w) if v lies on the

r -w path.
I Node x is a leaf if it has no descendants.

Examples of (rooted) trees: organisational hierarchy, class hierarchies in
object-oriented languages.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Number of Edges in a Tree

Claim: every n-node tree has

exactly n − 1

edges.

Proof 1: Root the tree. Each node, except the root, has a unique parent.
Each edge connects one parent to one child. Therefore, the tree has n − 1
edges.
Proof 2: (by induction) Two key pieces.

I Every tree contains at least one leaf, i.e., node of degree 1. Why?
I Inductive hypothesis: every tree with n − 1 nodes contains n − 2 edges.

Stronger claim: Let G be an undirected graph on n nodes. Any two of the
following statements implies the third:

1 G is connected.
2 G does not contain a cycle.
3 G contains n − 1 edges.

I Note that none of these statements uses the word �tree�.
I 1 and 2 ⇒ 3: just proved.
I 2 and 3 ⇒ 1: prove by contradiction.
I 3 and 1 ⇒ 2: prove yourself.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Number of Edges in a Tree

Claim: every n-node tree has exactly n − 1 edges.
Proof 1:

Root the tree. Each node, except the root, has a unique parent.
Each edge connects one parent to one child. Therefore, the tree has n − 1
edges.
Proof 2: (by induction) Two key pieces.

I Every tree contains at least one leaf, i.e., node of degree 1. Why?
I Inductive hypothesis: every tree with n − 1 nodes contains n − 2 edges.

Stronger claim: Let G be an undirected graph on n nodes. Any two of the
following statements implies the third:

1 G is connected.
2 G does not contain a cycle.
3 G contains n − 1 edges.

I Note that none of these statements uses the word �tree�.
I 1 and 2 ⇒ 3: just proved.
I 2 and 3 ⇒ 1: prove by contradiction.
I 3 and 1 ⇒ 2: prove yourself.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Number of Edges in a Tree

Claim: every n-node tree has exactly n − 1 edges.
Proof 1: Root the tree. Each node, except the root, has a unique parent.
Each edge connects one parent to one child. Therefore, the tree has n − 1
edges.

Proof 2: (by induction) Two key pieces.
I Every tree contains at least one leaf, i.e., node of degree 1. Why?
I Inductive hypothesis: every tree with n − 1 nodes contains n − 2 edges.

Stronger claim: Let G be an undirected graph on n nodes. Any two of the
following statements implies the third:

1 G is connected.
2 G does not contain a cycle.
3 G contains n − 1 edges.

I Note that none of these statements uses the word �tree�.
I 1 and 2 ⇒ 3: just proved.
I 2 and 3 ⇒ 1: prove by contradiction.
I 3 and 1 ⇒ 2: prove yourself.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Number of Edges in a Tree

Claim: every n-node tree has exactly n − 1 edges.
Proof 1: Root the tree. Each node, except the root, has a unique parent.
Each edge connects one parent to one child. Therefore, the tree has n − 1
edges.
Proof 2: (by induction)

Two key pieces.
I Every tree contains at least one leaf, i.e., node of degree 1. Why?
I Inductive hypothesis: every tree with n − 1 nodes contains n − 2 edges.

Stronger claim: Let G be an undirected graph on n nodes. Any two of the
following statements implies the third:

1 G is connected.
2 G does not contain a cycle.
3 G contains n − 1 edges.

I Note that none of these statements uses the word �tree�.
I 1 and 2 ⇒ 3: just proved.
I 2 and 3 ⇒ 1: prove by contradiction.
I 3 and 1 ⇒ 2: prove yourself.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Number of Edges in a Tree

Claim: every n-node tree has exactly n − 1 edges.
Proof 1: Root the tree. Each node, except the root, has a unique parent.
Each edge connects one parent to one child. Therefore, the tree has n − 1
edges.
Proof 2: (by induction) Two key pieces.

I Every tree contains at least one leaf, i.e., node of degree 1. Why?
I Inductive hypothesis: every tree with n − 1 nodes contains n − 2 edges.

Stronger claim: Let G be an undirected graph on n nodes. Any two of the
following statements implies the third:

1 G is connected.
2 G does not contain a cycle.
3 G contains n − 1 edges.

I Note that none of these statements uses the word �tree�.
I 1 and 2 ⇒ 3: just proved.
I 2 and 3 ⇒ 1: prove by contradiction.
I 3 and 1 ⇒ 2: prove yourself.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Number of Edges in a Tree

Claim: every n-node tree has exactly n − 1 edges.
Proof 1: Root the tree. Each node, except the root, has a unique parent.
Each edge connects one parent to one child. Therefore, the tree has n − 1
edges.
Proof 2: (by induction) Two key pieces.

I Every tree contains at least one leaf, i.e., node of degree 1. Why?
I Inductive hypothesis: every tree with n − 1 nodes contains n − 2 edges.

Stronger claim: Let G be an undirected graph on n nodes. Any two of the
following statements implies the third:

1 G is connected.
2 G does not contain a cycle.
3 G contains n − 1 edges.

I Note that none of these statements uses the word �tree�.
I 1 and 2 ⇒ 3: just proved.
I 2 and 3 ⇒ 1: prove by contradiction.
I 3 and 1 ⇒ 2: prove yourself.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Number of Edges in a Tree

Claim: every n-node tree has exactly n − 1 edges.
Proof 1: Root the tree. Each node, except the root, has a unique parent.
Each edge connects one parent to one child. Therefore, the tree has n − 1
edges.
Proof 2: (by induction) Two key pieces.

I Every tree contains at least one leaf, i.e., node of degree 1. Why?
I Inductive hypothesis: every tree with n − 1 nodes contains n − 2 edges.

Stronger claim: Let G be an undirected graph on n nodes. Any two of the
following statements implies the third:

1 G is connected.
2 G does not contain a cycle.
3 G contains n − 1 edges.

I Note that none of these statements uses the word �tree�.

I 1 and 2 ⇒ 3: just proved.
I 2 and 3 ⇒ 1: prove by contradiction.
I 3 and 1 ⇒ 2: prove yourself.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Number of Edges in a Tree

Claim: every n-node tree has exactly n − 1 edges.
Proof 1: Root the tree. Each node, except the root, has a unique parent.
Each edge connects one parent to one child. Therefore, the tree has n − 1
edges.
Proof 2: (by induction) Two key pieces.

I Every tree contains at least one leaf, i.e., node of degree 1. Why?
I Inductive hypothesis: every tree with n − 1 nodes contains n − 2 edges.

