Graphs

T. M. Murali

January 28, February 2, 4, 2016
The Oracle of Bacon
Basic Definitions

Graph Traversal

BFS

DFS

All Components

Implementations

T. M. Murali

January 28, February 2, 4, 2016

CS4104: Graphs
Basic Definitions

Graph Traversal

BFS

DFS

All Components

Implementations

On Twitter, A follows B.

Selected connections highlighted below.

P. Diddy

Mariah Carey

Kevin Rose (Digg founder)

Toby Young (1st account)

José Carancho

Jimmy Fallon

Mario Lavandeira (Perez Hilton)

Ryan Seacrest

Emeril Lagasse

Kona Endurance products

Solange Knowles

Fake Vladimir Putin

Intern Meredith (TV news intern, Columbus, Ohio)

O-Tip

Darth Vader

Vanilla Ice

Jane Fonda

Gov Bobby Jindal

Spicy Pants (Celebrity gossip blogger)

Newt Gingrich

Erykah Badu

Snoop Dogg: "whatz crackn nephew!!!!"

Snoop Dogg

Michael Phelps

William Shatner

Chris Hansen

Snooch Dogg

Yoko Ono

Stephen Fry

T. M. Murali

January 28, February 2, 4, 2016

CS4104: Graphs
First trophic level: Photosynthesizers

Second trophic level: Decomposers, Mutualists, Pathogens, parasites, Root-feeders

Third trophic level: Shredders, Predators, Grazers

Fourth trophic level: Higher level predators

Fifth and higher trophic levels: Higher level predators
Graphs

- Model pairwise relationships (edges) between objects (nodes).
Graphs

- Model pairwise relationships (edges) between objects (nodes).
- Useful in a large number of applications:
Graphs

- Model pairwise relationships (edges) between objects (nodes).
- Useful in a large number of applications: computer networks, the World Wide Web, ecology (food webs), social networks, software systems, job scheduling, VLSI circuits, cellular networks, ...
- Other examples: gene and protein networks, our bodies (nervous and circulatory systems, brains), buildings, transportation networks, ...
Graphs

- Model pairwise relationships (edges) between objects (nodes).
- Useful in a large number of applications: computer networks, the World Wide Web, ecology (food webs), social networks, software systems, job scheduling, VLSI circuits, cellular networks, ...
- Other examples: gene and protein networks, our bodies (nervous and circulatory systems, brains), buildings, transportation networks, ...
- Problems involving graphs have a rich history dating back to Euler.
Graphs

- Model pairwise relationships (edges) between objects (nodes).
- Useful in a large number of applications: computer networks, the World Wide Web, ecology (food webs), social networks, software systems, job scheduling, VLSI circuits, cellular networks, ...
- Other examples: gene and protein networks, our bodies (nervous and circulatory systems, brains), buildings, transportation networks, ...
- Problems involving graphs have a rich history dating back to Euler.
Definition of a Graph

- **Undirected graph** $G = (V, E)$: set $V$ of nodes and set $E$ of edges, where $E \subseteq V \times V$. Elements of $E$ are unordered pairs.
  - Abuse of notation: write an edge $e$ between nodes $u$ and $v$ as $e = (u, v)$ and not as $e = \{u, v\}$.
  - Say that edge $e$ is *incident* on $u$ and on $v$.
  - Exactly one edge between any pair of nodes.
  - $G$ contains no self loops.
Definition of a Graph

- **Undirected graph** $G = (V, E)$: set $V$ of nodes and set $E$ of edges, where $E \subseteq V \times V$. Elements of $E$ are unordered pairs.
  - Abuse of notation: write an edge $e$ between nodes $u$ and $v$ as $e = (u, v)$ and not as $e = \{u, v\}$.
  - Say that edge $e$ is *incident* on $u$ and on $v$.
  - Exactly one edge between any pair of nodes.
  - $G$ contains no self loops.

- **Directed graph** $G = (V, E)$: set $V$ of nodes and set $E$ of edges, where $E \subseteq V \times V$. Elements of $E$ are ordered pairs.
Definition of a Graph

- **Undirected graph** \( G = (V, E) \): set \( V \) of nodes and set \( E \) of edges, where \( E \subseteq V \times V \). Elements of \( E \) are unordered pairs.
  - Abuse of notation: write an edge \( e \) between nodes \( u \) and \( v \) as \( e = (u, v) \) and not as \( e = \{u, v\} \).
  - Say that edge \( e \) is *incident* on \( u \) and on \( v \).
  - Exactly one edge between any pair of nodes.
  - \( G \) contains no self loops.

- **Directed graph** \( G = (V, E) \): set \( V \) of nodes and set \( E \) of edges, where \( E \subseteq V \times V \). Elements of \( E \) are ordered pairs.
  - \( e = (u, v) \): \( u \) is the *tail* of the edge \( e \), \( v \) is its *head*; \( e \) *leaves* node \( u \) and *enters* node \( v \); \( e \) is *directed from \( u \) to \( v \).*
  - A pair of nodes \( \{u, v\} \) may be connected by two directed edges: \( (u, v) \) and \( (v, u) \).
  - \( G \) contains no self loops.
Definition of a Graph

- **Undirected graph** $G = (V, E)$: set $V$ of nodes and set $E$ of edges, where $E \subseteq V \times V$. Elements of $E$ are unordered pairs.
  - Abuse of notation: write an edge $e$ between nodes $u$ and $v$ as $e = (u, v)$ and not as $e = \{u, v\}$.
  - Say that edge $e$ is *incident* on $u$ and on $v$.
  - Exactly one edge between any pair of nodes.
  - $G$ contains no self loops.

- **Directed graph** $G = (V, E)$: set $V$ of nodes and set $E$ of edges, where $E \subseteq V \times V$. Elements of $E$ are ordered pairs.
  - $e = (u, v)$: $u$ is the *tail* of the edge $e$, $v$ is its *head*; $e$ *leaves* node $u$ and *enters* node $v$; $e$ is *directed from $u$ to $v$*.
  - A pair of nodes $\{u, v\}$ may be connected by two directed edges: $(u, v)$ and $(v, u)$.
  - $G$ contains no self loops.

- By default, “graph” will mean an “undirected graph”.

---

T. M. Murali

January 28, February 2, 4, 2016

CS4104: Graphs
A path in an undirected graph $G = (V, E)$ is a sequence $P$ of nodes $v_1, v_2, \ldots, v_{k-1}, v_k \in V$ such that every consecutive pair of nodes $v_i, v_{i+1}, 1 \leq i < k$ is connected by an edge in $E$.

- $P$ is called a path from $v_1$ to $v_k$ or a $v_1$-$v_k$ path.
- A path is simple if all its nodes are distinct.
- A cycle is a path where $k > 2$, the first $k - 1$ nodes are distinct, and $v_1 = v_k$. 

All definitions carry over to directed graphs as well. Directed graphs have the notion of strong connectivity.

Distance between two nodes $u$ and $v$ is the minimum number of edges in any $u$-$v$ path.
A path in an undirected graph $G = (V, E)$ is a sequence $P$ of nodes $v_1, v_2, \ldots, v_{k-1}, v_k \in V$ such that every consecutive pair of nodes $v_i, v_{i+1}, 1 \leq i < k$ is connected by an edge in $E$.

- $P$ is called a path from $v_1$ to $v_k$ or a $v_1$-$v_k$ path.

- A path is simple if all its nodes are distinct.

- A cycle is a path where $k > 2$, the first $k - 1$ nodes are distinct, and $v_1 = v_k$.

- All definitions carry over to directed graphs as well.
A path in an undirected graph $G = (V, E)$ is a sequence $P$ of nodes $v_1, v_2, \ldots, v_{k-1}, v_k \in V$ such that every consecutive pair of nodes $v_i, v_{i+1}, 1 \leq i < k$ is connected by an edge in $E$.

- $P$ is called a path from $v_1$ to $v_k$ or a $v_1$-$v_k$ path.
- A path is **simple** if all its nodes are distinct.
- A cycle is a path where $k > 2$, the first $k-1$ nodes are distinct, and $v_1 = v_k$.
  - All definitions carry over to directed graphs as well.
- An undirected graph $G$ is **connected** if for every pair of nodes $u, v \in V$, there is a path from $u$ to $v$ in $G$.
  - Directed graphs have the notion of “strong connectivity.”
A path in an undirected graph $G = (V, E)$ is a sequence $P$ of nodes $v_1, v_2, \ldots, v_{k-1}, v_k \in V$ such that every consecutive pair of nodes $v_i, v_{i+1}, 1 \leq i < k$ is connected by an edge in $E$.

- $P$ is called a path from $v_1$ to $v_k$ or a $v_1$-$v_k$ path.

- A path is simple if all its nodes are distinct.

- A cycle is a path where $k > 2$, the first $k-1$ nodes are distinct, and $v_1 = v_k$.

- All definitions carry over to directed graphs as well.

- An undirected graph $G$ is connected if for every pair of nodes $u, v \in V$, there is a path from $u$ to $v$ in $G$.

- Directed graphs have the notion of “strong connectivity.”

- Distance between two nodes $u$ and $v$ is the minimum number of edges in any $u$-$v$ path.
An undirected graph is a tree if it is connected and does not contain a cycle.
An undirected graph is a **tree** if it is connected and does not contain a cycle. For any pair of nodes in a tree, there is a unique path connecting them.
An undirected graph is a tree if it is connected and does not contain a cycle. For any pair of nodes in a tree, there is a unique path connecting them.

**Rooting** a tree $T$: pick some node $r$ in the tree and orient each edge of $T$ “away” from $r$, i.e., for each node $v \neq r$, define *parent* of $v$ to be the node $u$ that directly precedes $v$ on the path from $r$ to $v$.
A tree is an undirected graph that is connected and does not contain a cycle. For any pair of nodes in a tree, there is a unique path connecting them.

Rooting a tree $T$: pick some node $r$ in the tree and orient each edge of $T$ “away” from $r$, i.e., for each node $v \neq r$, define parent of $v$ to be the node $u$ that directly precedes $v$ on the path from $r$ to $v$.

