Coping with NP-Completeness

T. M. Murali

April 28, May 3, 2016
Examples of Hard Computational Problems

(from Kevin Wayne's slides at Princeton University)

- Aerospace engineering: optimal mesh partitioning for finite elements.
- Biology: protein folding.
- Chemical engineering: heat exchanger network synthesis.
- Civil engineering: equilibrium of urban traffic flow.
- Economics: computation of arbitrage in financial markets with friction.
- Electrical engineering: VLSI layout.
- Environmental engineering: optimal placement of contaminant sensors.
- Financial engineering: find minimum risk portfolio of given return.
- Game theory: find Nash equilibrium that maximizes social welfare.
- Genomics: phylogeny reconstruction.
- Mechanical engineering: structure of turbulence in sheared flows.
- Medicine: reconstructing 3-D shape from biplane angiocardiogram.
- Operations research: optimal resource allocation.
- Physics: partition function of 3-D Ising model in statistical mechanics.
- Politics: Shapley-Shubik voting power.
- Pop culture: Minesweeper consistency.
- Statistics: optimal experimental design.
How Do We Tackle an \mathcal{NP}-Complete Problem?

"I can’t find an efficient algorithm, but neither can all these famous people."

(Garey and Johnson, *Computers and Intractability*)
How Do We Tackle an \mathcal{NP}-Complete Problem?

- These problems come up in real life.
How Do We Tackle an NP-Complete Problem?

My Hobby:
Embedding NP-Complete Problems in Restaurant Orders

Chotchkies Restaurant

<table>
<thead>
<tr>
<th>Appetizers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed Fruit</td>
<td>2.15</td>
</tr>
<tr>
<td>French Fries</td>
<td>2.75</td>
</tr>
<tr>
<td>Side Salad</td>
<td>3.35</td>
</tr>
<tr>
<td>Hot Wings</td>
<td>3.55</td>
</tr>
<tr>
<td>Mozzarella Sticks</td>
<td>4.20</td>
</tr>
<tr>
<td>Sampler Plate</td>
<td>5.80</td>
</tr>
</tbody>
</table>

Sandwiches

<table>
<thead>
<tr>
<th>Barbecue</th>
<th></th>
</tr>
</thead>
</table>

We'd like exactly $15.05 worth of appetizers, please.

...Exactly? Ugh...

Here, these papers on the Knapsack problem might help you out.

Listen, I have six other tables to get to—

As fast as possible, of course. Want something on traveling salesman?
How Do We Tackle an \(\mathcal{NP}\)-Complete Problem?

- These problems come up in real life.
- \(\mathcal{NP}\)-Complete means that a problem is hard to solve in the worst case. Can we come up with better solutions at least in some cases?
How Do We Tackle an \mathcal{NP}-Complete Problem?

- These problems come up in real life.
- \mathcal{NP}-Complete means that a problem is hard to solve in the worst case. Can we come up with better solutions at least in some cases?
How Do We Tackle an \mathcal{NP}-Complete Problem?

- These problems come up in real life.
- \mathcal{NP}-Complete means that a problem is hard to solve in the worst case. Can we come up with better solutions at least in some cases?
 - Develop algorithms that are exponential in one parameter in the problem.
 - Consider special cases of the input, e.g., graphs that “look like” trees.
 - Develop algorithms that can provably compute a solution close to the optimal.
Vertex Cover Problem

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain a vertex cover of size at most k?

- The problem has two parameters: k and n, the number of nodes in G.
- What is the running time of a brute-force algorithm?
Vertex Cover Problem

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain a vertex cover of size at most k?

- The problem has two parameters: k and n, the number of nodes in G.
- What is the running time of a brute-force algorithm? $O(kn\binom{n}{k}) = O(kn^{k+1})$.
Vertex Cover Problem

Vertex cover

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain a vertex cover of size at most k?

- The problem has two parameters: k and n, the number of nodes in G.
- What is the running time of a brute-force algorithm? $O(kn^{n/k}) = O(kn^{k+1})$.
- Can we devise an algorithm whose running time is exponential in k but polynomial in n, e.g., $O(2^k n)$?
Designing the Vertex Cover Algorithm

- Intuition: if a graph has a small vertex cover, it cannot have too many edges.
Designing the Vertex Cover Algorithm

- Intuition: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
Designing the Vertex Cover Algorithm

- Intuition: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- Easy part of algorithm: Return no if G has more than kn edges.
Designing the Vertex Cover Algorithm

- Intuition: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If \(G \) has \(n \) nodes and \(G \) has a vertex cover of size at most \(k \), then \(G \) has at most \(kn \) edges.
- Easy part of algorithm: Return \(\text{no} \) if \(G \) has more than \(kn \) edges.
- \(G - \{u\} \) is the graph \(G \) without node \(u \) and the edges incident on \(u \).
Designing the Vertex Cover Algorithm

- Intuition: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- Easy part of algorithm: Return no if G has more than kn edges.
- $G - \{u\}$ is the graph G without node u and the edges incident on u.
- Consider an edge (u, v). Either u or v must be in the vertex cover.

![Diagram of a graph with vertices $x_1, x_2, x_3, x_4, x_5, x_6, x_7$ and edges connecting them.](image)
Designing the Vertex Cover Algorithm

- Intuition: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- Easy part of algorithm: Return no if G has more than kn edges.
- $G - \{u\}$ is the graph G without node u and the edges incident on u.
- Consider an edge (u, v). Either u or v must be in the vertex cover.
- Claim: G has a vertex cover of size at most k iff for any edge (u, v) either $G - \{u\}$ or $G - \{v\}$ has a vertex cover of size at most $k - 1$.
Vertex Cover Algorithm

To search for a k-node vertex cover in G:

1. If G contains no edges, then the empty set is a vertex cover.
2. If G contains $> k |V|$ edges, then it has no k-node vertex cover.
3. Else let $e = (u, v)$ be an edge of G.
 - Recursively check if either of $G - \{u\}$ or $G - \{v\}$ has a vertex cover of size $k - 1$.
 - If neither of them does, then G has no k-node vertex cover.
 - Else, one of them (say, $G - \{u\}$) has a $(k - 1)$-node vertex cover T.
 - In this case, $T \cup \{u\}$ is a k-node vertex cover of G.