Stronger claim: Let G be an undirected graph on n nodes. Any two of the
following statements implies the third:

1 G is connected.
2 G does not contain a cycle.
3 G contains n − 1 edges.

I Note that none of these statements uses the word �tree�.
I 1 and 2 ⇒ 3:

just proved.
I 2 and 3 ⇒ 1: prove by contradiction.
I 3 and 1 ⇒ 2: prove yourself.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Number of Edges in a Tree

Claim: every n-node tree has exactly n − 1 edges.
Proof 1: Root the tree. Each node, except the root, has a unique parent.
Each edge connects one parent to one child. Therefore, the tree has n − 1
edges.
Proof 2: (by induction) Two key pieces.

I Every tree contains at least one leaf, i.e., node of degree 1. Why?
I Inductive hypothesis: every tree with n − 1 nodes contains n − 2 edges.

Stronger claim: Let G be an undirected graph on n nodes. Any two of the
following statements implies the third:

1 G is connected.
2 G does not contain a cycle.
3 G contains n − 1 edges.

I Note that none of these statements uses the word �tree�.
I 1 and 2 ⇒ 3: just proved.
I 2 and 3 ⇒ 1:

prove by contradiction.
I 3 and 1 ⇒ 2: prove yourself.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Number of Edges in a Tree

Claim: every n-node tree has exactly n − 1 edges.
Proof 1: Root the tree. Each node, except the root, has a unique parent.
Each edge connects one parent to one child. Therefore, the tree has n − 1
edges.
Proof 2: (by induction) Two key pieces.

I Every tree contains at least one leaf, i.e., node of degree 1. Why?
I Inductive hypothesis: every tree with n − 1 nodes contains n − 2 edges.

Stronger claim: Let G be an undirected graph on n nodes. Any two of the
following statements implies the third:

1 G is connected.
2 G does not contain a cycle.
3 G contains n − 1 edges.

I Note that none of these statements uses the word �tree�.
I 1 and 2 ⇒ 3: just proved.
I 2 and 3 ⇒ 1: prove by contradiction.
I 3 and 1 ⇒ 2: prove yourself.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

s-t Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

s-t Connectivity
INSTANCE: An undirected graph G = (V ,E) and two nodes s, t ∈ V .
QUESTION: Is there an s-t path in G?

The connected component of G containing s is the set of all nodes u such
that there is an s-u path in G .
Algorithm for the s-t Connectivity problem: compute the connected
component of G that contains s and check if t is in that component.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

s-t Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

s-t Connectivity
INSTANCE: An undirected graph G = (V ,E) and two nodes s, t ∈ V .
QUESTION: Is there an s-t path in G?

The connected component of G containing s is the set of all nodes u such
that there is an s-u path in G .

Algorithm for the s-t Connectivity problem: compute the connected
component of G that contains s and check if t is in that component.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

s-t Connectivity
1

2 3

4 5 6

7

8

9

10

11

12

13

s-t Connectivity
INSTANCE: An undirected graph G = (V ,E) and two nodes s, t ∈ V .
QUESTION: Is there an s-t path in G?

The connected component of G containing s is the set of all nodes u such
that there is an s-u path in G .
Algorithm for the s-t Connectivity problem: compute the connected
component of G that contains s and check if t is in that component.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Computing Connected Components

“Explore” G starting from s and maintain set R of visited nodes.

1

2 3

4 5 6

7

8

9

10

11

12

13

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Computing Connected Components

“Explore” G starting from s and maintain set R of visited nodes.

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

4 5 6

7

8

9

10

11

12

13

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Computing Connected Components

“Explore” G starting from s and maintain set R of visited nodes.

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

4 5 6

7

8

9

10

11

12

13

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Computing Connected Components

“Explore” G starting from s and maintain set R of visited nodes.

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

4 5 6

7

8

9

10

11

12

13

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Computing Connected Components

“Explore” G starting from s and maintain set R of visited nodes.

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

4 5 6

7

8

9

10

11

12

13

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Computing Connected Components

“Explore” G starting from s and maintain set R of visited nodes.

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

4 5 6

7

8

9

10

11

12

13

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Computing Connected Components

“Explore” G starting from s and maintain set R of visited nodes.

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

4 5 6

7

8

9

10

11

12

13

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Computing Connected Components

“Explore” G starting from s and maintain set R of visited nodes.

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

4 5 6

7

8

9

10

11

12

13

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Computing Connected Components

“Explore” G starting from s and maintain set R of visited nodes.

1

2 3

4 5 6

7

8

9

10

11

12

13

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Issues in Computing Connected Components

1

2 3

4 5 6

7

8

9

10

11

12

13

How do we implement the while loop?

Examine each edge in E .
Other issues to consider:

I Why does the algorithm terminate?
I Does the algorithm truly compute connected component of G containing s?
I What is the running time of the algorithm?

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Issues in Computing Connected Components

1

2 3

4 5 6

7

8

9

10

11

12

13

How do we implement the while loop? Examine each edge in E .

Other issues to consider:
I Why does the algorithm terminate?
I Does the algorithm truly compute connected component of G containing s?
I What is the running time of the algorithm?

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Issues in Computing Connected Components

1

2 3

4 5 6

7

8

9

10

11

12

13

How do we implement the while loop? Examine each edge in E .
Other issues to consider:

I Why does the algorithm terminate?
I Does the algorithm truly compute connected component of G containing s?
I What is the running time of the algorithm?

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Termination of the Algorithm

1

2 3

4 5 6

7

8

9

10

11

12

13

How many nodes does each iteration of the while loop add to R?

Exactly 1.

How many times is the while loop executed?

At most n times.
What is true of R at termination?

I either R = V at the end or
I in the last iteration, every edge either has both nodes in R or both nodes not

in R.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Termination of the Algorithm

1

2 3

4 5 6

7

8

9

10

11

12

13

How many nodes does each iteration of the while loop add to R? Exactly 1.
How many times is the while loop executed?

At most n times.
What is true of R at termination?

I either R = V at the end or
I in the last iteration, every edge either has both nodes in R or both nodes not

in R.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Termination of the Algorithm

1

2 3

4 5 6

7

8

9

10

11

12

13

How many nodes does each iteration of the while loop add to R? Exactly 1.
How many times is the while loop executed? At most n times.

What is true of R at termination?

I either R = V at the end or
I in the last iteration, every edge either has both nodes in R or both nodes not

in R.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Termination of the Algorithm

1

2 3

4 5 6

7

8

9

10

11

12

13

How many nodes does each iteration of the while loop add to R? Exactly 1.
How many times is the while loop executed? At most n times.
What is true of R at termination?

I either R = V at the end or
I in the last iteration, every edge either has both nodes in R or both nodes not

in R.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Termination of the Algorithm

1

2 3

4 5 6

7

8

9

10

11

12

13

How many nodes does each iteration of the while loop add to R? Exactly 1.
How many times is the while loop executed? At most n times.
What is true of R at termination?