- Node $w$ is a child of node $v$ if $v$ is a parent of $w$.
- Node $w$ is a descendant of node $v$ (or $v$ is an ancestor of $w$) if $v$ lies on the $r$-$w$ path.
- Node $x$ is a leaf if it has no descendants.
An undirected graph is a **tree** if it is connected and does not contain a cycle. For any pair of nodes in a tree, there is a unique path connecting them.

**Rooting** a tree $T$: pick some node $r$ in the tree and orient each edge of $T$ “away” from $r$, i.e., for each node $v \neq r$, define *parent* of $v$ to be the node $u$ that directly precedes $v$ on the path from $r$ to $v$.

- Node $w$ is a **child** of node $v$ if $v$ is a parent of $w$.
- Node $w$ is a **descendant** of node $v$ (or $v$ is an **ancestor** of $w$) if $v$ lies on the $r$-$w$ path.
- Node $x$ is a **leaf** if it has no descendants.

**Examples of (rooted) trees:**

![Trees diagram]

Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.
Trees

An undirected graph is a *tree* if it is connected and does not contain a cycle. For any pair of nodes in a tree, there is a unique path connecting them.

**Rooting** a tree $T$: pick some node $r$ in the tree and orient each edge of $T$ “away” from $r$, i.e., for each node $v \neq r$, define *parent* of $v$ to be the node $u$ that directly precedes $v$ on the path from $r$ to $v$.

- Node $w$ is a *child* of node $v$ if $v$ is a parent of $w$.
- Node $w$ is a *descendant* of node $v$ (or $v$ is an *ancestor* of $w$) if $v$ lies on the $r$-$w$ path.
- Node $x$ is a *leaf* if it has no descendants.

Examples of (rooted) trees: organisational hierarchy, class hierarchies in object-oriented languages.
Number of Edges in a Tree

- Claim: every $n$-node tree has $n - 1$ edges.
Number of Edges in a Tree

- Claim: every $n$-node tree has exactly $n - 1$ edges.
- Proof 1:
Number of Edges in a Tree

- Claim: every $n$-node tree has exactly $n - 1$ edges.
- Proof 1: Root the tree. Each node, except the root, has a unique parent. Each edge connects one parent to one child. Therefore, the tree has $n - 1$ edges.
Number of Edges in a Tree

- **Claim**: every $n$-node tree has exactly $n - 1$ edges.
- **Proof 1**: Root the tree. Each node, except the root, has a unique parent. Each edge connects one parent to one child. Therefore, the tree has $n - 1$ edges.
- **Proof 2**: (by induction)
Number of Edges in a Tree

- Claim: every $n$-node tree has exactly $n - 1$ edges.

- Proof 1: Root the tree. Each node, except the root, has a unique parent. Each edge connects one parent to one child. Therefore, the tree has $n - 1$ edges.

- Proof 2: (by induction) Two key pieces.
  - Every tree contains at least one leaf, i.e., node of degree 1. Why?
  - Inductive hypothesis: every tree with $n - 1$ nodes contains $n - 2$ edges.
Number of Edges in a Tree

Claim: every $n$-node tree has exactly $n - 1$ edges.

Proof 1: Root the tree. Each node, except the root, has a unique parent. Each edge connects one parent to one child. Therefore, the tree has $n - 1$ edges.

Proof 2: (by induction) Two key pieces.

- Every tree contains at least one leaf, i.e., node of degree 1. Why?
- Inductive hypothesis: every tree with $n - 1$ nodes contains $n - 2$ edges.

Stronger claim: Let $G$ be an undirected graph on $n$ nodes. Any two of the following statements implies the third:

1. $G$ is connected.
2. $G$ does not contain a cycle.
3. $G$ contains $n - 1$ edges.
Number of Edges in a Tree

- Claim: every $n$-node tree has exactly $n - 1$ edges.
- Proof 1: Root the tree. Each node, except the root, has a unique parent. Each edge connects one parent to one child. Therefore, the tree has $n - 1$ edges.
- Proof 2: (by induction) Two key pieces.
  - Every tree contains at least one leaf, i.e., node of degree 1. Why?
  - Inductive hypothesis: every tree with $n - 1$ nodes contains $n - 2$ edges.
- Stronger claim: Let $G$ be an undirected graph on $n$ nodes. Any two of the following statements implies the third:
  1. $G$ is connected.
  2. $G$ does not contain a cycle.
  3. $G$ contains $n - 1$ edges.
  - Note that none of these statements uses the word “tree”.

T. M. Murali
January 28, February 2, 4, 2016
CS4104: Graphs
Number of Edges in a Tree

- **Claim:** every \( n \)-node tree has exactly \( n - 1 \) edges.

- **Proof 1:** Root the tree. Each node, except the root, has a unique parent. Each edge connects one parent to one child. Therefore, the tree has \( n - 1 \) edges.

- **Proof 2:** (by induction) Two key pieces.
  - Every tree contains at least one leaf, i.e., node of degree 1. Why?
  - Inductive hypothesis: every tree with \( n - 1 \) nodes contains \( n - 2 \) edges.

- **Stronger claim:** Let \( G \) be an undirected graph on \( n \) nodes. Any two of the following statements implies the third:
  1. \( G \) is connected.
  2. \( G \) does not contain a cycle.
  3. \( G \) contains \( n - 1 \) edges.

  - Note that none of these statements uses the word “tree”.
  - 1 and 2 \( \Rightarrow \) 3:
Number of Edges in a Tree

- **Claim:** every \( n \)-node tree has exactly \( n - 1 \) edges.

- **Proof 1:** Root the tree. Each node, except the root, has a unique parent. Each edge connects one parent to one child. Therefore, the tree has \( n - 1 \) edges.

- **Proof 2:** (by induction) Two key pieces.
  - Every tree contains at least one leaf, i.e., node of degree 1. Why?
  - Inductive hypothesis: every tree with \( n - 1 \) nodes contains \( n - 2 \) edges.

- **Stronger claim:** Let \( G \) be an undirected graph on \( n \) nodes. Any two of the following statements implies the third:
  1. \( G \) is connected.
  2. \( G \) does not contain a cycle.
  3. \( G \) contains \( n - 1 \) edges.

  - Note that none of these statements uses the word “tree”.
  - 1 and 2 \( \Rightarrow \) 3: just proved.
  - 2 and 3 \( \Rightarrow \) 1:
Number of Edges in a Tree

- Claim: every \( n \)-node tree has exactly \( n - 1 \) edges.

- Proof 1: Root the tree. Each node, except the root, has a unique parent. Each edge connects one parent to one child. Therefore, the tree has \( n - 1 \) edges.

- Proof 2: (by induction) Two key pieces.
  - Every tree contains at least one leaf, i.e., node of degree 1. Why?
  - Inductive hypothesis: every tree with \( n - 1 \) nodes contains \( n - 2 \) edges.

- Stronger claim: Let \( G \) be an undirected graph on \( n \) nodes. Any two of the following statements implies the third:
  1. \( G \) is connected.
  2. \( G \) does not contain a cycle.
  3. \( G \) contains \( n - 1 \) edges.

  - Note that none of these statements uses the word “tree”.
  - 1 and 2 \( \Rightarrow \) 3: just proved.
  - 2 and 3 \( \Rightarrow \) 1: prove by contradiction.
  - 3 and 1 \( \Rightarrow \) 2: prove yourself.
**s-t Connectivity**

**INSTANCE:** An undirected graph \( G = (V, E) \) and two nodes \( s, t \in V \).

**QUESTION:** Is there an \( s-t \) path in \( G \)?
\textit{s-t Connectivity}

\textbf{INSTANCE:} An undirected graph $G = (V, E)$ and two nodes $s, t \in V$.

\textbf{QUESTION:} Is there an \textit{s-t} path in $G$?

- The \textit{connected component of $G$ containing $s$} is the set of all nodes $u$ such that there is an \textit{s-u} path in $G$. 
**s-t Connectivity**

**INSTANCE:** An undirected graph $G = (V, E)$ and two nodes $s, t \in V$.

**QUESTION:** Is there an $s$-$t$ path in $G$?

- The *connected component of $G$ containing $s$* is the set of all nodes $u$ such that there is an $s$-$u$ path in $G$.

- Algorithm for the $s$-$t$ Connectivity problem: compute the connected component of $G$ that contains $s$ and check if $t$ is in that component.
Computing Connected Components

- “Explore” $G$ starting from $s$ and maintain set $R$ of visited nodes.

---

R will consist of nodes to which $s$ has a path
Initially $R = \{s\}$
While there is an edge $(u, v)$ where $u \in R$ and $v \notin R$
  Add $v$ to $R$
Endwhile
Computing Connected Components

- “Explore” $G$ starting from $s$ and maintain set $R$ of visited nodes.

$R$ will consist of nodes to which $s$ has a path
Initially $R=\{s\}$
While there is an edge $(u,v)$ where $u \in R$ and $v \notin R$
    Add $v$ to $R$
Endwhile
Computing Connected Components

- “Explore” $G$ starting from $s$ and maintain set $R$ of visited nodes.

$R$ will consist of nodes to which $s$ has a path
Initially $R = \{s\}$
While there is an edge $(u, v)$ where $u \in R$ and $v \notin R$
  Add $v$ to $R$
Endwhile
Computing Connected Components

- “Explore” $G$ starting from $s$ and maintain set $R$ of visited nodes.

---

$R$ will consist of nodes to which $s$ has a path

Initially $R = \{s\}$

While there is an edge $(u, v)$ where $u \in R$ and $v \notin R$
  Add $v$ to $R$

Endwhile
Computing Connected Components

- “Explore” $G$ starting from $s$ and maintain set $R$ of visited nodes.

$R$ will consist of nodes to which $s$ has a path.