Endif

Endif
Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters...
Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let $T(n, k)$ denote the worst-case running time of the algorithm on an instance of \textsc{Vertex Cover} with parameters n and k.
Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let $T(n, k)$ denote the worst-case running time of the algorithm on an instance of \textsc{Vertex Cover} with parameters n and k.
- $T(n, 1) \leq cn$.
Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let $T(n, k)$ denote the worst-case running time of the algorithm on an instance of VERTEX COVER with parameters n and k.
- $T(n, 1) \leq cn$.
- $T(n, k) \leq 2T(n, k - 1) + ckn$.
 - We need $O(kn)$ time to count the number of edges.
Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let $T(n, k)$ denote the worst-case running time of the algorithm on an instance of VERTEX COVER with parameters n and k.
- $T(n, 1) \leq cn$.
- $T(n, k) \leq 2T(n, k - 1) + ckn$.
 - We need $O(kn)$ time to count the number of edges.
- Claim: $T(n, k) = O(2^k kn)$.
Solving \mathcal{NP}-Hard Problems on Trees

- “\mathcal{NP}-Hard”: at least as hard as \mathcal{NP}-Complete. We will use \mathcal{NP}-Hard to refer to optimisation versions of decision problems.
Solving \mathcal{NP}-Hard Problems on Trees

- “\mathcal{NP}-Hard”: at least as hard as \mathcal{NP}-Complete. We will use \mathcal{NP}-Hard to refer to optimisation versions of decision problems.
- Many \mathcal{NP}-Hard problems can be solved efficiently on trees.
- Intuition: subtree rooted at any node v of the tree “interacts” with the rest of tree only through v. Therefore, depending on whether we include v in the solution or not, we can decouple solving the problem in v’s subtree from the rest of the tree.
Optimisation problem: Find the largest independent set in a tree.
Designing Greedy Algorithm for Independent Set

- Optimisation problem: Find the largest independent set in a tree.
- Claim: Every tree $T(V, E)$ has a leaf, a node with degree 1.
- Claim: If a tree T has a leaf v, then there exists a maximum-size independent set in T that contains v.
Designing Greedy Algorithm for Independent Set

- Optimisation problem: Find the largest independent set in a tree.
- Claim: Every tree $T(V, E)$ has a leaf, a node with degree 1.
- Claim: If a tree T has a leaf v, then there exists a maximum-size independent set in T that contains v. Prove by exchange argument.
 - Let S be a maximum-size independent set that does not contain v.
 - Let v be connected to u.
 - u must be in S; otherwise, we can add v to S, which means S is not maximum size.
 - Since u is in S, we can swap u and v.
Designing Greedy Algorithm for Independent Set

Optimisation problem: Find the largest independent set in a tree.

Claim: Every tree $T(V, E)$ has a *leaf*, a node with degree 1.

Claim: If a tree T has a leaf v, then there exists a maximum-size independent set in T that contains v. Prove by exchange argument.

- Let S be a maximum-size independent set that does not contain v.
- Let v be connected to u.
- u must be in S; otherwise, we can add v to S, which means S is not maximum size.
- Since u is in S, we can swap u and v.

Claim: If a tree T has a leaf v, then a maximum-size independent set in T is v and a maximum-size independent set in $T - \{v\}$.
Greedy Algorithm for Independent Set

- A **forest** is a graph where every connected component is a tree.

To find a maximum-size independent set in a forest F:

- Let S be the independent set to be constructed (initially empty)
- While F has at least one edge
 - Let $e = (u, v)$ be an edge of F such that v is a leaf
 - Add v to S
 - Delete from F nodes u and v, and all edges incident to them
- Endwhile
- Return S
Greedy Algorithm for Independent Set

- A *forest* is a graph where every connected component is a tree.
- Running time of the algorithm is $O(n)$.

To find a maximum-size independent set in a forest F:

Let S be the independent set to be constructed (initially empty)

While F has at least one edge

Let $e = (u, v)$ be an edge of F such that v is a leaf

Add v to S

Delete from F nodes u and v, and all edges incident to them

Endwhile

Return S
Greedy Algorithm for Independent Set

- A *forest* is a graph where every connected component is a tree.
- Running time of the algorithm is $O(n)$.
- The algorithm works correctly on any graph for which we can repeatedly find a leaf.

To find a maximum-size independent set in a forest F:

1. Let S be the independent set to be constructed (initially empty)
2. While F has at least one edge
 - Let $e = (u, v)$ be an edge of F such that v is a leaf
 - Add v to S
 - Delete from F nodes u and v, and all edges incident to them
3. Endwhile
4. Return S
Maximum Weight Independent Set

- Consider the **Independent Set** problem but with a weight w_v on every node v.
- Goal is to find an independent set S such that $\sum_{v \in S} w_v$ is as large as possible.
Consider the **Independent Set** problem but with a weight w_v on every node v.

Goal is to find an independent set S such that $\sum_{v \in S} w_v$ is as large as possible.

Can we extend the greedy algorithm?
Consider the **Independent Set** problem but with a weight w_v on every node v.

- Goal is to find an independent set S such that $\sum_{v \in S} w_v$ is as large as possible.
- Can we extend the greedy algorithm? Exchange argument fails: if u is a parent of a leaf v, w_u may be larger than w_v.