I either R = V at the end or
I in the last iteration, every edge either has both nodes in R or both nodes not

in R.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Correctness of the Algorithm

R

s

u v

w

Claim: at the end of the algorithm, the set R is exactly the connected
component of G containing s.

Proof: At termination, suppose w 6∈ R but there is an s-w path P in G .
I Consider �rst node v in P not in R (v 6= s).
I Let u be the predecessor of v in P: u is in R.
I (u, v) is an edge with u ∈ R but v 6∈ R, contradicting the stopping rule.
I Note: wrong to assume that predecessor of w in P is not in R.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Correctness of the Algorithm

R

s

u v

w

Claim: at the end of the algorithm, the set R is exactly the connected
component of G containing s.
Proof: At termination, suppose w 6∈ R but there is an s-w path P in G .

I Consider �rst node v in P not in R (v 6= s).
I Let u be the predecessor of v in P:

u is in R.
I (u, v) is an edge with u ∈ R but v 6∈ R, contradicting the stopping rule.
I Note: wrong to assume that predecessor of w in P is not in R.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Correctness of the Algorithm

R

s

u v

w

Claim: at the end of the algorithm, the set R is exactly the connected
component of G containing s.
Proof: At termination, suppose w 6∈ R but there is an s-w path P in G .

I Consider �rst node v in P not in R (v 6= s).
I Let u be the predecessor of v in P: u is in R.
I (u, v) is an edge with u ∈ R but v 6∈ R, contradicting the stopping rule.

I Note: wrong to assume that predecessor of w in P is not in R.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Correctness of the Algorithm

R

s

u v

w

Claim: at the end of the algorithm, the set R is exactly the connected
component of G containing s.
Proof: At termination, suppose w 6∈ R but there is an s-w path P in G .

I Consider �rst node v in P not in R (v 6= s).
I Let u be the predecessor of v in P: u is in R.
I (u, v) is an edge with u ∈ R but v 6∈ R, contradicting the stopping rule.
I Note: wrong to assume that predecessor of w in P is not in R.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Recovering Paths

1

2 3

4 5 6

7

8

9

10

11

12

13

Given a node t ∈ R, how do we recover the s-t path?

When adding node v to R, record the edge (u, v).
What type of graph is formed by these edges? It is a tree! Why?
To recover the s-t path, trace these edges backwards from t until we reach s.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Recovering Paths

1

2 3

4 5 6

7

8

9

10

11

12

13

Given a node t ∈ R, how do we recover the s-t path?
When adding node v to R, record the edge (u, v).
What type of graph is formed by these edges?

It is a tree! Why?
To recover the s-t path, trace these edges backwards from t until we reach s.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Recovering Paths

1

2 3

4 5 6

7

8

9

10

11

12

13

Given a node t ∈ R, how do we recover the s-t path?
When adding node v to R, record the edge (u, v).
What type of graph is formed by these edges? It is a tree! Why?

To recover the s-t path, trace these edges backwards from t until we reach s.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Recovering Paths

1

2 3

4 5 6

7

8

9

10

11

12

13

Given a node t ∈ R, how do we recover the s-t path?
When adding node v to R, record the edge (u, v).
What type of graph is formed by these edges? It is a tree! Why?
To recover the s-t path, trace these edges backwards from t until we reach s.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Running Time of the Algorithm

Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.
Implement the while loop by examining each edge in E . Running time of
each loop is O(m).
How many while loops does the algorithm execute? At most n.
The running time is O(mn).
Can we improve the running time by processing edges more carefully?

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Running Time of the Algorithm

Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.
Implement the while loop by examining each edge in E . Running time of
each loop is

O(m).
How many while loops does the algorithm execute? At most n.
The running time is O(mn).
Can we improve the running time by processing edges more carefully?

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Running Time of the Algorithm

Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.
Implement the while loop by examining each edge in E . Running time of
each loop is O(m).
How many while loops does the algorithm execute?

At most n.
The running time is O(mn).
Can we improve the running time by processing edges more carefully?

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Running Time of the Algorithm

Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.
Implement the while loop by examining each edge in E . Running time of
each loop is O(m).
How many while loops does the algorithm execute? At most n.
The running time is

O(mn).
Can we improve the running time by processing edges more carefully?

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Running Time of the Algorithm

Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.
Implement the while loop by examining each edge in E . Running time of
each loop is O(m).
How many while loops does the algorithm execute? At most n.
The running time is O(mn).

Can we improve the running time by processing edges more carefully?

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Running Time of the Algorithm

Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.
Implement the while loop by examining each edge in E . Running time of
each loop is O(m).
How many while loops does the algorithm execute? At most n.
The running time is O(mn).
Can we improve the running time by processing edges more carefully?

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Breadth-First Search (BFS)

1

2 3

4 5 6

7

8

9

10

11

12

13

Idea: explore G starting at s and going “outward” in all directions, adding
nodes one layer at a time.

Layer L0 contains only s.
Layer L1 contains all neighbours of s.
Given layers L0, L1, . . . , Lj , layer Lj+1 contains all nodes that

1 do not belong to an earlier layer and
2 are connected by an edge to a node in layer Lj .

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Breadth-First Search (BFS)

1

2 3

4 5 6

7

8

9

10

11

12

13

Idea: explore G starting at s and going “outward” in all directions, adding
nodes one layer at a time.
Layer L0 contains only s.

Layer L1 contains all neighbours of s.
Given layers L0, L1, . . . , Lj , layer Lj+1 contains all nodes that

1 do not belong to an earlier layer and
2 are connected by an edge to a node in layer Lj .

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Breadth-First Search (BFS)

1

2 3

4 5 6

7

8

9

10

11

12

13

Idea: explore G starting at s and going “outward” in all directions, adding
nodes one layer at a time.
Layer L0 contains only s.
Layer L1 contains all neighbours of s.

Given layers L0, L1, . . . , Lj , layer Lj+1 contains all nodes that
1 do not belong to an earlier layer and
2 are connected by an edge to a node in layer Lj .

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Breadth-First Search (BFS)

1

2 3

4 5 6

7

8

9

10

11

12

13

Idea: explore G starting at s and going “outward” in all directions, adding
nodes one layer at a time.
Layer L0 contains only s.
Layer L1 contains all neighbours of s.
Given layers L0, L1, . . . , Lj , layer Lj+1 contains all nodes that

1 do not belong to an earlier layer and
2 are connected by an edge to a node in layer Lj .

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Breadth-First Search (BFS)

1

2 3

4 5 6

7

8

9

10

11

12

13

Idea: explore G starting at s and going “outward” in all directions, adding
nodes one layer at a time.
Layer L0 contains only s.
Layer L1 contains all neighbours of s.
Given layers L0, L1, . . . , Lj , layer Lj+1 contains all nodes that

1 do not belong to an earlier layer and
2 are connected by an edge to a node in layer Lj .