Initially $R = \{s\}$

While there is an edge $(u, v)$ where $u \in R$ and $v \notin R$

Add $v$ to $R$

Endwhile
Computing Connected Components

▶ “Explore” $G$ starting from $s$ and maintain set $R$ of visited nodes.

$R$ will consist of nodes to which $s$ has a path
Initially $R=\{s\}$
While there is an edge $(u,v)$ where $u \in R$ and $v \notin R$
    Add $v$ to $R$
Endwhile
Computing Connected Components

- “Explore” $G$ starting from $s$ and maintain set $R$ of visited nodes.

$R$ will consist of nodes to which $s$ has a path
Initially $R = \{s\}$
While there is an edge $(u, v)$ where $u \in R$ and $v \notin R$
    Add $v$ to $R$
Endwhile
Computing Connected Components

- “Explore” $G$ starting from $s$ and maintain set $R$ of visited nodes.

$R$ will consist of nodes to which $s$ has a path

Initially $R = \{s\}$

While there is an edge $(u, v)$ where $u \in R$ and $v \notin R$
  
  Add $v$ to $R$

Endwhile
Computing Connected Components

- “Explore” $G$ starting from $s$ and maintain set $R$ of visited nodes.

---

$R$ will consist of nodes to which $s$ has a path

Initially $R = \{s\}$

While there is an edge $(u, v)$ where $u \in R$ and $v \notin R$
   Add $v$ to $R$

Endwhile
Issues in Computing Connected Components

- How do we implement the while loop?

R will consist of nodes to which $s$ has a path
Initially $R = \{s\}$
While there is an edge $(u, v)$ where $u \in R$ and $v \notin R$
  Add $v$ to $R$
Endwhile

![Graph Diagram]
Issues in Computing Connected Components

R will consist of nodes to which s has a path
Initially R = {s}
While there is an edge (u, v) where u ∈ R and v ∉ R
    Add v to R
Endwhile

How do we implement the while loop? Examine each edge in E.
Issues in Computing Connected Components

R will consist of nodes to which s has a path
Initially $R = \{s\}$
While there is an edge $(u, v)$ where $u \in R$ and $v \notin R$
  Add $v$ to $R$
Endwhile

- How do we implement the while loop? Examine each edge in $E$.
- Other issues to consider:
  - Why does the algorithm terminate?
  - Does the algorithm truly compute connected component of $G$ containing $s$?
  - What is the running time of the algorithm?
Termination of the Algorithm

- How many nodes does each iteration of the while loop add to $R$?
- How many times is the while loop executed?

$R$ will consist of nodes to which $s$ has a path
Initially $R=\{s\}$
While there is an edge $(u, v)$ where $u \in R$ and $v \notin R$
  Add $v$ to $R$
Endwhile
Termination of the Algorithm

Let $R$ consist of nodes to which $s$ has a path
Initially $R = \{s\}$
While there is an edge $(u,v)$ where $u \in R$ and $v \notin R$
   Add $v$ to $R$
Endwhile

- How many nodes does each iteration of the while loop add to $R$? Exactly 1.
- How many times is the while loop executed?
Termination of the Algorithm

\[ R \text{ will consist of nodes to which } s \text{ has a path} \]
Initially \( R = \{s\} \)
While there is an edge \((u, v)\) where \( u \in R \) and \( v \notin R \)
   Add \( v \) to \( R \)
Endwhile

▶ How many nodes does each iteration of the while loop add to \( R \)? Exactly 1.
▶ How many times is the while loop executed? At most \( n \) times.
Termination of the Algorithm

\[ R \text{ will consist of nodes to which } s \text{ has a path} \]
Initially \( R = \{s\} \)
While there is an edge \((u, v)\) where \( u \in R \) and \( v \notin R \)
    Add \( v \) to \( R \)
Endwhile

- How many nodes does each iteration of the while loop add to \( R \)? Exactly 1.
- How many times is the while loop executed? At most \( n \) times.
- What is true of \( R \) at termination?

\[ 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13 \]
Termination of the Algorithm

R will consist of nodes to which s has a path
Initially $R = \{s\}$
While there is an edge $(u, v)$ where $u \in R$ and $v \notin R$
  Add $v$ to $R$
Endwhile

- How many nodes does each iteration of the while loop add to $R$? Exactly 1.
- How many times is the while loop executed? At most $n$ times.
- What is true of $R$ at termination?
  - either $R = V$ at the end or
  - in the last iteration, every edge either has both nodes in $R$ or both nodes not in $R$. 
Correctness of the Algorithm

Claim: at the end of the algorithm, the set $R$ is exactly the connected component of $G$ containing $s$. 
Claim: at the end of the algorithm, the set $R$ is exactly the connected component of $G$ containing $s$.

Proof: Suppose $w \notin R$ but there is an $s$-$w$ path $P$ in $G$.

- Consider first node $v$ in $P$ not in $R$ ($v \neq s$).
- Let $u$ be the predecessor of $v$ in $P$: 

\[ R \\
\begin{array}{c}
s \\
\vdots \\
 u \\
\vdots \\
 v \\
\vdots \\
 w \\
\end{array} \]
Claim: at the end of the algorithm, the set $R$ is exactly the connected component of $G$ containing $s$.

Proof: Suppose $w \not\in R$ but there is an $s$-$w$ path $P$ in $G$.

- Consider first node $v$ in $P$ not in $R$ ($v \neq s$).
- Let $u$ be the predecessor of $v$ in $P$: $u$ is in $R$.
- $(u, v)$ is an edge with $u \in R$ but $v \not\in R$, contradicting the stopping rule.
Correctness of the Algorithm

Claim: at the end of the algorithm, the set $R$ is exactly the connected component of $G$ containing $s$.

Proof: Suppose $w \not\in R$ but there is an $s$-$w$ path $P$ in $G$.

- Consider first node $v$ in $P$ not in $R$ ($v \neq s$).
- Let $u$ be the predecessor of $v$ in $P$: $u$ is in $R$.
- $(u, v)$ is an edge with $u \in R$ but $v \not\in R$, contradicting the stopping rule.
- Note: wrong to assume that predecessor of $w$ in $P$ is not in $R$. 
Recovering Paths

R will consist of nodes to which s has a path
Initially $R = \{s\}$
While there is an edge $(u, v)$ where $u \in R$ and $v \not\in R$
    Add $v$ to $R$
Endwhile

- Given a node $t \in R$, how do we recover the $s$-$t$ path?
Given a node \( t \in R \), how do we recover the \( s-t \) path?

- When adding node \( v \) to \( R \), record the edge \((u, v)\).
- What type of graph is formed by these edges?

\[ R \] will consist of nodes to which \( s \) has a path

Initially \( R = \{s\} \)

While there is an edge \((u, v)\) where \( u \in R \) and \( v \notin R \)
  
  Add \( v \) to \( R \)

Endwhile
Given a node \( t \in R \), how do we recover the \( s-t \) path?

- When adding node \( v \) to \( R \), record the edge \((u, v)\).
- What type of graph is formed by these edges? It is a tree! Why?
Given a node \( t \in R \), how do we recover the \( s-t \) path?

- When adding node \( v \) to \( R \), record the edge \((u, v)\).
- What type of graph is formed by these edges? It is a tree! Why?
- To recover the \( s-t \) path, trace these edges backwards from \( t \) until we reach \( s \).

\( R \) will consist of nodes to which \( s \) has a path

Initially \( R = \{s\} \)

While there is an edge \((u, v)\) where \( u \in R \) and \( v \notin R \)
  - Add \( v \) to \( R \)

Endwhile
Running Time of the Algorithm

R will consist of nodes to which s has a path
Initially $R = \{s\}$
While there is an edge $(u, v)$ where $u \in R$ and $v \notin R$
  Add $v$ to $R$
Endwhile
Running Time of the Algorithm

R will consist of nodes to which s has a path
Initially \( R = \{s\} \)
While there is an edge \((u, v)\) where \( u \in R \) and \( v \not\in R \)
   Add \( v \) to \( R \)
Endwhile

- Analyse algorithm in terms of two parameters: the number of nodes \( n \) and the number of edges \( m \).
- Implement the while loop by examining each edge in \( E \). Running time of each loop is
Running Time of the Algorithm

- **Definition:**
  - $R$ will consist of nodes to which $s$ has a path.
  - Initially $R = \{s\}$
  - While there is an edge $(u, v)$ where $u \in R$ and $v \notin R$
    - Add $v$ to $R$
  - Endwhile

- **Analysis:**
  - Analyse algorithm in terms of two parameters: the number of nodes $n$ and the number of edges $m$.
  - Implement the while loop by examining each edge in $E$. Running time of each loop is $O(m)$.
  - How many while loops does the algorithm execute?
Running Time of the Algorithm

---

R will consist of nodes to which s has a path
Initially $R = \{s\}$
While there is an edge $(u, v)$ where $u \in R$ and $v \not\in R$
   Add $v$ to $R$
Endwhile

- Analyse algorithm in terms of two parameters: the number of nodes $n$ and the number of edges $m$.
- Implement the while loop by examining each edge in $E$. Running time of each loop is $O(m)$.
- How many while loops does the algorithm execute? At most $n$.
- The running time is
Running Time of the Algorithm

R will consist of nodes to which s has a path
Initially R={s}
While there is an edge (u,v) where u ∈ R and v ∉ R
    Add v to R
Endwhile

- Analyse algorithm in terms of two parameters: the number of nodes n and the number of edges m.
- Implement the while loop by examining each edge in E. Running time of each loop is \( O(m) \).
- How many while loops does the algorithm execute? At most n.
- The running time is \( O(mn) \).
Running Time of the Algorithm

R will consist of nodes to which s has a path

Initially \( R = \{s\} \)

While there is an edge \((u, v)\) where \( u \in R \) and \( v \notin R \)
    Add \( v \) to \( R \)
Endwhile

- Analyse algorithm in terms of two parameters: the number of nodes \( n \) and the number of edges \( m \).
- Implement the while loop by examining each edge in \( E \). Running time of each loop is \( O(m) \).
- How many while loops does the algorithm execute? At most \( n \).
- The running time is \( O(mn) \).
- Can we improve the running time by processing edges more carefully?
Breadth-First Search (BFS)