Maximum Weight Independent Set
Maximum Weight Independent Set

- Consider the **Independent Set** problem but with a weight w_v on every node v.
- Goal is to find an independent set S such that $\sum_{v \in S} w_v$ is as large as possible.
- Can we extend the greedy algorithm? Exchange argument fails: if u is a parent of a leaf v, w_u may be larger than w_v.
- But there are still only two possibilities: either include u in the independent set or include all neighbours of u that are leaves.
Consider the **Independent Set** problem but with a weight w_v on every node v.

Goal is to find an independent set S such that $\sum_{v \in S} w_v$ is as large as possible.

Can we extend the greedy algorithm? Exchange argument fails: if u is a parent of a leaf v, w_u may be larger than w_v.

But there are still only two possibilities: either include u in the independent set or include all neighbours of u that are leaves.

Suggests dynamic programming algorithm.
Designing Dynamic Programming Algorithm

- Dynamic programming algorithm needs a set of sub-problems, recursion to combine sub-problems, and order over sub-problems.
- What are the sub-problems?

- Pick a node r and root tree at r: orient edges towards r.
- Parent $p(u)$ of a node u is the node adjacent to u along the path to r.
- Sub-problems are T_u: subtree induced by u and all its descendants.
- Ordering the sub-problems: start at leaves and work our way up to the root.
Designing Dynamic Programming Algorithm

- Dynamic programming algorithm needs a set of sub-problems, recursion to combine sub-problems, and order over sub-problems.

- What are the sub-problems?
 - Pick a node r and root tree at r: orient edges towards r.
 - $parent\ p(u)$ of a node u is the node adjacent to u along the path to r.
 - Sub-problems are T_u: subtree induced by u and all its descendants.
Designing Dynamic Programming Algorithm

- Dynamic programming algorithm needs a set of sub-problems, recursion to combine sub-problems, and order over sub-problems.

- What are the sub-problems?
 - Pick a node r and *root* tree at r: orient edges towards r.
 - *Parent* $p(u)$ of a node u is the node adjacent to u along the path to r.
 - Sub-problems are T_u: subtree induced by u and all its descendants.

- Ordering the sub-problems: start at leaves and work our way up to the root.
Recursion for Dynamic Programming Algorithm

- Either we include u in an optimal solution or exclude u.
 - $OPT_{in}(u)$: maximum weight of an independent set in T_u that includes u.
 - $OPT_{out}(u)$: maximum weight of an independent set in T_u that excludes u.
Recursion for Dynamic Programming Algorithm

Either we include \(u \) in an optimal solution or exclude \(u \).
- \(OPT_{in}(u) \): maximum weight of an independent set in \(T_u \) that includes \(u \).
- \(OPT_{out}(u) \): maximum weight of an independent set in \(T_u \) that excludes \(u \).

Base cases:
Recursion for Dynamic Programming Algorithm

- Either we include \(u \) in an optimal solution or exclude \(u \).
 - \(\text{OPT}_{\text{in}}(u) \): maximum weight of an independent set in \(T_u \) that includes \(u \).
 - \(\text{OPT}_{\text{out}}(u) \): maximum weight of an independent set in \(T_u \) that excludes \(u \).
- Base cases: For a leaf \(u \), \(\text{OPT}_{\text{in}}(u) = w_u \) and \(\text{OPT}_{\text{out}}(u) = 0 \).
- Recurrence: Include \(u \) or exclude \(u \).
Recursion for Dynamic Programming Algorithm

Either we include \(u \) in an optimal solution or exclude \(u \).

- \(OPT_{in}(u) \): maximum weight of an independent set in \(T_u \) that includes \(u \).
- \(OPT_{out}(u) \): maximum weight of an independent set in \(T_u \) that excludes \(u \).

Base cases: For a leaf \(u \), \(OPT_{in}(u) = w_u \) and \(OPT_{out}(u) = 0 \).

Recurrence: Include \(u \) or exclude \(u \).

1. If we include \(u \), all children must be excluded.
 \[OPT_{in}(u) = w_u + \sum_{v \in \text{children}(u)} OPT_{out}(v) \]
Recursion for Dynamic Programming Algorithm

- Either we include \(u \) in an optimal solution or exclude \(u \).
 - \(\text{OPT}_{\text{in}}(u) \): maximum weight of an independent set in \(T_u \) that includes \(u \).
 - \(\text{OPT}_{\text{out}}(u) \): maximum weight of an independent set in \(T_u \) that excludes \(u \).

- Base cases: For a leaf \(u \), \(\text{OPT}_{\text{in}}(u) = w_u \) and \(\text{OPT}_{\text{out}}(u) = 0 \).

- Recurrence: Include \(u \) or exclude \(u \).
 1. If we include \(u \), all children must be excluded.
 \[
 \text{OPT}_{\text{in}}(u) = w_u + \sum_{v \in \text{children}(u)} \text{OPT}_{\text{out}}(v)
 \]
 2. If we exclude \(u \), a child may or may not be excluded.
 \[
 \text{OPT}_{\text{out}}(u) = \sum_{v \in \text{children}(u)} \max(\text{OPT}_{\text{in}}(v), \text{OPT}_{\text{out}}(v))
 \]
Dynamic Programming Algorithm

To find a maximum-weight independent set of a tree T:

Root the tree at a node r

For all nodes u of T in post-order

If u is a leaf then set the values:

\[
M_{out}[u] = 0
\]
\[
M_{in}[u] = w_u
\]

Else set the values:

\[
M_{out}[u] = \sum_{v \in children(u)} \max(M_{out}[v], M_{in}[v])
\]
\[
M_{in}[u] = w_u + \sum_{v \in children(u)} M_{out}[v].
\]

Endif

Endfor

Return $\max(M_{out}[r], M_{in}[r])$
Dynamic Programming Algorithm

To find a maximum-weight independent set of a tree T:

Root the tree at a node r

For all nodes u of T in post-order

If u is a leaf then set the values:

$$M_{out}[u] = 0$$
$$M_{in}[u] = w_u$$

Else set the values:

$$M_{out}[u] = \sum_{v \in \text{children}(u)} \max(M_{out}[v], M_{in}[v])$$

$$M_{in}[u] = w_u + \sum_{v \in \text{children}(u)} M_{out}[u].$$

Endif

Endfor

Return $\max(M_{out}[r], M_{in}[r])$

- Running time of the algorithm is $O(n)$.
Approximation Algorithms

- Methods for optimisation versions of \mathcal{NP}-Complete problems.
- Run in polynomial time.
- Solution returned is guaranteed to be within a small factor of the optimal solution.
Load Balancing Problem

- Given set of m machines $M_1, M_2, \ldots M_m$.
- Given a set of n jobs: job j has processing time t_j.
- Assign each job to one machine so that the total time spent is minimised.

Jobs

<table>
<thead>
<tr>
<th>Job index</th>
<th>Job time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

- Total time spent on machine i is $T_i = \sum_{k \in A(i)} t_k$.
- Minimising makespan $T = \max_i T_i$, the largest load on any machine.
- Minimising makespan is NP-Complete.
Given set of m machines M_1, M_2, \ldots, M_m.

Given a set of n jobs: job j has processing time t_j.

Assign each job to one machine so that the total time spent is minimised.

Let $A(i)$ be the set of jobs assigned to machine M_i.

Total time spent on machine i is $T_i = \sum_{k \in A(i)} t_k$.

Minimise makespan $T = \max_i T_i$, the largest load on any machine.
Load Balancing Problem

Given set of m machines $M_1, M_2, \ldots M_m$.

Given a set of n jobs: job j has processing time t_j.

Assign each job to one machine so that the total time spent is minimised.

Let $A(i)$ be the set of jobs assigned to machine M_i.

Total time spent on machine i is $T_i = \sum_{k \in A(i)} t_k$.

Minimise makespan $T = \max_i T_i$, the largest load on any machine.

Minimising makespan is \mathcal{NP}-Complete.
Greedy-Balance Algorithm

- Adopt a greedy approach.
- Process jobs in any order.
- Assign next job to the processor that has smallest total load so far.

Greedy-Balance:

Start with no jobs assigned

Set $T_i = 0$ and $A(i) = \emptyset$ for all machines M_i

For $j = 1, \ldots, n$

- Let M_i be a machine that achieves the minimum $\min_k T_k$
- Assign job j to machine M_i
- Set $A(i) \leftarrow A(i) \cup \{j\}$
- Set $T_i \leftarrow T_i + t_j$

EndFor
Example of Greedy-Balance Algorithm

Jobs

\[T = T_2 \]
\[T_1, T_3 \]

Machines

\[M_1 \]
\[M_2 \]
\[M_3 \]
Lower Bounds on the Optimal Makespan

- We need a lower bound on the optimum makespan T^*.
Lower Bounds on the Optimal Makespan

- We need a lower bound on the optimum makespan T^*.
- The two bounds below will suffice:

$$T^* \geq \frac{1}{m} \sum_j t_j$$

$$T^* \geq \max_j t_j$$
Analysing Greedy-Balance

Claim: Computed makespan $T \leq 2T^\star$.

$T = T_i$

M_1 M_2 M_3 M_i M_m

t_j

T_i
Analysing Greedy-Balance

Claim: Computed makespan $T \leq 2T^*$.

Let M_i be the machine whose load is T and j be the last job placed on M_i.

What was the situation just before placing this job?
Analysing Greedy-Balance

- **Claim:** Computed makespan $T \leq 2T^*$.
- Let M_i be the machine whose load is T and j be the last job placed on M_i.
- What was the situation just before placing this job?
- M_i had the smallest load and its load was $T - t_j$.
- For every machine M_k, load $T_k \geq T - t_j$.

![Diagram of machines and job placement]
Claim: Computed makespan $T \leq 2T^*$. Let M_i be the machine whose load is T and j be the last job placed on M_i.

What was the situation just before placing this job?

M_i had the smallest load and its load was $T - t_j$.

For every machine M_k, load $T_k \geq T - t_j$.

\[
\sum_k T_k \geq m(T - t_j), \text{ where } k \text{ ranges over all machines}
\]

\[
\sum_j t_j \geq m(T - t_j), \text{ where } j \text{ ranges over all jobs}
\]

\[
T - t_j \leq 1/m \sum_j t_j \leq T^*
\]

\[
T \leq 2T^*, \text{ since } t_j \leq T^*
\]
Improving the Bound

- It is easy to construct an example for which the greedy algorithm produces a solution close to a factor of 2 away from optimal.
Improving the Bound

- It is easy to construct an example for which the greedy algorithm produces a solution close to a factor of 2 away from optimal.
- How can we improve the algorithm?
Improving the Bound

- It is easy to construct an example for which the greedy algorithm produces a solution close to a factor of 2 away from optimal.
- How can we improve the algorithm?
- What if we process the jobs in decreasing order of processing time?
Sorted-Balance Algorithm

Sorted-Balance:
Start with no jobs assigned
Set $T_i = 0$ and $A(i) = \emptyset$ for all machines M_i
Sort jobs in decreasing order of processing times t_j
Assume that $t_1 \geq t_2 \geq \ldots \geq t_n$

For $j = 1, \ldots, n$
 Let M_i be the machine that achieves the minimum $\min_k T_k$
 Assign job j to machine M_i
 Set $A(i) \leftarrow A(i) \cup \{j\}$
 Set $T_i \leftarrow T_i + t_j$
EndFor
Sorted-Balance Algorithm

Sorted-Balance:

Start with no jobs assigned

Set $T_i = 0$ and $A(i) = \emptyset$ for all machines M_i

Sort jobs in decreasing order of processing times t_j

Assume that $t_1 \geq t_2 \geq \ldots \geq t_n$

For $j = 1, \ldots, n$

- Let M_i be the machine that achieves the minimum $\min_k T_k$
- Assign job j to machine M_i
- Set $A(i) \leftarrow A(i) \cup \{j\}$
- Set $T_i \leftarrow T_i + t_j$

EndFor

This algorithm assigns the first m jobs to m distinct machines.
Example of Sorted-Balance Algorithm

Job time

3

Job index

2

Jobs

1 2 3 4

4 4 3 3

1 2 3 4 5 6 7 8 9 10

T = T₁

T₂, T₃

Machines

M₁ M₂ M₃

T. M. Murali April 28, May 3, 2016 Coping with NP-Completeness
Analyzing Sorted-Balance

- Claim: if there are fewer than \(m \) jobs, algorithm is optimal.
- Claim: if there are more than \(m \) jobs, then \(T^* \geq 2t_{m+1} \).

\(T \) represents the load on the machine.
Analyzing Sorted-Balance

- Claim: if there are fewer than \(m \) jobs, algorithm is optimal.
- Claim: if there are more than \(m \) jobs, then \(T^* \geq 2t_{m+1} \).
 - Consider only the first \(m + 1 \) jobs in sorted order.
 - Consider any assignment of these \(m + 1 \) jobs to machines.
 - Some machine must be assigned two jobs, each with processing time at least \(t_{m+1} \).
 - This machine will have load at least \(2t_{m+1} \).
Analyzing Sorted-Balance

- Claim: if there are fewer than \(m \) jobs, algorithm is optimal.
- Claim: if there are more than \(m \) jobs, then \(T^* \geq 2t_{m+1} \).
 - Consider only the first \(m + 1 \) jobs in sorted order.
 - Consider any assignment of these \(m + 1 \) jobs to machines.
 - Some machine must be assigned two jobs, each with processing time at least \(t_{m+1} \).
 - This machine will have load at least \(2t_{m+1} \).
- Claim: \(T \leq 3T^*/2 \).
Analyzing Sorted-Balance

▶ Claim: if there are fewer than m jobs, algorithm is optimal.
▶ Claim: if there are more than m jobs, then $T^* \geq 2t_{m+1}$.
 ▶ Consider only the first $m+1$ jobs in sorted order.
 ▶ Consider any assignment of these $m+1$ jobs to machines.
 ▶ Some machine must be assigned two jobs, each with processing time at least t_{m+1}.
 ▶ This machine will have load at least $2t_{m+1}$.

▶ Claim: $T \leq 3T^*/2$.
▶ Let M_i be the machine whose load is T and j be the last job placed on M_i. (M_i has at least two jobs.)
Analyzing Sorted-Balance

- Claim: if there are fewer than m jobs, algorithm is optimal.
- Claim: if there are more than m jobs, then $T^* \geq 2t_{m+1}$.
 - Consider only the first $m + 1$ jobs in sorted order.
 - Consider any assignment of these $m + 1$ jobs to machines.
 - Some machine must be assigned two jobs, each with processing time at least t_{m+1}.
 - This machine will have load at least $2t_{m+1}$.

- Claim: $T \leq 3T^*/2$.
- Let M_i be the machine whose load is T and j be the last job placed on M_i. (M_i has at least two jobs.)

\[t_j \leq t_{m+1} \leq T^*/2, \text{ since } j \geq m + 1 \]

\[T - t_j \leq T^*, \text{ GREEDY-BALANCE proof} \]

\[T \leq 3T^*/2 \]
Set Cover

Set Cover

INSTANCE: A set U of n elements, a collection S_1, S_2, \ldots, S_m of subsets of U, each with an associated weight w.

SOLUTION: A collection C of sets in the collection such that $\bigcup_{S_i \in C} S_i = U$ and $\sum_{S_i \in C} w_i$ is minimised.
Greedy Approach

1.1

1
1
1
1
1
1
1
1

1
2
3
4
5
6
7
8
Greedy Approach

1.1

1
1
1
1
1
1
1
1

1.1

1
1
1
1
1
1
1
1

0.25 0.25 0.25 0.25

T. M. Murali April 28, May 3, 2016 Coping with NP-Completeness
Greedy Approach
Greedy Approach
Greedy-Set-Cover

▶ To get a greedy algorithm, in what order should we process the sets?

Maintain set R of uncovered elements.

▶ Process set in decreasing order of $w_i / |S_i \cap R|$.

The algorithm computes a set cover whose weight is at most $O(\log n)$ times the optimal weight (Johnson 1974, Lovász 1975, Chvatal 1979).
Greedy-Set-Cover

- To get a greedy algorithm, in what order should we process the sets?
- Maintain set R of uncovered elements.
- Process set in decreasing order of $w_i/|S_i \cap R|$.
Greedy-Set-Cover

- To get a greedy algorithm, in what order should we process the sets?
- Maintain set R of uncovered elements.
- Process set in decreasing order of $w_i/|S_i \cap R|$.

Greedy-Set-Cover:

Start with $R = U$ and no sets selected

While $R \neq \emptyset$

- Select set S_i that minimizes $w_i/|S_i \cap R|
- Delete set S_i from R

EndWhile

Return the selected sets
Greedy-Set-Cover

- To get a greedy algorithm, in what order should we process the sets?
- Maintain set R of uncovered elements.
- Process set in decreasing order of $w_i / |S_i \cap R|$.

Greedy-Set-Cover:
Start with $R = U$ and no sets selected
While $R \neq \emptyset$
 Select set S_i that minimizes $w_i / |S_i \cap R|
 Delete set S_i from R
EndWhile
Return the selected sets

- The algorithm computes a set cover whose weight is at most $O(\log n)$ times the optimal weight (Johnson 1974, Lovász 1975, Chvatal 1979).
Add Bookkeeping to Greedy-Set-Cover

- Good lower bounds on the weight w^* of the optimum set cover are not easy to obtain.