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Properties of BFS
1

2 3

4 5 6

7

8

9

10

11

12

13

We have not yet described how to compute these layers.
Claim: For each j ≥ 1, layer Lj consists of all nodes

exactly at distance j
from S . Proof by induction on j .
Claim: There is a path from s to t if and only if t is a member of some layer.
Let v be a node in layer Lj+1 and u be the “first” node in Lj such that (u, v)
is an edge in G . Consider the graph T formed by all such edges, directed
from u to v .

I Why is T a tree? It is connected. The number of edges in T is the number of
nodes in all the layers minus 1.

I T is called the breadth-�rst search tree.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Properties of BFS
1

2 3

4 5 6

7

8

9

10

11

12

13

We have not yet described how to compute these layers.
Claim: For each j ≥ 1, layer Lj consists of all nodes exactly at distance j
from S . Proof

by induction on j .
Claim: There is a path from s to t if and only if t is a member of some layer.
Let v be a node in layer Lj+1 and u be the “first” node in Lj such that (u, v)
is an edge in G . Consider the graph T formed by all such edges, directed
from u to v .

I Why is T a tree? It is connected. The number of edges in T is the number of
nodes in all the layers minus 1.

I T is called the breadth-�rst search tree.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Properties of BFS
1

2 3

4 5 6

7

8

9

10

11

12

13

We have not yet described how to compute these layers.
Claim: For each j ≥ 1, layer Lj consists of all nodes exactly at distance j
from S . Proof by induction on j .
Claim: There is a path from s to t if and only if t is a member of some layer.

Let v be a node in layer Lj+1 and u be the “first” node in Lj such that (u, v)
is an edge in G . Consider the graph T formed by all such edges, directed
from u to v .

I Why is T a tree? It is connected. The number of edges in T is the number of
nodes in all the layers minus 1.

I T is called the breadth-�rst search tree.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Properties of BFS
1

2 3

4 5 6

7

8

9

10

11

12

13

We have not yet described how to compute these layers.
Claim: For each j ≥ 1, layer Lj consists of all nodes exactly at distance j
from S . Proof by induction on j .
Claim: There is a path from s to t if and only if t is a member of some layer.
Let v be a node in layer Lj+1 and u be the “first” node in Lj such that (u, v)
is an edge in G . Consider the graph T formed by all such edges, directed
from u to v .

I Why is T a tree? It is connected. The number of edges in T is the number of
nodes in all the layers minus 1.

I T is called the breadth-�rst search tree.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Properties of BFS
1

2 3

4 5 6

7

8

9

10

11

12

13

We have not yet described how to compute these layers.
Claim: For each j ≥ 1, layer Lj consists of all nodes exactly at distance j
from S . Proof by induction on j .
Claim: There is a path from s to t if and only if t is a member of some layer.
Let v be a node in layer Lj+1 and u be the “first” node in Lj such that (u, v)
is an edge in G . Consider the graph T formed by all such edges, directed
from u to v .

I Why is T a tree?

It is connected. The number of edges in T is the number of
nodes in all the layers minus 1.

I T is called the breadth-�rst search tree.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Properties of BFS
1

2 3

4 5 6

7

8

9

10

11

12

13

We have not yet described how to compute these layers.
Claim: For each j ≥ 1, layer Lj consists of all nodes exactly at distance j
from S . Proof by induction on j .
Claim: There is a path from s to t if and only if t is a member of some layer.
Let v be a node in layer Lj+1 and u be the “first” node in Lj such that (u, v)
is an edge in G . Consider the graph T formed by all such edges, directed
from u to v .

I Why is T a tree? It is connected. The number of edges in T is the number of
nodes in all the layers minus 1.

I T is called the breadth-�rst search tree.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

BFS Trees

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

6

4 5 7 8

Non-tree edge: an edge of G that does not belong to the BFS tree T .
Claim: Let T be a BFS tree, let x and y be nodes in T belonging to layers Li
and Lj , respectively, and let (x , y) be an edge of G . Then |i − j | ≤ 1.

Proof by contradiction: Suppose i < j − 1. Node x ∈ Li ⇒ all nodes adjacent
to x are in layers L1, L2, . . . Li+1. Hence y must be in layer Li+1 or earlier.
Still unresolved: an efficient implementation of BFS.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

BFS Trees

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

6

4 5 7 8

Non-tree edge: an edge of G that does not belong to the BFS tree T .
Claim: Let T be a BFS tree, let x and y be nodes in T belonging to layers Li
and Lj , respectively, and let (x , y) be an edge of G . Then |i − j | ≤ 1.
Proof by contradiction: Suppose i < j − 1. Node x ∈ Li ⇒ all nodes adjacent
to x are in layers L1, L2, . . . Li+1. Hence y must be in layer Li+1 or earlier.

Still unresolved: an efficient implementation of BFS.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

BFS Trees

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

6

4 5 7 8

Non-tree edge: an edge of G that does not belong to the BFS tree T .
Claim: Let T be a BFS tree, let x and y be nodes in T belonging to layers Li
and Lj , respectively, and let (x , y) be an edge of G . Then |i − j | ≤ 1.
Proof by contradiction: Suppose i < j − 1. Node x ∈ Li ⇒ all nodes adjacent
to x are in layers L1, L2, . . . Li+1. Hence y must be in layer Li+1 or earlier.
Still unresolved: an efficient implementation of BFS.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Depth-First Search (DFS)

Explore G as if it were a maze: start from s, traverse first edge out (to node
v), traverse first edge out of v , . . . , reach a dead-end, backtrack,

1 Mark all nodes as “Unexplored”.
2 Invoke DFS(s).

Depth-first search tree is a tree T : when DFS(v) is invoked directly during
the call to DFS(v), add edge (u, v) to T .

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Depth-First Search (DFS)

Explore G as if it were a maze: start from s, traverse first edge out (to node
v), traverse first edge out of v , . . . , reach a dead-end, backtrack,

1 Mark all nodes as “Unexplored”.
2 Invoke DFS(s).

Depth-first search tree is a tree T : when DFS(v) is invoked directly during
the call to DFS(v), add edge (u, v) to T .

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Depth-First Search (DFS)

Explore G as if it were a maze: start from s, traverse first edge out (to node
v), traverse first edge out of v , . . . , reach a dead-end, backtrack,

1 Mark all nodes as “Unexplored”.
2 Invoke DFS(s).

Depth-first search tree is a tree T : when DFS(v) is invoked directly during
the call to DFS(v), add edge (u, v) to T .