- Idea: explore $G$ starting at $s$ and going “outward” in all directions, adding nodes one layer at a time.
Breadth-First Search (BFS)

- Idea: explore $G$ starting at $s$ and going “outward” in all directions, adding nodes one layer at a time.
- Layer $L_0$ contains only $s$. 
Breadth-First Search (BFS)

- Idea: explore $G$ starting at $s$ and going “outward” in all directions, adding nodes one layer at a time.
- Layer $L_0$ contains only $s$.
- Layer $L_1$ contains all neighbours of $s$. 
Breadth-First Search (BFS)

- Idea: explore $G$ starting at $s$ and going “outward” in all directions, adding nodes one layer at a time.
- Layer $L_0$ contains only $s$.
- Layer $L_1$ contains all neighbours of $s$.
- Given layers $L_0, L_1, \ldots, L_j$, layer $L_{j+1}$ contains all nodes that
  1. do not belong to an earlier layer and
  2. are connected by an edge to a node in layer $L_j$. 
Breadth-First Search (BFS)

- Idea: explore $G$ starting at $s$ and going “outward” in all directions, adding nodes one layer at a time.
- Layer $L_0$ contains only $s$.
- Layer $L_1$ contains all neighbours of $s$.
- Given layers $L_0, L_1, \ldots, L_j$, layer $L_{j+1}$ contains all nodes that
  1. do not belong to an earlier layer and
  2. are connected by an edge to a node in layer $L_j$. 
Properties of BFS

- We have not yet described how to compute these layers.
- Claim: For each \( j \geq 1 \), layer \( L_j \) consists of all nodes
We have not yet described how to compute these layers.

Claim: For each $j \geq 1$, layer $L_j$ consists of all nodes exactly at distance $j$ from $S$. Proof
Properties of BFS

- We have not yet described how to compute these layers.
- Claim: For each $j \geq 1$, layer $L_j$ consists of all nodes exactly at distance $j$ from $S$. Proof by induction on $j$.
- Claim: There is a path from $s$ to $t$ if and only if $t$ is a member of some layer.
We have not yet described how to compute these layers.

Claim: For each \( j \geq 1 \), layer \( L_j \) consists of all nodes exactly at distance \( j \) from \( S \). Proof by induction on \( j \).

Claim: There is a path from \( s \) to \( t \) if and only if \( t \) is a member of some layer.

Let \( v \) be a node in layer \( L_{j+1} \) and \( u \) be the “first” node in \( L_j \) such that \((u, v)\) is an edge in \( G \). Consider the graph \( T \) formed by all such edges, directed from \( u \) to \( v \).
We have not yet described how to compute these layers.

Claim: For each $j \geq 1$, layer $L_j$ consists of all nodes exactly at distance $j$ from $S$. Proof by induction on $j$.

Claim: There is a path from $s$ to $t$ if and only if $t$ is a member of some layer.

Let $v$ be a node in layer $L_{j+1}$ and $u$ be the “first” node in $L_j$ such that $(u, v)$ is an edge in $G$. Consider the graph $T$ formed by all such edges, directed from $u$ to $v$.

Why is $T$ a tree?
Properties of BFS

We have not yet described how to compute these layers.

Claim: For each \( j \geq 1 \), layer \( L_j \) consists of all nodes exactly at distance \( j \) from \( S \). Proof by induction on \( j \).

Claim: There is a path from \( s \) to \( t \) if and only if \( t \) is a member of some layer.

Let \( v \) be a node in layer \( L_{j+1} \) and \( u \) be the “first” node in \( L_j \) such that \((u, v)\) is an edge in \( G \). Consider the graph \( T \) formed by all such edges, directed from \( u \) to \( v \).

- Why is \( T \) a tree? It is connected. The number of edges in \( T \) is the number of nodes in all the layers minus 1.
- \( T \) is called the breadth-first search tree.
▶ **Non-tree edge**: an edge of $G$ that does not belong to the BFS tree $T$.

▶ **Claim**: Let $T$ be a BFS tree, let $x$ and $y$ be nodes in $T$ belonging to layers $L_i$ and $L_j$, respectively, and let $(x, y)$ be an edge of $G$. Then $|i - j| \leq 1$. 
Non-tree edge: an edge of $G$ that does not belong to the BFS tree $T$.

Claim: Let $T$ be a BFS tree, let $x$ and $y$ be nodes in $T$ belonging to layers $L_i$ and $L_j$, respectively, and let $(x, y)$ be an edge of $G$. Then $|i - j| \leq 1$.

Proof by contradiction: Suppose $i < j - 1$. Node $x \in L_i \Rightarrow$ all nodes adjacent to $x$ are in layers $L_1, L_2, \ldots L_{i+1}$. Hence $y$ must be in layer $L_{i+1}$ or earlier.
Non-tree edge: an edge of $G$ that does not belong to the BFS tree $T$.

Claim: Let $T$ be a BFS tree, let $x$ and $y$ be nodes in $T$ belonging to layers $L_i$ and $L_j$, respectively, and let $(x, y)$ be an edge of $G$. Then $|i - j| \leq 1$.

Proof by contradiction: Suppose $i < j - 1$. Node $x \in L_i \Rightarrow$ all nodes adjacent to $x$ are in layers $L_1, L_2, \ldots L_{i+1}$. Hence $y$ must be in layer $L_{i+1}$ or earlier.

Still unresolved: an efficient implementation of BFS.
Depth-First Search (DFS)

- Explore $G$ as if it were a maze: start from $s$, traverse first edge out (to node $v$), traverse first edge out of $v$, \ldots, reach a dead-end, backtrack, \ldots
Depth-First Search (DFS)

- Explore $G$ as if it were a maze: start from $s$, traverse first edge out (to node $v$), traverse first edge out of $v$, ..., reach a dead-end, backtrack, ....

1. Mark all nodes as “Unexplored”.
2. Invoke DFS($s$).

---

DFS($u$):

Mark $u$ as "Explored" and add $u$ to $R$

For each edge $(u, v)$ incident to $u$

- If $v$ is not marked "Explored" then
  
  Recursively invoke DFS($v$)

Endif

Endfor
Depth-First Search (DFS)

- Explore $G$ as if it were a maze: start from $s$, traverse first edge out (to node $v$), traverse first edge out of $v$, ... , reach a dead-end, backtrack, ....

1. Mark all nodes as “Unexplored”.
2. Invoke DFS($s$).

---

DFS($u$):

Mark $u$ as "Explored" and add $u$ to $R$

For each edge $(u, v)$ incident to $u$

- If $v$ is not marked "Explored" then
  
  Recursively invoke DFS($v$)

Endif

Endfor

---

- **Depth-first search tree** is a tree $T$: when DFS($v$) is invoked directly during the call to DFS($v$), add edge $(u, v)$ to $T$. 
Example of DFS
BFS vs. DFS

- Both visit the same set of nodes but in a different order.
- Both traverse all the edges in the connected component but in a different order.
- BFS trees have root-to-leaf paths that look as short as possible while paths in DFS trees tend to be long and deep.
- Non-tree edges

  BFS within the same level or between adjacent levels.
### BFS vs. DFS

- Both visit the same set of nodes but in a different order.
- Both traverse all the edges in the connected component but in a different order.
- BFS trees have root-to-leaf paths that look as short as possible while paths in DFS trees tend to be long and deep.
- Non-tree edges
  - BFS within the same level or between adjacent levels.
  - DFS connect ancestors to descendants.
Properties of DFS Trees

**DFS(\(u\))**:  
Mark \(u\) as "Explored" and add \(u\) to \(R\)  
For each edge \((u, v)\) incident to \(u\)  
  If \(v\) is not marked "Explored" then  
    Recursively invoke DFS(\(v\))  
  Endif  
Endfor

- Observation: All nodes marked as “Explored” between the start of DFS(\(u\)) and its end are descendants of \(u\) in the DFS tree \(T\).
Properties of DFS Trees

DFS(u):
- Mark u as "Explored" and add u to R
- For each edge (u, v) incident to u
  - If v is not marked "Explored" then
    - Recursively invoke DFS(v)
  - Endif
- Endfor

▶ Observation: All nodes marked as "Explored" between the start of DFS(u) and its end are descendants of u in the DFS tree T.
▶ Claim: Let x and y be nodes in a DFS tree T such that (x, y) is an edge of G but not of T. Then one of x or y is an ancestor of the other in T.
Properties of DFS Trees

DFS($u$):
Mark $u$ as "Explored" and add $u$ to $R$
For each edge $(u, v)$ incident to $u$
    If $v$ is not marked "Explored" then
        Recursively invoke DFS($v$)
    Endif
Endfor

- Observation: All nodes marked as "Explored" between the start of DFS($u$) and its end are descendants of $u$ in the DFS tree $T$.
- Claim: Let $x$ and $y$ be nodes in a DFS tree $T$ such that $(x, y)$ is an edge of $G$ but not of $T$. Then one of $x$ or $y$ is an ancestor of the other in $T$.
- Proof: Assume, without loss of generality, that DFS($u$) reached $x$ first.
    - Since $(x, y)$ is an edge in $G$, it is examined during DFS($x$).
    - Since $(x, y) \notin T$, $y$ must be marked as "Explored" during DFS($x$) but before $(x, y)$ is examined.
    - Since $y$ was not marked as "Explored" before DFS($x$) was invoked, it must be marked as "Explored" between the start and the end of DFS($x$).
    - Therefore, $y$ must be a descendant of $x$ in $T$. 
All Connected Components

- We have discussed the component containing a particular node $s$.
- Each node belongs to a component.
- What is the relationship between all these components?
All Connected Components

- We have discussed the component containing a particular node $s$.
- Each node belongs to a component.
- What is the relationship between all these components?
  - If $v$ is in $u$’s component, is $u$ in $v$’s component?
  - If $v$ is not in $u$’s component, can $u$ be in $v$’s component?
All Connected Components