Bookkeeping: record the per-element cost paid when selecting S_i. In the algorithm, after selecting S_i, add the line $c_s = w_i / |S_i \cap R|$ for all $s \in S_i \cap R$. As each set S_i is selected, distribute its weight over the costs c_s of the newly-covered elements. Each element in the universe assigned cost exactly once.
Add Bookkeeping to Greedy-Set-Cover

- Good lower bounds on the weight w^* of the optimum set cover are not easy to obtain.
- Bookkeeping: record the per-element cost paid when selecting S_i.

Define $c_s = w_i / |S_i \cap R|$ for all $s \in S_i \cap R$.

As each set S_i is selected, distribute its weight over the costs c_s of the newly-covered elements.

Each element in the universe assigned cost exactly once.
Good lower bounds on the weight w^* of the optimum set cover are not easy to obtain.

Bookkeeping: record the per-element cost paid when selecting S_i.

In the algorithm, after selecting S_i, add the line

Define $c_s = w_i / |S_i \cap R|$ for all $s \in S_i \cap R$.

As each set S_i is selected, distribute its weight over the costs c_s of the newly-covered elements.

Each element in the universe assigned cost exactly once.
Add Bookkeeping to Greedy-Set-Cover

- Good lower bounds on the weight w^* of the optimum set cover are not easy to obtain.
- Bookkeeping: record the per-element \textit{cost} paid when selecting S_i.
- In the algorithm, after selecting S_i, add the line

 \[
 \text{Define } c_s = w_i / |S_i \cap R| \text{ for all } s \in S_i \cap R.
 \]
- As each set S_i is selected, distribute its weight over the costs c_s of the \textit{newly}-covered elements.
- Each element in the universe assigned cost exactly once.
Starting the Analysis of Greedy-Set-Cover

Let C be the set cover computed by GREEDY-SET-COVER.

Claim: $\sum_{S_i \in C} w_i = \sum_{s \in U} c_s$.

\[\sum_{S_i \in C} w_i = \sum_{S_i \in C} \left(\sum_{s \in S_i \cap R} c_s \right), \] by definition of c_s

\[= \sum_{s \in U} c_s, \text{ since each element in the universe contributes exactly once} \]

In other words, the total weight of the solution computed by GREEDY-SET-COVER is the total costs it assigns to the elements in the universe.

Can “switch” between set-based weight of solution and element-based costs.

Note: sets have weights whereas GREEDY-SET-COVER assigns costs to elements.
Intuition Behind the Proof

▶ Suppose C^* is the optimal set cover: $w^* = \sum_{S_j \in C^*} w_j$.
▶ Goal is to relate total weight of sets in C to total weight of sets in C^*.
Intuition Behind the Proof

▶ Suppose C^* is the optimal set cover: $w^* = \sum_{S_j \in C^*} w_j$.
▶ Goal is to relate total weight of sets in C to total weight of sets in C^*.
▶ What is the total cost assigned by GREEDY-SET-COVER to the elements in the sets in the optimal cover C^*?
Intuition Behind the Proof

- Suppose C^* is the optimal set cover: $w^* = \sum_{S_j \in C^*} w_j$.
- Goal is to relate total weight of sets in C to total weight of sets in C^*.
- What is the total cost assigned by `Greedy-Set-Cover` to the elements in the sets in the optimal cover C^*?

- Since C^* is a set cover, $\sum_{S_j \in C^*} \left(\sum_{s \in S_j} c_s \right) \geq \sum_{s \in U} c_s = \sum_{S_i \in C} w_i = w$.
Solving \(\mathcal{NP} \)-Complete Problems

Small Vertex Covers

Trees

Load Balancing

Set Cover

Intuition Behind the Proof

- Suppose \(C^* \) is the optimal set cover: \(w^* = \sum_{S_j \in C^*} w_j \).
- Goal is to relate total weight of sets in \(C \) to total weight of sets in \(C^* \).
- What is the total cost assigned by \textsc{Greedy-Set-Cover} to the elements in the sets in the optimal cover \(C^* \)?

- Since \(C^* \) is a set cover, \(\sum_{S_j \in C^*} \left(\sum_{s \in S_j} c_s \right) \geq \sum_{s \in U} c_s = \sum_{S_i \in C} w_i = w \).

- In the sum on the left, \(S_j \) is a set in \(C^* \) (need not be a set in \(C \)). How large can total cost of elements in such a set be?
Intuition Behind the Proof

▶ Suppose C^* is the optimal set cover: $w^* = \sum_{S_j \in C^*} w_j$.
▶ Goal is to relate total weight of sets in C to total weight of sets in C^*.
▶ What is the total cost assigned by $\textsc{Greedy-Set-Cover}$ to the elements in the sets in the optimal cover C^*?

▶ Since C^* is a set cover, $\sum_{S_j \in C^*} \left(\sum_{s \in S_j} c_s \right) \geq \sum_{s \in U} c_s = \sum_{S_i \in C} w_i = w$.

▶ In the sum on the left, S_j is a set in C^* (need not be a set in C). How large can total cost of elements in such a set be?
▶ For any set S_k, suppose we can prove $\sum_{s \in S_k} c_s \leq \alpha w_k$, for some fixed $\alpha > 0$, i.e., total cost assigned by $\textsc{Greedy-Set-Cover}$ to the elements in S_k cannot be much larger than the weight of s_k.
Intuition Behind the Proof

▶ Suppose C^* is the optimal set cover: $w^* = \sum_{S_j \in C^*} w_j$.
▶ Goal is to relate total weight of sets in C to total weight of sets in C^*.
▶ What is the total cost assigned by Greedy-Set-Cover to the elements in the sets in the optimal cover C^*?