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Example of DFS

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

6

4 5 7 8

1

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Example of DFS

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

6

4 5 7 8

1

2

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Example of DFS

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

6

4 5 7 8

1

2

5

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Example of DFS

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

6

4 5 7 8

6

1

2

5

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Example of DFS

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

6

4 5 7 8

36

1

2

5

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Example of DFS

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

6

4 5 7 8

36

1

2

5

7

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Example of DFS

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

6

4 5 7 8

36

1

2

5

7

8

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Example of DFS

1

2 3

4 5 6

7

8

9

10

11

12

13

1

2 3

6

4 5 7 8

36 4

1

2

5

7

8

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

BFS vs. DFS
1

2 3

6

4 5 7 8
36 4

1

2

5

7

8

Both visit the same set of nodes but in a different order.
Both traverse all the edges in the connected component but in a different
order.
BFS trees have root-to-leaf paths that look as short as possible while paths in
DFS trees tend to be long and deep.
Non-tree edges

BFS within the same level or between adjacent levels.

DFS connect ancestors to descendants.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

BFS vs. DFS
1

2 3

6

4 5 7 8
36 4

1

2

5

7

8

Both visit the same set of nodes but in a different order.
Both traverse all the edges in the connected component but in a different
order.
BFS trees have root-to-leaf paths that look as short as possible while paths in
DFS trees tend to be long and deep.
Non-tree edges

BFS within the same level or between adjacent levels.
DFS connect ancestors to descendants.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Properties of DFS Trees

36 4

1

2

5

7

8

Observation: All nodes marked as “Explored” between the start of DFS(u)
and its end are descendants of u in the DFS tree T .

Claim: Let x and y be nodes in a DFS tree T such that (x , y) is an edge of
G but not of T . Then one of x or y is an ancestor of the other in T .
Proof: Assume, without loss of generality, that DFS(u) reached x first.

I Since (x , y) is an edge in G , it is examined during DFS(x).
I Since (x , y) 6∈ T , y must be marked as �Explored� during DFS(x) but before

(x , y) is examined.
I Since y was not marked as �Explored� before DFS(x) was invoked, it must be

marked as �Explored� between the start and the end of DFS(x).
I Therefore, y must be a descendant of x in T .

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Properties of DFS Trees

36 4

1

2

5

7

8

Observation: All nodes marked as “Explored” between the start of DFS(u)
and its end are descendants of u in the DFS tree T .
Claim: Let x and y be nodes in a DFS tree T such that (x , y) is an edge of
G but not of T . Then one of x or y is an ancestor of the other in T .

Proof: Assume, without loss of generality, that DFS(u) reached x first.
I Since (x , y) is an edge in G , it is examined during DFS(x).
I Since (x , y) 6∈ T , y must be marked as �Explored� during DFS(x) but before

(x , y) is examined.
I Since y was not marked as �Explored� before DFS(x) was invoked, it must be

marked as �Explored� between the start and the end of DFS(x).
I Therefore, y must be a descendant of x in T .

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Properties of DFS Trees

36 4

1

2

5

7

8

Observation: All nodes marked as “Explored” between the start of DFS(u)
and its end are descendants of u in the DFS tree T .
Claim: Let x and y be nodes in a DFS tree T such that (x , y) is an edge of
G but not of T . Then one of x or y is an ancestor of the other in T .
Proof: Assume, without loss of generality, that DFS(u) reached x first.

I Since (x , y) is an edge in G , it is examined during DFS(x).
I Since (x , y) 6∈ T , y must be marked as �Explored� during DFS(x) but before

(x , y) is examined.
I Since y was not marked as �Explored� before DFS(x) was invoked, it must be

marked as �Explored� between the start and the end of DFS(x).
I Therefore, y must be a descendant of x in T .

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

All Connected Components

We have discussed the component containing a particular node s.
Each node belongs to a component.
What is the relationship between all these components?

I If v is in u's component, is u in v 's component?
I If v is not in u's component, can u be in v 's component?

Claim: For any two nodes s and t in a graph, their connected components
are either equal or disjoint.
Proof in two parts (sketch):

1 If G has an s-t path, then the connected components of s and t are the same.
2 If G has no s-t path, then there cannot be a node v that is in both connected

components.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

All Connected Components

We have discussed the component containing a particular node s.
Each node belongs to a component.
What is the relationship between all these components?

I If v is in u's component, is u in v 's component?
I If v is not in u's component, can u be in v 's component?

Claim: For any two nodes s and t in a graph, their connected components
are either equal or disjoint.
Proof in two parts (sketch):

1 If G has an s-t path, then the connected components of s and t are the same.
2 If G has no s-t path, then there cannot be a node v that is in both connected

components.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

All Connected Components

We have discussed the component containing a particular node s.
Each node belongs to a component.
What is the relationship between all these components?

I If v is in u's component, is u in v 's component?
I If v is not in u's component, can u be in v 's component?

Claim: For any two nodes s and t in a graph, their connected components
are either equal or disjoint.

Proof in two parts (sketch):
1 If G has an s-t path, then the connected components of s and t are the same.
2 If G has no s-t path, then there cannot be a node v that is in both connected

components.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

All Connected Components

We have discussed the component containing a particular node s.
Each node belongs to a component.
What is the relationship between all these components?

I If v is in u's component, is u in v 's component?
I If v is not in u's component, can u be in v 's component?

Claim: For any two nodes s and t in a graph, their connected components
are either equal or disjoint.
Proof in two parts (sketch):

1 If G has an s-t path, then the connected components of s and t are the same.

2 If G has no s-t path, then there cannot be a node v that is in both connected
components.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

All Connected Components

We have discussed the component containing a particular node s.
Each node belongs to a component.
What is the relationship between all these components?

I If v is in u's component, is u in v 's component?
I If v is not in u's component, can u be in v 's component?

Claim: For any two nodes s and t in a graph, their connected components
are either equal or disjoint.
Proof in two parts (sketch):

1 If G has an s-t path, then the connected components of s and t are the same.
2 If G has no s-t path, then there cannot be a node v that is in both connected

components.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Computing All Connected Components

1 Pick an arbitrary node s in G .
2 Compute its connected component using BFS (or DFS).
3 Find a node (say v , not already visited) and repeat the BFS from v .
4 Repeat this process until all nodes are visited.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Representing Graphs

Graph G = (V ,E) has two input parameters: |V | = n, |E | = m.
I Size of the graph is de�ned to be m + n.
I Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

Assume V = {1, 2, . . . , n − 1, n}.
Adjacency matrix representation: n × n Boolean matrix, where the entry in
row i and column j is 1 iff the graph contains the edge (i , j).

I Space used is Θ(n2), which is optimal in the worst case.
I Check if there is an edge between node i and node j in O(1) time.
I Iterate over all the edges incident on node i in Θ(n) time.

Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v .

I An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
I nv = the number of neighbours of node v .
I Space used is O(n +

∑
v∈G nv) = O(n + m), which is optimal for every graph.