- We have discussed the component containing a particular node $s$.
- Each node belongs to a component.
- What is the relationship between all these components?
  - If $v$ is in $u$’s component, is $u$ in $v$’s component?
  - If $v$ is not in $u$’s component, can $u$ be in $v$’s component?
- Claim: For any two nodes $s$ and $t$ in a graph, their connected components are either equal or disjoint.
All Connected Components

- We have discussed the component containing a particular node $s$.
- Each node belongs to a component.
- What is the relationship between all these components?
  - If $v$ is in $u$’s component, is $u$ in $v$’s component?
  - If $v$ is not in $u$’s component, can $u$ be in $v$’s component?
- Claim: For any two nodes $s$ and $t$ in a graph, their connected components are either equal or disjoint.
- Proof in two parts (sketch):
  1. If $G$ has an $s$-$t$ path, then the connected components of $s$ and $t$ are the same.
All Connected Components

- We have discussed the component containing a particular node \( s \).
- Each node belongs to a component.
- What is the relationship between all these components?
  - If \( v \) is in \( u \)'s component, is \( u \) in \( v \)'s component?
  - If \( v \) is not in \( u \)'s component, can \( u \) be in \( v \)'s component?
- Claim: For any two nodes \( s \) and \( t \) in a graph, their connected components are either equal or disjoint.
- Proof in two parts (sketch):
  1. If \( G \) has an \( s \)-\( t \) path, then the connected components of \( s \) and \( t \) are the same.
  2. If \( G \) has no \( s \)-\( t \) path, then there cannot be a node \( v \) that is in both connected components.
Computing All Connected Components

1. Pick an arbitrary node $s$ in $G$.
2. Compute its connected component using BFS (or DFS).
3. Find a node (say $v$, not already visited) and repeat the BFS from $v$.
4. Repeat this process until all nodes are visited.
Representing Graphs

- Graph $G = (V,E)$ has two input parameters: $|V| = n, |E| = m$.
  - Size of the graph is defined to be $m + n$.
  - Strive for algorithms whose running time is linear in graph size, i.e., $O(m + n)$. 

$\text{Basic Definitions}$ $\text{Graph Traversal}$ $\text{BFS}$ $\text{DFS}$ $\text{All Components}$ $\text{Implementations}$
Representing Graphs

- Graph $G = (V, E)$ has two input parameters: $|V| = n, |E| = m$.
  - Size of the graph is defined to be $m + n$.
  - Strive for algorithms whose running time is linear in graph size, i.e., $O(m + n)$.
- Assume $V = \{1, 2, \ldots, n - 1, n\}$.
- **Adjacency matrix** representation: $n \times n$ Boolean matrix, where the entry in row $i$ and column $j$ is 1 iff the graph contains the edge $(i, j)$.
  - Space used is $O(n^2)$, which is optimal in the worst case.
Representing Graphs

- Graph $G = (V, E)$ has two input parameters: $|V| = n, |E| = m$.
  - Size of the graph is defined to be $m + n$.
  - Strive for algorithms whose running time is linear in graph size, i.e., $O(m + n)$.
- Assume $V = \{1, 2, \ldots, n - 1, n\}$.
- **Adjacency matrix** representation: $n \times n$ Boolean matrix, where the entry in row $i$ and column $j$ is 1 iff the graph contains the edge $(i, j)$.
  - Space used is $\Theta(n^2)$, which is optimal in the worst case.
  - Check if there is an edge between node $i$ and node $j$ in
Representing Graphs

- Graph $G = (V, E)$ has two input parameters: $|V| = n, |E| = m$.
  - Size of the graph is defined to be $m + n$.
  - Strive for algorithms whose running time is linear in graph size, i.e., $O(m + n)$.
- Assume $V = \{1, 2, \ldots, n - 1, n\}$.
- **Adjacency matrix** representation: $n \times n$ Boolean matrix, where the entry in row $i$ and column $j$ is 1 iff the graph contains the edge $(i, j)$.
  - Space used is $\Theta(n^2)$, which is optimal in the worst case.
  - Check if there is an edge between node $i$ and node $j$ in $O(1)$ time.
  - Iterate over all the edges incident on node $i$ in
Representing Graphs

- Graph $G = (V, E)$ has two input parameters: $|V| = n, |E| = m$.
  - Size of the graph is defined to be $m + n$.
  - Strive for algorithms whose running time is linear in graph size, i.e., $O(m + n)$.
- Assume $V = \{1, 2, \ldots, n - 1, n\}$.
- **Adjacency matrix** representation: $n \times n$ Boolean matrix, where the entry in row $i$ and column $j$ is 1 iff the graph contains the edge $(i, j)$.
  - Space used is $\Theta(n^2)$, which is optimal in the worst case.
  - Check if there is an edge between node $i$ and node $j$ in $O(1)$ time.
  - Iterate over all the edges incident on node $i$ in $\Theta(n)$ time.
Representing Graphs

- Graph $G = (V, E)$ has two input parameters: $|V| = n, |E| = m$.
  - Size of the graph is defined to be $m + n$.
  - Strive for algorithms whose running time is linear in graph size, i.e., $O(m + n)$.
- Assume $V = \{1, 2, \ldots, n-1, n\}$.
- **Adjacency matrix** representation: $n \times n$ Boolean matrix, where the entry in row $i$ and column $j$ is 1 iff the graph contains the edge $(i, j)$.
  - Space used is $\Theta(n^2)$, which is optimal in the worst case.
  - Check if there is an edge between node $i$ and node $j$ in $O(1)$ time.
  - Iterate over all the edges incident on node $i$ in $\Theta(n)$ time.
- **Adjacency list** representation: array $\text{Adj}$, where $\text{Adj}[v]$ stores the list of all nodes adjacent to $v$.
  - An edge $e = (u, v)$ appears twice: in $\text{Adj}[u]$ and $\text{Adj}[v]$. 
Representing Graphs

- Graph $G = (V, E)$ has two input parameters: $|V| = n, |E| = m$.
  - Size of the graph is defined to be $m + n$.
  - Strive for algorithms whose running time is linear in graph size, i.e., $O(m + n)$.
- Assume $V = \{1, 2, \ldots, n - 1, n\}$.
- **Adjacency matrix** representation: $n \times n$ Boolean matrix, where the entry in row $i$ and column $j$ is 1 iff the graph contains the edge $(i, j)$.
  - Space used is $\Theta(n^2)$, which is optimal in the worst case.
  - Check if there is an edge between node $i$ and node $j$ in $O(1)$ time.
  - Iterate over all the edges incident on node $i$ in $\Theta(n)$ time.
- **Adjacency list** representation: array Adj, where Adj[$v$] stores the list of all nodes adjacent to $v$.
  - An edge $e = (u, v)$ appears twice: in Adj[$u$] and Adj[$v$].
  - $n_v =$ the number of neighbours of node $v$.
  - Space used is
Representing Graphs

- Graph $G = (V, E)$ has two input parameters: $|V| = n, |E| = m$.
  - Size of the graph is defined to be $m + n$.
  - Strive for algorithms whose running time is linear in graph size, i.e., $O(m + n)$.
- Assume $V = \{1, 2, \ldots, n - 1, n\}$.
- **Adjacency matrix** representation: $n \times n$ Boolean matrix, where the entry in row $i$ and column $j$ is 1 iff the graph contains the edge $(i, j)$.
  - Space used is $\Theta(n^2)$, which is optimal in the worst case.
  - Check if there is an edge between node $i$ and node $j$ in $O(1)$ time.
  - Iterate over all the edges incident on node $i$ in $\Theta(n)$ time.
- **Adjacency list** representation: array Adj, where Adj[$v$] stores the list of all nodes adjacent to $v$.
  - An edge $e = (u, v)$ appears twice: in Adj[$u$] and Adj[$v$].
  - $n_v = \text{the number of neighbours of node } v$.
  - Space used is $O(n + \sum_{\nu \in G} n_{\nu}) = \ldots$
Representing Graphs

- Graph $G = (V, E)$ has two input parameters: $|V| = n, |E| = m$.
  - Size of the graph is defined to be $m + n$.
  - Strive for algorithms whose running time is linear in graph size, i.e., $O(m + n)$.
- Assume $V = \{1, 2, \ldots, n - 1, n\}$.
- **Adjacency matrix** representation: $n \times n$ Boolean matrix, where the entry in row $i$ and column $j$ is 1 iff the graph contains the edge $(i, j)$.
  - Space used is $\Theta(n^2)$, which is optimal in the worst case.
  - Check if there is an edge between node $i$ and node $j$ in $O(1)$ time.
  - Iterate over all the edges incident on node $i$ in $\Theta(n)$ time.
- **Adjacency list** representation: array $\text{Adj}$, where $\text{Adj}[v]$ stores the list of all nodes adjacent to $v$.
  - An edge $e = (u, v)$ appears twice: in $\text{Adj}[u]$ and $\text{Adj}[v]$.
  - $n_v$ = the number of neighbours of node $v$.
  - Space used is $O(n + \sum_{v \in G} n_v) = O(n + m)$, which is optimal for every graph.
  - Check if there is an edge between node $u$ and node $v$ in
Representing Graphs

- Graph $G = (V, E)$ has two input parameters: $|V| = n, |E| = m$.
  - Size of the graph is defined to be $m + n$.
  - Strive for algorithms whose running time is linear in graph size, i.e., $O(m + n)$.
- Assume $V = \{1, 2, \ldots, n - 1, n\}$.
- **Adjacency matrix** representation: $n \times n$ Boolean matrix, where the entry in row $i$ and column $j$ is 1 iff the graph contains the edge $(i, j)$.
  - Space used is $\Theta(n^2)$, which is optimal in the worst case.
  - Check if there is an edge between node $i$ and node $j$ in $O(1)$ time.
  - Iterate over all the edges incident on node $i$ in $\Theta(n)$ time.
- **Adjacency list** representation: array $\text{Adj}$, where $\text{Adj}[v]$ stores the list of all nodes adjacent to $v$.
  - An edge $e = (u, v)$ appears twice: in $\text{Adj}[u]$ and $\text{Adj}[v]$.
  - $n_v =$ the number of neighbours of node $v$.
  - Space used is $O(n + \sum_{v \in G} n_v) = O(n + m)$, which is optimal for every graph.
  - Check if there is an edge between node $u$ and node $v$ in $O(n_u)$ time.
  - Iterate over all the edges incident on node $u$ in
Representing Graphs