▶ Since C^* is a set cover,
\[
\sum_{S_j \in C^*} \left(\sum_{s \in S_j} c_s \right) \geq \sum_{s \in U} c_s = \sum_{S_i \in C} w_i = w.
\]
▶ In the sum on the left, S_j is a set in C^* (need not be a set in C). How large can total cost of elements in such a set be?
▶ For any set S_k, suppose we can prove $\sum_{s \in S_k} c_s \leq \alpha w_k$, for some fixed $\alpha > 0$, i.e., total cost assigned by Greedy-Set-Cover to the elements in S_k cannot be much larger than the weight of s_k.

▶ Then $w \leq \sum_{S_j \in C^*} \left(\sum_{s \in S_j} c_s \right) \leq \sum_{S_j \in C^*} \alpha w_j = \alpha w^*$.
Intuition Behind the Proof

- Suppose C^* is the optimal set cover: $w^* = \sum_{S_j \in C^*} w_j$.
- Goal is to relate total weight of sets in C to total weight of sets in C^*.
- What is the total cost assigned by \textsc{Greedy-Set-Cover} to the elements in the sets in the optimal cover C^*?

- Since C^* is a set cover, $\sum_{S_j \in C^*} \left(\sum_{s \in S_j} c_s \right) \geq \sum_{s \in U} c_s = \sum_{S_i \in C} w_i = w$.

- In the sum on the left, S_j is a set in C^* (need not be a set in C). How large can total cost of elements in such a set be?

- For any set S_k, suppose we can prove $\sum_{s \in S_k} c_s \leq \alpha w_k$, for some fixed $\alpha > 0$, i.e., total cost assigned by \textsc{Greedy-Set-Cover} to the elements in S_k cannot be much larger than the weight of s_k.

- Then $w \leq \sum_{S_j \in C^*} \left(\sum_{s \in S_j} c_s \right) \leq \sum_{S_j \in C^*} \alpha w_j = \alpha w^*$.

- For every set S_k in the input, goal is to prove an upper bound on $\frac{\sum_{s \in S_k} c_s}{w_k}$.
Consider any set S_k (even one not selected by the algorithm).

How large can $\frac{\sum_{s \in S_k} c_s}{w_k}$ get?
Upper Bounding Cost-by-Weight Ratio

- Consider any set S_k (even one not selected by the algorithm).
- How large can $\frac{\sum_{s \in S_k} c_s}{w_k}$ get?
- The *harmonic function*

$$H(n) = \sum_{i=1}^{n} \frac{1}{i} = \Theta(\ln n).$$
Upper Bounding Cost-by-Weight Ratio

- Consider any set S_k (even one not selected by the algorithm).
- How large can $\frac{\sum_{s \in S_k} c_s}{w_k}$ get?
- The *harmonic function*

$$H(n) = \sum_{i=1}^{n} \frac{1}{i} = \Theta(\ln n).$$

- Claim: For every set S_k, the sum $\sum_{s \in S_k} c_s \leq H(|S_K|)w_k$.

T. M. Murali
April 28, May 3, 2016
Coping with NP-Completeness
Renumbering Elements in S_k

- Renumber elements in U so that elements in S_k are the first $d = |S_k|$ elements of U, i.e., $S_k = \{s_1, s_2, \ldots, s_d\}$.
- Order elements of S in the order they get covered by the algorithm (i.e., when they get assigned a cost by GREEDY-SET-COVER).
Renumbering Elements in S_k

- Renumber elements in U so that elements in S_k are the first $d = |S_k|$ elements of U, i.e., $S_k = \{s_1, s_2, \ldots, s_d\}$.
- Order elements of S in the order they get covered by the algorithm (i.e., when they get assigned a cost by Greedy-Set-Cover).
Proving $\sum_{s \in S_k} c_s \leq H(|S_K|) w_k$

- What happens in the iteration when the algorithm covers element $s_j \in S_k, j \leq d$?
Proving $\sum_{s \in S_k} c_s \leq H(|S_k|) w_k$

- What happens in the iteration when the algorithm covers element $s_j \in S_k, j \leq d$?

- At the start of this iteration, R must contain $s_j, s_{j+1}, \ldots, s_d$, i.e., $|S_k \cap R| \geq d - j + 1$. ($R$ may contain other elements of S_k as well.)
Proving $\sum_{s \in S_k} c_s \leq H(|S_k|)w_k$

▶ What happens in the iteration when the algorithm covers element $s_j \in S_k, j \leq d$?

▶ At the start of this iteration, R must contain $s_j, s_{j+1}, \ldots s_d$, i.e., $|S_k \cap R| \geq d - j + 1$. ($R$ may contain other elements of S_k as well.)

▶ Therefore, $\frac{w_k}{|S_k \cap R|} \leq \frac{w_k}{d - j + 1}$.
Proving $\sum_{s \in S_k} c_s \leq H(|S_K|)w_k$

- What happens in the iteration when the algorithm covers element $s_j \in S_k, j \leq d$?

- At the start of this iteration, R must contain $s_j, s_{j+1}, \ldots s_d$, i.e., $|S_k \cap R| \geq d - j + 1$. ($R$ may contain other elements of S_k as well.)

- Therefore, $\frac{w_k}{|S_k \cap R|} \leq \frac{w_k}{d - j + 1}$.

- What cost did the algorithm assign to s_j?

- Suppose the algorithm selected set S_i in this iteration. $c_{s_j} = \frac{w_i}{|S_i \cap R|} \leq \frac{w_k}{|S_k \cap R|} \leq \frac{w_k}{d - j + 1}$.

We are done!

$\sum_{s \in S_k} c_s = d \sum_{j=1}^d c_{s_j} \leq d \sum_{j=1}^d w_k d - j + 1 = H(d)w_k$.