I Check if there is an edge between node u and node v in O(nu) time.
I Iterate over all the edges incident on node u in Θ(nu) time.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Representing Graphs

Graph G = (V ,E) has two input parameters: |V | = n, |E | = m.
I Size of the graph is de�ned to be m + n.
I Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

Assume V = {1, 2, . . . , n − 1, n}.
Adjacency matrix representation: n × n Boolean matrix, where the entry in
row i and column j is 1 iff the graph contains the edge (i , j).

I Space used is

Θ(n2), which is optimal in the worst case.
I Check if there is an edge between node i and node j in O(1) time.
I Iterate over all the edges incident on node i in Θ(n) time.

Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v .

I An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
I nv = the number of neighbours of node v .
I Space used is O(n +

∑
v∈G nv) = O(n + m), which is optimal for every graph.

I Check if there is an edge between node u and node v in O(nu) time.
I Iterate over all the edges incident on node u in Θ(nu) time.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Representing Graphs

Graph G = (V ,E) has two input parameters: |V | = n, |E | = m.
I Size of the graph is de�ned to be m + n.
I Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

Assume V = {1, 2, . . . , n − 1, n}.
Adjacency matrix representation: n × n Boolean matrix, where the entry in
row i and column j is 1 iff the graph contains the edge (i , j).

I Space used is Θ(n2), which is optimal in the worst case.
I Check if there is an edge between node i and node j in

O(1) time.
I Iterate over all the edges incident on node i in Θ(n) time.

Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v .

I An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
I nv = the number of neighbours of node v .
I Space used is O(n +

∑
v∈G nv) = O(n + m), which is optimal for every graph.

I Check if there is an edge between node u and node v in O(nu) time.
I Iterate over all the edges incident on node u in Θ(nu) time.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Representing Graphs

Graph G = (V ,E) has two input parameters: |V | = n, |E | = m.
I Size of the graph is de�ned to be m + n.
I Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

Assume V = {1, 2, . . . , n − 1, n}.
Adjacency matrix representation: n × n Boolean matrix, where the entry in
row i and column j is 1 iff the graph contains the edge (i , j).

I Space used is Θ(n2), which is optimal in the worst case.
I Check if there is an edge between node i and node j in O(1) time.
I Iterate over all the edges incident on node i in

Θ(n) time.

Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v .

I An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
I nv = the number of neighbours of node v .
I Space used is O(n +

∑
v∈G nv) = O(n + m), which is optimal for every graph.

I Check if there is an edge between node u and node v in O(nu) time.
I Iterate over all the edges incident on node u in Θ(nu) time.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Representing Graphs

Graph G = (V ,E) has two input parameters: |V | = n, |E | = m.
I Size of the graph is de�ned to be m + n.
I Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

Assume V = {1, 2, . . . , n − 1, n}.
Adjacency matrix representation: n × n Boolean matrix, where the entry in
row i and column j is 1 iff the graph contains the edge (i , j).

I Space used is Θ(n2), which is optimal in the worst case.
I Check if there is an edge between node i and node j in O(1) time.
I Iterate over all the edges incident on node i in Θ(n) time.

Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v .

I An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
I nv = the number of neighbours of node v .
I Space used is O(n +

∑
v∈G nv) = O(n + m), which is optimal for every graph.

I Check if there is an edge between node u and node v in O(nu) time.
I Iterate over all the edges incident on node u in Θ(nu) time.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Representing Graphs

Graph G = (V ,E) has two input parameters: |V | = n, |E | = m.
I Size of the graph is de�ned to be m + n.
I Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

Assume V = {1, 2, . . . , n − 1, n}.
Adjacency matrix representation: n × n Boolean matrix, where the entry in
row i and column j is 1 iff the graph contains the edge (i , j).

I Space used is Θ(n2), which is optimal in the worst case.
I Check if there is an edge between node i and node j in O(1) time.
I Iterate over all the edges incident on node i in Θ(n) time.

Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v .

I An edge e = (u, v) appears twice: in Adj[u] and Adj[v].

I nv = the number of neighbours of node v .
I Space used is O(n +

∑
v∈G nv) = O(n + m), which is optimal for every graph.

I Check if there is an edge between node u and node v in O(nu) time.
I Iterate over all the edges incident on node u in Θ(nu) time.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Representing Graphs

Graph G = (V ,E) has two input parameters: |V | = n, |E | = m.
I Size of the graph is de�ned to be m + n.
I Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

Assume V = {1, 2, . . . , n − 1, n}.
Adjacency matrix representation: n × n Boolean matrix, where the entry in
row i and column j is 1 iff the graph contains the edge (i , j).

I Space used is Θ(n2), which is optimal in the worst case.
I Check if there is an edge between node i and node j in O(1) time.
I Iterate over all the edges incident on node i in Θ(n) time.

Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v .

I An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
I nv = the number of neighbours of node v .
I Space used is

O(n +
∑

v∈G nv) = O(n + m), which is optimal for every graph.
I Check if there is an edge between node u and node v in O(nu) time.
I Iterate over all the edges incident on node u in Θ(nu) time.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Representing Graphs

Graph G = (V ,E) has two input parameters: |V | = n, |E | = m.
I Size of the graph is de�ned to be m + n.
I Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

Assume V = {1, 2, . . . , n − 1, n}.
Adjacency matrix representation: n × n Boolean matrix, where the entry in
row i and column j is 1 iff the graph contains the edge (i , j).

I Space used is Θ(n2), which is optimal in the worst case.
I Check if there is an edge between node i and node j in O(1) time.
I Iterate over all the edges incident on node i in Θ(n) time.

Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v .

I An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
I nv = the number of neighbours of node v .
I Space used is O(n +

∑
v∈G nv) =

O(n + m), which is optimal for every graph.
I Check if there is an edge between node u and node v in O(nu) time.
I Iterate over all the edges incident on node u in Θ(nu) time.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Representing Graphs

Graph G = (V ,E) has two input parameters: |V | = n, |E | = m.
I Size of the graph is de�ned to be m + n.
I Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

Assume V = {1, 2, . . . , n − 1, n}.
Adjacency matrix representation: n × n Boolean matrix, where the entry in
row i and column j is 1 iff the graph contains the edge (i , j).

I Space used is Θ(n2), which is optimal in the worst case.
I Check if there is an edge between node i and node j in O(1) time.
I Iterate over all the edges incident on node i in Θ(n) time.

Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v .

I An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
I nv = the number of neighbours of node v .
I Space used is O(n +

∑
v∈G nv) = O(n + m), which is optimal for every graph.

I Check if there is an edge between node u and node v in

O(nu) time.
I Iterate over all the edges incident on node u in Θ(nu) time.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Representing Graphs

Graph G = (V ,E) has two input parameters: |V | = n, |E | = m.
I Size of the graph is de�ned to be m + n.
I Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

Assume V = {1, 2, . . . , n − 1, n}.
Adjacency matrix representation: n × n Boolean matrix, where the entry in
row i and column j is 1 iff the graph contains the edge (i , j).