- Graph $G = (V, E)$ has two input parameters: $|V| = n, |E| = m$.
  - Size of the graph is defined to be $m + n$.
  - Strive for algorithms whose running time is linear in graph size, i.e., $O(m + n)$.
- Assume $V = \{1, 2, \ldots, n - 1, n\}$.
- **Adjacency matrix** representation: $n \times n$ Boolean matrix, where the entry in row $i$ and column $j$ is 1 iff the graph contains the edge $(i, j)$.
  - Space used is $\Theta(n^2)$, which is optimal in the worst case.
  - Check if there is an edge between node $i$ and node $j$ in $O(1)$ time.
  - Iterate over all the edges incident on node $i$ in $\Theta(n)$ time.
- **Adjacency list** representation: array $\text{Adj}$, where $\text{Adj}[v]$ stores the list of all nodes adjacent to $v$.
  - An edge $e = (u, v)$ appears twice: in $\text{Adj}[u]$ and $\text{Adj}[v]$.
  - $n_v =$ the number of neighbours of node $v$.
  - Space used is $O(n + \sum_{v \in G} n_v) = O(n + m)$, which is optimal for every graph.
  - Check if there is an edge between node $u$ and node $v$ in $O(n_u)$ time.
  - Iterate over all the edges incident on node $u$ in $\Theta(n_u)$ time.
Data Structures for Implementation

- “Implementation” of BFS and DFS: fully specify the algorithms and data structures so that we can obtain provably efficient times.
- Inner loop of both BFS and DFS: process the set of edges incident on a given node and the set of visited nodes.
- How do we store the set of visited nodes? Order in which we process the nodes is crucial.
Data Structures for Implementation

- “Implementation” of BFS and DFS: fully specify the algorithms and data structures so that we can obtain provably efficient times.
- Inner loop of both BFS and DFS: process the set of edges incident on a given node and the set of visited nodes.
- How do we store the set of visited nodes? Order in which we process the nodes is crucial.
  - BFS: store visited nodes in a queue (first-in, first-out).
  - DFS: store visited nodes in a stack (last-in, first-out)
Implementing BFS

- Maintain an array Discovered and set
  $\text{Discovered} [v] = true$ as soon as the algorithm sees $v$.

BFS($s$):

- Set $\text{Discovered}[s] = true$ and $\text{Discovered}[v] = false$ for all other $v$
- Initialize $L[0]$ to consist of the single element $s$
- Set the layer counter $i = 0$
- Set the current BFS tree $T = \emptyset$
- While $L[i]$ is not empty
  - Initialize an empty list $L[i+1]$
  - For each node $u \in L[i]$
    - Consider each edge $(u, v)$ incident to $u$
      - If $\text{Discovered}[v] = false$ then
        - Set $\text{Discovered}[v] = true$
        - Add edge $(u, v)$ to the tree $T$
        - Add $v$ to the list $L[i+1]$
      - Endif
  - Endfor
  - Increment the layer counter $i$ by one
- Endwhile
Using a Queue in BFS

- Instead of storing each layer in a different list, maintain all the layers in a single queue \( L \).

**BFS(s):**

- Set `Discovered[s] = true`
- Set `Discovered[v] = false`, for all other nodes \( v \)
- Initialize \( L \) to consist of the single element \( s \)
- While \( L \) is not empty
  - Pop the node \( u \) at the head of \( L \)
  - Consider each edge \((u, v)\) incident on \( u \)
  - If `Discovered[v] = false` then
    - Set `Discovered[v] = true`
    - Add edge \((u, v)\) to the tree \( T \)
    - Push \( v \) to the back of \( L \)
  - Endif
- Endwhile
Using a Queue in BFS

- Instead of storing each layer in a different list, maintain all the layers in a single queue $L$.

**BFS($s$):**

Set $\text{Discovered}[s] = \text{true}$

Set $\text{Discovered}[v] = \text{false}$, for all other nodes $v$

Initialize $L$ to consist of the single element $s$

While $L$ is not empty

- Pop the node $u$ at the head of $L$
- Consider each edge $(u, v)$ incident on $u$
- If $\text{Discovered}[v] = \text{false}$ then
  - Set $\text{Discovered}[v] = \text{true}$
  - Add edge $(u, v)$ to the tree $T$
  - Push $v$ to the back of $L$
- Endif

Endwhile
Using a Queue in BFS

Instead of storing each layer in a different list, maintain all the layers in a single queue $L$.

BFS($s$):

Set $\text{Discovered}[s] = \text{true}$
Set $\text{Discovered}[v] = \text{false}$, for all other nodes $v$
Initialize $L$ to consist of the single element $s$

While $L$ is not empty

Pop the node $u$ at the head of $L$
Consider each edge $(u, v)$ incident on $u$
If $\text{Discovered}[v] = \text{false}$ then

Set $\text{Discovered}[v] = \text{true}$
Add edge $(u, v)$ to the tree $T$
Push $v$ to the back of $L$

Endif

Endwhile
Using a Queue in BFS

- Instead of storing each layer in a different list, maintain all the layers in a single queue $L$.

**BFS($s$):**

Set $\text{Discovered}[s] = \text{true}$

Set $\text{Discovered}[v] = \text{false}$, for all other nodes $v$

Initialize $L$ to consist of the single element $s$

While $L$ is not empty

- Pop the node $u$ at the head of $L$
- Consider each edge $(u, v)$ incident on $u$
- If $\text{Discovered}[v] = \text{false}$ then
  - Set $\text{Discovered}[v] = \text{true}$
  - Add edge $(u, v)$ to the tree $T$
  - Push $v$ to the back of $L$
- Endif

Endwhile

\[ \begin{array}{ccc} 3 & 2 & 5 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 23 \end{array} \]
Using a Queue in BFS

Instead of storing each layer in a different list, maintain all the layers in a single queue \( L \).

**BFS(s):**

1. Set \( \text{Discovered}[s] = \text{true} \)
2. Set \( \text{Discovered}[v] = \text{false} \), for all other nodes \( v \)
3. Initialize \( L \) to consist of the single element \( s \)
4. While \( L \) is not empty
   1. Pop the node \( u \) at the head of \( L \)
   2. Consider each edge \( (u, v) \) incident on \( u \)
   3. If \( \text{Discovered}[v] = \text{false} \) then
      1. Set \( \text{Discovered}[v] = \text{true} \)
      2. Add edge \( (u, v) \) to the tree \( T \)
      3. Push \( v \) to the back of \( L \)

Endif

Endwhile
Using a Queue in BFS

- Instead of storing each layer in a different list, maintain all the layers in a single queue $L$.

**BFS($s$):**

1. Set $\text{Discovered}[s] = \text{true}$
2. Set $\text{Discovered}[v] = \text{false}$, for all other nodes $v$.
3. Initialize $L$ to consist of the single element $s$.
4. While $L$ is not empty
   1. Pop the node $u$ at the head of $L$.
   2. Consider each edge $(u, v)$ incident on $u$.
   3. If $\text{Discovered}[v] = \text{false}$ then
      1. Set $\text{Discovered}[v] = \text{true}$
      2. Add edge $(u, v)$ to the tree $T$
      3. Push $v$ to the back of $L$
   4. Endif
5. Endwhile
Using a Queue in BFS

- Instead of storing each layer in a different list, maintain all the layers in a single queue \( L \).

**BFS(s):**

- Set \( \text{Discovered}[s] = \text{true} \)
- Set \( \text{Discovered}[v] = \text{false} \), for all other nodes \( v \)
- Initialize \( L \) to consist of the single element \( s \)
- While \( L \) is not empty
  - Pop the node \( u \) at the head of \( L \)
  - Consider each edge \((u, v)\) incident on \( u \)
  - If \( \text{Discovered}[v] = \text{false} \)
  - \( \quad \text{Set} \ \text{Discovered}[v] = \text{true} \)
  - \( \quad \text{Add edge } (u, v) \text{ to the tree } T \)
  - \( \quad \text{Push } v \text{ to the back of } L \)
- Endif
- Endwhile
Using a Queue in BFS

- Instead of storing each layer in a different list, maintain all the layers in a single queue \( L \).

BFS(s):

- Set \( \text{Discovered}[s] = \text{true} \)
- Set \( \text{Discovered}[v] = \text{false} \), for all other nodes \( v \)
- Initialize \( L \) to consist of the single element \( s \)
- While \( L \) is not empty
  - Pop the node \( u \) at the head of \( L \)
  - Consider each edge \((u, v)\) incident on \( u \)
  - If \( \text{Discovered}[v] = \text{false} \) then
    - Set \( \text{Discovered}[v] = \text{true} \)
    - Add edge \((u, v)\) to the tree \( T \)
    - Push \( v \) to the back of \( L \)
  - Endif
- Endwhile
Using a Queue in BFS

▶ Instead of storing each layer in a different list, maintain all the layers in a single queue $L$.

**BFS($s$):**

- Set $\text{Discovered}[s] = \text{true}$
- Set $\text{Discovered}[v] = \text{false}$, for all other nodes $v$
- Initialize $L$ to consist of the single element $s$
- While $L$ is not empty
  - Pop the node $u$ at the head of $L$
  - Consider each edge $(u, v)$ incident on $u$
  - If $\text{Discovered}[v] = \text{false}$ then
    - Set $\text{Discovered}[v] = \text{true}$
    - Add edge $(u, v)$ to the tree $T$
    - Push $v$ to the back of $L$
  - Endif
- Endwhile
Using a Queue in BFS

Instead of storing each layer in a different list, maintain all the layers in a single queue $L$.