T. M. Murali April 28, May 3, 2016 Coping with NP-Completeness
Proving \(\sum_{s \in S_k} c_s \leq H(|S_K|)w_k \)

- What happens in the iteration when the algorithm covers element \(s_j \in S_k, j \leq d \)?
- At the start of this iteration, \(R \) must contain \(s_j, s_j+1, \ldots s_d \), i.e., \(|S_k \cap R| \geq d - j + 1 \). (\(R \) may contain other elements of \(S_k \) as well.)
- Therefore, \(\frac{w_k}{|S_k \cap R|} \leq \frac{w_k}{d - j + 1} \).
- What cost did the algorithm assign to \(s_j \)?
- Suppose the algorithm selected set \(S_i \) in this iteration. \(c_{s_j} = \frac{w_i}{|S_i \cap R|} \leq \frac{w_k}{|S_k \cap R|} \leq \frac{w_k}{d - j + 1} \).
- We are done!

\[
\sum_{s \in S_k} c_s = \sum_{j=1}^{d} c_{s_j} \leq \sum_{j=1}^{d} \frac{w_k}{d - j + 1} = H(d)w_k.
\]
Proving Upper Bound on Cost of Greedy-Set-Cover

- Let us assume $\sum_{s \in S_k} c_s \leq H(|S_k|)w_k$.
- Let d^* be the size of the largest set in the collection.
- Recall that C^* is the optimal set cover and $w^* = \sum_{S_i \in C^*} w_i$.
Proving Upper Bound on Cost of Greedy-Set-Cover

▶ Let us assume $\sum_{s \in S_k} c_s \leq H(|S_K|)w_k$.
▶ Let d^* be the size of the largest set in the collection.
▶ Recall that C^* is the optimal set cover and $w^* = \sum_{S_i \in C^*} w_i$.
▶ For each set S_j in C^*, we have $w_j \geq \frac{\sum_{s \in S_j} c_s}{H(|S_i|)} \geq \frac{\sum_{s \in S_j} c_s}{H(d^*)}$.
▶ Combining with $\sum_{S_i \in C} w_i = \sum_{s \in U} c_s$, we have

$$w^* = \sum_{S_j \in C^*} w_j$$
Let us assume \(\sum_{s \in S_k} c_s \leq H(|S_K|)w_k \).

Let \(d^* \) be the size of the largest set in the collection.

Recall that \(C^* \) is the optimal set cover and \(w^* = \sum_{S_i \in C^*} w_i \).

For each set \(S_j \) in \(C^* \), we have \(w_j \geq \frac{\sum_{s \in S_j} c_s}{H(|S_i|)} \geq \frac{\sum_{s \in S_j} c_s}{H(d^*)} \).

Combining with \(\sum_{S_i \in C} w_i = \sum_{s \in U} c_s \), we have

\[
 w^* = \sum_{S_j \in C^*} w_j \geq \sum_{S_j \in C^*} \frac{1}{H(d^*)} \sum_{s \in S_j} c_s \geq \frac{1}{H(d^*)} \sum_{s \in U} c_s
\]
Proving Upper Bound on Cost of Greedy-Set-Cover

- Let us assume $\sum_{s \in S_k} c_s \leq H(|S_K|)w_k$.
- Let d^* be the size of the largest set in the collection.
- Recall that C^* is the optimal set cover and $w^* = \sum_{S_i \in C^*} w_i$.
- For each set S_j in C^*, we have $w_j \geq \frac{\sum_{s \in S_j} c_s}{H(|S_j|)} \geq \frac{\sum_{s \in S_j} c_s}{H(d^*)}$.
- Combining with $\sum_{S_i \in C} w_i = \sum_{s \in U} c_s$, we have

$$w^* = \sum_{S_j \in C^*} w_j \geq \sum_{S_j \in C^*} \frac{1}{H(d^*)} \sum_{s \in S_j} c_s \geq \frac{1}{H(d^*)} \sum_{s \in U} c_s = \frac{1}{H(d^*)} \sum_{S_i \in C} w_i = w.$$
Proving Upper Bound on Cost of Greedy-Set-Cover

- Let us assume $\sum_{s \in S_k} c_s \leq H(|S_K|)w_k$.
- Let d^* be the size of the largest set in the collection.
- Recall that C^* is the optimal set cover and $w^* = \sum_{S_i \in C^*} w_i$.
- For each set S_j in C^*, we have $w_j \geq \frac{\sum_{s \in S_j} c_s}{H(|S_j|)} \geq \frac{\sum_{s \in S_j} c_s}{H(d^*)}$.
- Combining with $\sum_{S_i \in C} w_i = \sum_{s \in U} c_s$, we have

$$w^* = \sum_{S_j \in C^*} w_j \geq \sum_{S_j \in C^*} \frac{1}{H(d^*)} \sum_{s \in S_j} c_s \geq \frac{1}{H(d^*)} \sum_{s \in U} c_s = \frac{1}{H(d^*)} \sum_{S_i \in C} w_i = w.$$

- We have proven that GREEDY-SET-COVER computes a set cover whose weight is at most $H(d^*)$ times the optimal weight.
How Badly Can Greedy-Set-Cover Perform?

- Generalise this example to show that algorithm produces a set cover of weight $\Omega(\log n)$ even though optimal weight is $2 + \varepsilon$.
- More complex constructions show greedy algorithm incurs a weight close to $H(n)$ times the optimal weight.
How Badly Can Greedy-Set-Cover Perform?

- Generalise this example to show that algorithm produces a set cover of weight $\Omega(\log n)$ even though optimal weight is $2 + \varepsilon$.
- More complex constructions show greedy algorithm incurs a weight close to $H(n)$ times the optimal weight.
- No polynomial time algorithm can achieve an approximation bound better than $H(n)$ times optimal unless $P = NP$ (Lund and Yannakakis, 1994).