I Space used is Θ(n2), which is optimal in the worst case.
I Check if there is an edge between node i and node j in O(1) time.
I Iterate over all the edges incident on node i in Θ(n) time.

Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v .

I An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
I nv = the number of neighbours of node v .
I Space used is O(n +

∑
v∈G nv) = O(n + m), which is optimal for every graph.

I Check if there is an edge between node u and node v in O(nu) time.
I Iterate over all the edges incident on node u in

Θ(nu) time.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Representing Graphs

Graph G = (V ,E) has two input parameters: |V | = n, |E | = m.
I Size of the graph is de�ned to be m + n.
I Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

Assume V = {1, 2, . . . , n − 1, n}.
Adjacency matrix representation: n × n Boolean matrix, where the entry in
row i and column j is 1 iff the graph contains the edge (i , j).

I Space used is Θ(n2), which is optimal in the worst case.
I Check if there is an edge between node i and node j in O(1) time.
I Iterate over all the edges incident on node i in Θ(n) time.

Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v .

I An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
I nv = the number of neighbours of node v .
I Space used is O(n +

∑
v∈G nv) = O(n + m), which is optimal for every graph.

I Check if there is an edge between node u and node v in O(nu) time.
I Iterate over all the edges incident on node u in Θ(nu) time.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Data Structures for Implementation

“Implementation” of BFS and DFS: fully specify the algorithms and data
structures so that we can obtain provably efficient times.
Inner loop of both BFS and DFS: process the set of edges incident on a given
node and the set of visited nodes.
How do we store the set of visited nodes? Order in which we process the
nodes is crucial.

I BFS: store visited nodes in a queue (�rst-in, �rst-out).
I DFS: store visited nodes in a stack (last-in, �rst-out)

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Data Structures for Implementation

“Implementation” of BFS and DFS: fully specify the algorithms and data
structures so that we can obtain provably efficient times.
Inner loop of both BFS and DFS: process the set of edges incident on a given
node and the set of visited nodes.
How do we store the set of visited nodes? Order in which we process the
nodes is crucial.

I BFS: store visited nodes in a queue (�rst-in, �rst-out).
I DFS: store visited nodes in a stack (last-in, �rst-out)

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Implementing BFS
Maintain an array Discovered and set
Discovered[v] = true as soon as the algorithm sees v .

1

2 3

4 5 6

7

8

9

10

11

12

13

3 2

1

2 3

4 5 6

7

8

9

10

11

12

13

5 7 8 4

1

2 3

4 5 6

7

8

9

10

11

12

13

6

1

2 3

4 5 6

7

8

9

10

11

12

13

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Using a Queue in BFS
Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

1

Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

Claim: Nodes in layer i + 1 will appear in L immediately after nodes in layer
i .

More formally: If BFS(s) pops (v , lv) from L immediately after it pops
(u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Using a Queue in BFS
Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

1

2 3

4 5 6

7

8

3

Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

Claim: Nodes in layer i + 1 will appear in L immediately after nodes in layer
i .

More formally: If BFS(s) pops (v , lv) from L immediately after it pops
(u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Using a Queue in BFS
Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

3 21

Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

Claim: Nodes in layer i + 1 will appear in L immediately after nodes in layer
i .

More formally: If BFS(s) pops (v , lv) from L immediately after it pops
(u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Using a Queue in BFS
Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

23 5

Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

Claim: Nodes in layer i + 1 will appear in L immediately after nodes in layer
i .

More formally: If BFS(s) pops (v , lv) from L immediately after it pops
(u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Using a Queue in BFS
Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

23 5 7

Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

Claim: Nodes in layer i + 1 will appear in L immediately after nodes in layer
i .

More formally: If BFS(s) pops (v , lv) from L immediately after it pops
(u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Using a Queue in BFS
Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

23 5 7 8

Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

Claim: Nodes in layer i + 1 will appear in L immediately after nodes in layer
i .

More formally: If BFS(s) pops (v , lv) from L immediately after it pops
(u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Using a Queue in BFS
Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

52 7 8 4

Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

Claim: Nodes in layer i + 1 will appear in L immediately after nodes in layer
i .

More formally: If BFS(s) pops (v , lv) from L immediately after it pops
(u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Using a Queue in BFS
Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

75 8 4 6

Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

Claim: Nodes in layer i + 1 will appear in L immediately after nodes in layer
i .

More formally: If BFS(s) pops (v , lv) from L immediately after it pops
(u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Using a Queue in BFS
Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

87 4 6

Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

Claim: Nodes in layer i + 1 will appear in L immediately after nodes in layer
i .

More formally: If BFS(s) pops (v , lv) from L immediately after it pops
(u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Using a Queue in BFS
Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

48 6

Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

Claim: Nodes in layer i + 1 will appear in L immediately after nodes in layer
i .

More formally: If BFS(s) pops (v , lv) from L immediately after it pops
(u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Using a Queue in BFS
Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

64

Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

Claim: Nodes in layer i + 1 will appear in L immediately after nodes in layer
i .

More formally: If BFS(s) pops (v , lv) from L immediately after it pops
(u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Using a Queue in BFS
Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

6

Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

Claim: Nodes in layer i + 1 will appear in L immediately after nodes in layer
i .

More formally: If BFS(s) pops (v , lv) from L immediately after it pops
(u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Using a Queue in BFS
Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

6

Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.
Claim: Nodes in layer i + 1 will appear in L immediately after nodes in layer
i .

More formally: If BFS(s) pops (v , lv) from L immediately after it pops
(u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Using a Queue in BFS
Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

6

Simple to modify this procedure to keep track of layer numbers as well. Store
the pair (u, lu), where lu is the index of the layer containing u.

Claim: Nodes in layer i + 1 will appear in L immediately after nodes in layer
i .

More formally: If BFS(s) pops (v , lv) from L immediately after it pops
(u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Using a Queue in BFS
Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

6

Simple to modify this procedure to keep track of layer numbers as well. Store
the pair (u, lu), where lu is the index of the layer containing u.
Claim: Nodes in layer i + 1 will appear in L immediately after nodes in layer
i .

More formally: If BFS(s) pops (v , lv) from L immediately after it pops
(u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Using a Queue in BFS
Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

6

Simple to modify this procedure to keep track of layer numbers as well. Store
the pair (u, lu), where lu is the index of the layer containing u.
Claim: Nodes in layer i + 1 will appear in L immediately after nodes in layer
i . More formally: If BFS(s) pops (v , lv) from L immediately after it pops
(u, lu), then either lv = lu or lv = lu + 1.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Analysis of BFS Implementation
BFS(s):

Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

Naive bound on running time is

O(n2): For each node, we spend O(n) time.
Improved bound:

I How many times is a node popped from L? Exactly once.
I Time used by for loop for a node u: O(nu) time.
I Total time for all for loops:

∑
u∈G O(nu) = O(m) time.