BFS($s$):

Set Discovered[$s$] = true
Set Discovered[$v$] = false, for all other nodes $v$
Initialize $L$ to consist of the single element $s$
While $L$ is not empty
  Pop the node $u$ at the head of $L$
  Consider each edge $(u, v)$ incident on $u$
  If Discovered[$v$] = false then
    Set Discovered[$v$] = true
    Add edge $(u, v)$ to the tree $T$
    Push $v$ to the back of $L$
  Endif
Endwhile
Using a Queue in BFS

- Instead of storing each layer in a different list, maintain all the layers in a single queue $L$.

**BFS($s$):**
- Set $\text{Discovered}[s] = \text{true}$
- Set $\text{Discovered}[v] = \text{false}$, for all other nodes $v$
- Initialize $L$ to consist of the single element $s$
- While $L$ is not empty
  - Pop the node $u$ at the head of $L$
  - Consider each edge $(u, v)$ incident on $u$
    - If $\text{Discovered}[v] = \text{false}$ then
      - Set $\text{Discovered}[v] = \text{true}$
      - Add edge $(u, v)$ to the tree $T$
      - Push $v$ to the back of $L$
  - Endif
- Endwhile
Using a Queue in BFS

Instead of storing each layer in a different list, maintain all the layers in a single queue $L$.

**BFS(s):**

1. Set $\text{Discovered}[s] = \text{true}$
2. Set $\text{Discovered}[v] = \text{false}$, for all other nodes $v$
3. Initialize $L$ to consist of the single element $s$
4. While $L$ is not empty
   - Pop the node $u$ at the head of $L$
   - Consider each edge $(u, v)$ incident on $u$
   - If $\text{Discovered}[v] = \text{false}$ then
     - Set $\text{Discovered}[v] = \text{true}$
     - Add edge $(u, v)$ to the tree $T$
     - Push $v$ to the back of $L$
   - Endif
5. Endwhile

Claim: No node in layer $i+1$ will appear in $L$ immediately after nodes in layer $i$.

More formally: If $\text{BFS}(s)$ pops $(v, l_v)$ from $L$ immediately after it pops $(u, l_u)$, then either $l_v = l_u$ or $l_v = l_u + 1$.
Using a Queue in BFS

Instead of storing each layer in a different list, maintain all the layers in a single queue \( L \).

BFS(s):

Set \( \text{Discovered}[s] = \text{true} \)
Set \( \text{Discovered}[v] = \text{false} \), for all other nodes \( v \)
Initialize \( L \) to consist of the single element \( s \)

While \( L \) is not empty
   Pop the node \( u \) at the head of \( L \)
   Consider each edge \( (u, v) \) incident on \( u \)
   If \( \text{Discovered}[v] = \text{false} \) then
      Set \( \text{Discovered}[v] = \text{true} \)
      Add edge \( (u, v) \) to the tree \( T \)
      Push \( v \) to the back of \( L \)
   Endif
Endwhile

Simple to modify this procedure to keep track of layer numbers as well.
Using a Queue in BFS

- Instead of storing each layer in a different list, maintain all the layers in a single queue $L$.

**BFS($s$)**:

- Set $\text{Discovered}[s] = \text{true}$
- Set $\text{Discovered}[v] = \text{false}$, for all other nodes $v$
- Initialize $L$ to consist of the single element $s$
- While $L$ is not empty
  - Pop the node $u$ at the head of $L$
  - Consider each edge $(u, v)$ incident on $u$
  - If $\text{Discovered}[v] = \text{false}$ then
    - Set $\text{Discovered}[v] = \text{true}$
    - Add edge $(u, v)$ to the tree $T$
    - Push $v$ to the back of $L$
  - Endif
- Endwhile

- Simple to modify this procedure to keep track of layer numbers as well. Store the pair $(u, l_u)$, where $l_u$ is the index of the layer containing $u$. 

Using a Queue in BFS

- Instead of storing each layer in a different list, maintain all the layers in a single queue \( L \).

**BFS(s):**

- Set \( \text{Discovered}[s] = \text{true} \)
- Set \( \text{Discovered}[v] = \text{false} \), for all other nodes \( v \)
- Initialize \( L \) to consist of the single element \( s \)
- While \( L \) is not empty
  - Pop the node \( u \) at the head of \( L \)
  - Consider each edge \((u, v)\) incident on \( u \)
  - If \( \text{Discovered}[v] = \text{false} \) then
    - Set \( \text{Discovered}[v] = \text{true} \)
    - Add edge \((u, v)\) to the tree \( T \)
    - Push \( v \) to the back of \( L \)
  - Endif
- Endwhile

- Simple to modify this procedure to keep track of layer numbers as well. Store the pair \((u, l_u)\), where \( l_u \) is the index of the layer containing \( u \).
- Claim: Nodes in layer \( i + 1 \) will appear in \( L \) immediately after nodes in layer \( i \).
Using a Queue in BFS

- Instead of storing each layer in a different list, maintain all the layers in a single queue $L$.

**BFS($s$):**

1. Set $\text{Discovered}[s] = \text{true}$
2. Set $\text{Discovered}[v] = \text{false}$, for all other nodes $v$
3. Initialize $L$ to consist of the single element $s$
4. While $L$ is not empty
   - Pop the node $u$ at the head of $L$
   - Consider each edge $(u, v)$ incident on $u$
   - If $\text{Discovered}[v] = \text{false}$ then
     - Set $\text{Discovered}[v] = \text{true}$
     - Add edge $(u, v)$ to the tree $T$
     - Push $v$ to the back of $L$
   - Endif
5. Endwhile

- Simple to modify this procedure to keep track of layer numbers as well. Store the pair $(u, l_u)$, where $l_u$ is the index of the layer containing $u$.
- Claim: Nodes in layer $i + 1$ will appear in $L$ immediately after nodes in layer $i$. More formally: If $\text{BFS}(s)$ pops $(v, l_v)$ from $L$ immediately after it pops $(u, l_u)$, then either $l_v = l_u$ or $l_v = l_u + 1$.
Analysis of BFS Implementation

BFS(s):

- Set Discovered[s] = true
- Set Discovered[v] = false, for all other nodes v
- Initialize L to consist of the single element s
- While L is not empty
  - Pop the node u at the head of L
  - Consider each edge (u, v) incident on u
  - If Discovered[v] = false then
    - Set Discovered[v] = true
    - Add edge (u, v) to the tree T
    - Push v to the back of L
  - Endif
- Endwhile

- Naive bound on running time is

Naive bound on running time is $O(n^2)$: For each node, we spend $O(n)$ time.

Improved bound:

- How many times is a node popped from L?
  - Exactly once.
- Time used by for loop for a node u:
  - $O(n_u)$ time.
- Total time for all for loops:
  - $\sum_{u \in G} O(n_u) = O(m)$ time.

- Maintaining layer information:
  - $O(1)$ time per node.
- Total time is $O(n + m)$. 
Analysis of BFS Implementation

BFS(s):
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty
    Pop the node u at the head of L
    Consider each edge (u, v) incident on u
    If Discovered[v] = false then
        Set Discovered[v] = true
        Add edge (u, v) to the tree T
        Push v to the back of L
    Endif
Endwhile

- Naive bound on running time is $O(n^2)$: For each node, we spend $O(n)$ time.
Analysis of BFS Implementation

BFS(s):

Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s

While L is not empty
    Pop the node u at the head of L
    Consider each edge (u, v) incident on u
    If Discovered[v] = false then
        Set Discovered[v] = true
        Add edge (u, v) to the tree T
        Push v to the back of L
    Endif
Endwhile

- Naive bound on running time is $O(n^2)$: For each node, we spend $O(n)$ time.
- Improved bound:
  - How many times is a node popped from L?
Analysis of BFS Implementation

BFS(s):
- Set Discovered[s] = true
- Set Discovered[v] = false, for all other nodes v
- Initialize L to consist of the single element s
- While L is not empty
  - Pop the node u at the head of L
  - Consider each edge (u, v) incident on u
  - If Discovered[v] = false then
    - Set Discovered[v] = true
    - Add edge (u, v) to the tree T
    - Push v to the back of L
  - Endif
- Endwhile

- Naive bound on running time is \( O(n^2) \): For each node, we spend \( O(n) \) time.
- Improved bound:
  - How many times is a node popped from L? Exactly once.
Analysis of BFS Implementation

BFS(s):
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty
  Pop the node u at the head of L
  Consider each edge (u, v) incident on u
  If Discovered[v] = false then
    Set Discovered[v] = true
    Add edge (u, v) to the tree T
    Push v to the back of L
  Endif
Endwhile

▶ Naive bound on running time is $O(n^2)$: For each node, we spend $O(n)$ time.
▶ Improved bound:
  ▶ How many times is a node popped from L? Exactly once.
  ▶ Time used by for loop for a node $u$: 

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs
Analysis of BFS Implementation

BFS(s):
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty
   Pop the node u at the head of L
   Consider each edge (u, v) incident on u
   If Discovered[v] = false then
      Set Discovered[v] = true
      Add edge (u, v) to the tree T
      Push v to the back of L
   Endif
Endwhile

▶ Naive bound on running time is \( O(n^2) \): For each node, we spend \( O(n) \) time.
▶ Improved bound:
   ▶ How many times is a node popped from L? Exactly once.
   ▶ Time used by for loop for a node \( u \): \( O(n_u) \) time.
Analysis of BFS Implementation

**BFS(s):**
- Set $\text{Discovered}[s] = \text{true}$
- Set $\text{Discovered}[v] = \text{false}$, for all other nodes $v$
- Initialize $L$ to consist of the single element $s$
- While $L$ is not empty
  - Pop the node $u$ at the head of $L$
  - Consider each edge $(u, v)$ incident on $u$
  - If $\text{Discovered}[v] = \text{false}$ then
    - Set $\text{Discovered}[v] = \text{true}$
    - Add edge $(u, v)$ to the tree $T$
    - Push $v$ to the back of $L$
  - Endif
- Endwhile