I Maintaining layer information: O(1) time per node.
I Total time is O(n + m).

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Analysis of BFS Implementation
BFS(s):

Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

Naive bound on running time is O(n2): For each node, we spend O(n) time.

Improved bound:
I How many times is a node popped from L? Exactly once.
I Time used by for loop for a node u: O(nu) time.
I Total time for all for loops:

∑
u∈G O(nu) = O(m) time.

I Maintaining layer information: O(1) time per node.
I Total time is O(n + m).

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Analysis of BFS Implementation
BFS(s):

Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

Naive bound on running time is O(n2): For each node, we spend O(n) time.
Improved bound:

I How many times is a node popped from L?

Exactly once.
I Time used by for loop for a node u: O(nu) time.
I Total time for all for loops:

∑
u∈G O(nu) = O(m) time.

I Maintaining layer information: O(1) time per node.
I Total time is O(n + m).

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Analysis of BFS Implementation
BFS(s):

Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

Naive bound on running time is O(n2): For each node, we spend O(n) time.
Improved bound:

I How many times is a node popped from L? Exactly once.

I Time used by for loop for a node u: O(nu) time.
I Total time for all for loops:

∑
u∈G O(nu) = O(m) time.

I Maintaining layer information: O(1) time per node.
I Total time is O(n + m).

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Analysis of BFS Implementation
BFS(s):

Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

Naive bound on running time is O(n2): For each node, we spend O(n) time.
Improved bound:

I How many times is a node popped from L? Exactly once.
I Time used by for loop for a node u:

O(nu) time.
I Total time for all for loops:

∑
u∈G O(nu) = O(m) time.

I Maintaining layer information: O(1) time per node.
I Total time is O(n + m).

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Analysis of BFS Implementation
BFS(s):

Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

Naive bound on running time is O(n2): For each node, we spend O(n) time.
Improved bound:

I How many times is a node popped from L? Exactly once.
I Time used by for loop for a node u: O(nu) time.

I Total time for all for loops:
∑

u∈G O(nu) = O(m) time.
I Maintaining layer information: O(1) time per node.
I Total time is O(n + m).

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Analysis of BFS Implementation
BFS(s):

Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

Naive bound on running time is O(n2): For each node, we spend O(n) time.
Improved bound:

I How many times is a node popped from L? Exactly once.
I Time used by for loop for a node u: O(nu) time.
I Total time for all for loops:

∑
u∈G O(nu) = O(m) time.

I Maintaining layer information:

O(1) time per node.
I Total time is O(n + m).

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Analysis of BFS Implementation
BFS(s):

Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

Naive bound on running time is O(n2): For each node, we spend O(n) time.
Improved bound:

I How many times is a node popped from L? Exactly once.
I Time used by for loop for a node u: O(nu) time.
I Total time for all for loops:

∑
u∈G O(nu) = O(m) time.

I Maintaining layer information: O(1) time per node.
I Total time is O(n + m).

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Recursive DFS

Procedure has “tail recursion”: recursive call is the last step.

Can replace the recursion by an iteration: use a stack to explicitly implement
the recursion.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Recursive DFS

Procedure has “tail recursion”: recursive call is the last step.
Can replace the recursion by an iteration: use a stack to explicitly implement
the recursion.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Implementing DFS

Maintain a stack S to store nodes to be explored.
Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.
Read textbook on how to construct the DFS tree.

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Implementing DFS

Maintain a stack S to store nodes to be explored.
Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.
Read textbook on how to construct the DFS tree.

1

2 3

4 5 6

7

8

1

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Implementing DFS

Maintain a stack S to store nodes to be explored.
Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.
Read textbook on how to construct the DFS tree.

1

2 3

4 5 6

7

8

2

3

1

Add parent
pointer when
pushing to
 stack

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Implementing DFS

Maintain a stack S to store nodes to be explored.
Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.
Read textbook on how to construct the DFS tree.

1

2 3

4 5 6

7

8

2

2

3

5

7
Overwrite
parent pointer if
pushing node
again

8

Node may
be on stack
more than
once

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Implementing DFS

Maintain a stack S to store nodes to be explored.
Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.
Read textbook on how to construct the DFS tree.

1

2 3

4 5 6

7

8

2

2

8

5

7

7

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Implementing DFS

Maintain a stack S to store nodes to be explored.
Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.
Read textbook on how to construct the DFS tree.

1

2 3

4 5 6

7

8

2

2

7

5

7

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Implementing DFS

Maintain a stack S to store nodes to be explored.
Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.
Read textbook on how to construct the DFS tree.

1

2 3

4 5 6

7

8

2

2

7

5

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Implementing DFS

Maintain a stack S to store nodes to be explored.
Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.
Read textbook on how to construct the DFS tree.

1

2 3

4 5 6

7

8

2

2

5

2

4

6

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Implementing DFS

Maintain a stack S to store nodes to be explored.
Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.
Read textbook on how to construct the DFS tree.

1

2 3

4 5 6

7

8

2

2

6

2

4

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Implementing DFS

Maintain a stack S to store nodes to be explored.
Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.
Read textbook on how to construct the DFS tree.

1

2 3

4 5 6

7

8

2

2

4

2

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Implementing DFS

Maintain a stack S to store nodes to be explored.
Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.
Read textbook on how to construct the DFS tree.

1

2 3

4 5 6

7

8

2

2

2

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Comparing Recursion and Iteration

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Analysing DFS

How many times is a node’s adjacency list scanned?

Exactly once.
The total amount of time to process edges incident on node u’s is O(nu).
The total running time of the algorithm is O(n +m).

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Analysing DFS

How many times is a node’s adjacency list scanned? Exactly once.

The total amount of time to process edges incident on node u’s is O(nu).
The total running time of the algorithm is O(n +m).

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Analysing DFS

How many times is a node’s adjacency list scanned? Exactly once.
The total amount of time to process edges incident on node u’s is

O(nu).
The total running time of the algorithm is O(n +m).

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Analysing DFS

How many times is a node’s adjacency list scanned? Exactly once.
The total amount of time to process edges incident on node u’s is O(nu).
The total running time of the algorithm is

O(n +m).

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

Basic De�nitions Graph Traversal BFS DFS All Components Implementations

Analysing DFS

How many times is a node’s adjacency list scanned? Exactly once.
The total amount of time to process edges incident on node u’s is O(nu).
The total running time of the algorithm is O(n +m).

T. M. Murali February 1, 3, 6, 8, 2017 CS4104: Graphs

	Basic Definitions
	Graph Traversal
	BFS
	DFS
	All Components
	Implementations