- Naive bound on running time is $O(n^2)$: For each node, we spend $O(n)$ time.
- Improved bound:
  - How many times is a node popped from $L$? Exactly once.
  - Time used by for loop for a node $u$: $O(n_u)$ time.
  - Total time for all for loops: $\sum_{u \in G} O(n_u) = O(m)$ time.
  - Maintaining layer information:
Analysis of BFS Implementation

BFS(s):
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty
    Pop the node u at the head of L
    Consider each edge (u, v) incident on u
    If Discovered[v] = false then
        Set Discovered[v] = true
        Add edge (u, v) to the tree T
        Push v to the back of L
    Endif
Endwhile

- Naive bound on running time is $O(n^2)$: For each node, we spend $O(n)$ time.
- Improved bound:
  - How many times is a node popped from L? Exactly once.
  - Time used by for loop for a node u: $O(n_u)$ time.
  - Total time for all for loops: $\sum_{u \in G} O(n_u) = O(m)$ time.
  - Maintaining layer information: $O(1)$ time per node.
  - Total time is $O(n + m)$. 
Recursive DFS

DFS(u):
  Mark u as "Explored" and add u to R
  For each edge (u, v) incident to u
    If v is not marked "Explored" then
      Recursively invoke DFS(v)
    Endif
  Endfor

Procedure has “tail recursion”: recursive call is the last step.
Recursive DFS

DFS:\nMark $u$ as "Explored" and add $u$ to $R$
For each edge $(u, v)$ incident to $u$
  If $v$ is not marked "Explored" then
    Recursively invoke DFS($v$)
  Endif
Endfor

▶ Procedure has “tail recursion”: recursive call is the last step.
▶ Can replace the recursion by an iteration: use a stack to explicitly implement the recursion.
Implementing DFS

- Maintain a stack $S$ to store nodes to be explored.
- Maintain an array Explored and set $\text{Explored}[v] = true$ when the algorithm pops $v$ from the stack.
- Read textbook on how to construct the DFS tree.

---

DFS(s):

1. Initialize $S$ to be a stack with one element $s$
2. While $S$ is not empty
   1. Take a node $u$ from $S$
   2. If $\text{Explored}[u] = false$ then
      1. Set $\text{Explored}[u] = true$
      2. For each edge $(u, v)$ incident to $u$
         1. Add $v$ to the stack $S$
   3. Endfor
3. Endif
4. Endwhile
Implementing DFS

- Maintain a stack \( S \) to store nodes to be explored.
- Maintain an array \( \text{Explored} \) and set \( \text{Explored}[v] = \text{true} \) when the algorithm pops \( v \) from the stack.
- Read textbook on how to construct the DFS tree.

---

**DFS(s):**

Initialize \( S \) to be a stack with one element \( s \)

While \( S \) is not empty

- Take a node \( u \) from \( S \)
- If \( \text{Explored}[u] = \text{false} \) then
  - Set \( \text{Explored}[u] = \text{true} \)
  - For each edge \((u, v)\) incident to \( u \)
    - Add \( v \) to the stack \( S \)
- Endfor
- Endif

Endwhile
Implementing DFS

- Maintain a stack $S$ to store nodes to be explored.
- Maintain an array $\text{Explored}$ and set $\text{Explored}[v] = true$ when the algorithm pops $v$ from the stack.
- Read textbook on how to construct the DFS tree.

---

**DFS(s):**

1. Initialize $S$ to be a stack with one element $s$
2. While $S$ is not empty
   1. Take a node $u$ from $S$
   2. If $\text{Explored}[u] = false$
      1. Set $\text{Explored}[u] = true$
      2. For each edge $(u,v)$ incident to $u$
         1. Add $v$ to the stack $S$
   3. Endfor
3. Endif
4. Endwhile

---
Implementing DFS

- Maintain a stack $S$ to store nodes to be explored.
- Maintain an array $\text{Explored}$ and set $\text{Explored}[v] = true$ when the algorithm pops $v$ from the stack.
- Read textbook on how to construct the DFS tree.

---

**DFS(s):**

Initialize $S$ to be a stack with one element $s$

While $S$ is not empty
  - Take a node $u$ from $S$
  - If $\text{Explored}[u] = false$ then
    - Set $\text{Explored}[u] = true$
    - For each edge $(u,v)$ incident to $u$
      - Add $v$ to the stack $S$
  - Endfor
- Endif
Endwhile
Implementing DFS

- Maintain a stack \( S \) to store nodes to be explored.
- Maintain an array \( \text{Explored} \) and set \( \text{Explored}[v] = \text{true} \) when the algorithm pops \( v \) from the stack.
- Read textbook on how to construct the DFS tree.

---

**DFS(s):**

Initialize \( S \) to be a stack with one element \( s \)

While \( S \) is not empty
  
  Take a node \( u \) from \( S \)
  
  If \( \text{Explored}[u] = \text{false} \) then
    
    Set \( \text{Explored}[u] = \text{true} \)
    
    For each edge \( (u, v) \) incident to \( u \)
      
      Add \( v \) to the stack \( S \)
    
  Endfor

Endif

Endwhile
Implementing DFS

- Maintain a stack $S$ to store nodes to be explored.
- Maintain an array $\text{Explored}$ and set $\text{Explored}[v] = true$ when the algorithm pops $v$ from the stack.
- Read textbook on how to construct the DFS tree.

DFS(s):
Initialize $S$ to be a stack with one element $s$
While $S$ is not empty
    Take a node $u$ from $S$
    If $\text{Explored}[u] = false$ then
        Set $\text{Explored}[u] = true$
        For each edge $(u, v)$ incident to $u$
            Add $v$ to the stack $S$
    Endfor
Endif
Endwhile
Implementing DFS

- Maintain a stack $S$ to store nodes to be explored.
- Maintain an array $\text{Explored}$ and set $\text{Explored}[v] = true$ when the algorithm pops $v$ from the stack.
- Read textbook on how to construct the DFS tree.

---

**DFS(s):**

Initialize $S$ to be a stack with one element $s$

While $S$ is not empty

- Take a node $u$ from $S$
  - If $\text{Explored}[u] = \text{false}$ then
    - Set $\text{Explored}[u] = \text{true}$
    - For each edge $(u, v)$ incident to $u$
      - Add $v$ to the stack $S$
  - Endfor
- Endif
- Endwhile
Implementing DFS

- Maintain a stack $S$ to store nodes to be explored.
- Maintain an array $\text{Explored}$ and set $\text{Explored}[v] = true$ when the algorithm pops $v$ from the stack.
- Read textbook on how to construct the DFS tree.

---

DFS(s):
Initialize $S$ to be a stack with one element $s$
While $S$ is not empty
    Take a node $u$ from $S$
    If $\text{Explored}[u] = false$ then
        Set $\text{Explored}[u] = true$
        For each edge $(u, v)$ incident to $u$
            Add $v$ to the stack $S$
    Endfor
Endif
Endwhile
Implementing DFS

- Maintain a stack $S$ to store nodes to be explored.
- Maintain an array $\text{Explored}$ and set $\text{Explored}[v] = true$ when the algorithm pops $v$ from the stack.
- Read textbook on how to construct the DFS tree.

---

**DFS(s):**

1. Initialize $S$ to be a stack with one element $s$.
2. While $S$ is not empty
   - Take a node $u$ from $S$.
   - If $\text{Explored}[u] = false$ then
     - Set $\text{Explored}[u] = true$.
     - For each edge $(u, v)$ incident to $u$
       - Add $v$ to the stack $S$.
   - Endfor
3. Endif
4. Endwhile
Implementing DFS

- Maintain a stack $S$ to store nodes to be explored.
- Maintain an array $\text{Explored}$ and set $\text{Explored}[v] = \text{true}$ when the algorithm pops $v$ from the stack.
- Read textbook on how to construct the DFS tree.

---

**DFS(s):**

Initialize $S$ to be a stack with one element $s$

While $S$ is not empty

- Take a node $u$ from $S$
- If $\text{Explored}[u] = \text{false}$ then
  - Set $\text{Explored}[u] = \text{true}$
  - For each edge $(u,v)$ incident to $u$
    - Add $v$ to the stack $S$
- Endfor
- Endif
- Endwhile
Implementing DFS

- Maintain a stack $S$ to store nodes to be explored.
- Maintain an array $\text{Explored}$ and set $\text{Explored}[v] = true$ when the algorithm pops $v$ from the stack.
- Read textbook on how to construct the DFS tree.

---

**DFS(s):**

Initialize $S$ to be a stack with one element $s$

While $S$ is not empty
   - Take a node $u$ from $S$
   - If $\text{Explored}[u] = false$ then
     - Set $\text{Explored}[u] = true$
     - For each edge $(u, v)$ incident to $u$
       - Add $v$ to the stack $S$
   - Endfor
   - Endif
Endwhile
Comparing Recursion and Iteration

DFS(u):
Mark u as "Explored" and add u to R
For each edge (u, v) incident to u
  If v is not marked "Explored" then
    Recursively invoke DFS(v)
  Endif
Endfor

DFS(s):
Initialize S to be a stack with one element s
While S is not empty
  Take a node u from S
  If Explored[u] = false then
    Set Explored[u] = true
    For each edge (u, v) incident to u
      Add v to the stack S
  Endfor
  Endif
Endwhile
Analysing DFS

DFS(s):
- Initialize S to be a stack with one element s
- While S is not empty
  - Take a node u from S
  - If Explored[u] = false then
    - Set Explored[u] = true
    - For each edge (u, v) incident to u
      - Add v to the stack S
  - Endfor
- Endif
- Endwhile

▶ How many times is a node’s adjacency list scanned?
Analyzing DFS

DFS(s):

- Initialize $S$ to be a stack with one element $s$
- While $S$ is not empty
  - Take a node $u$ from $S$
  - If $\text{Explored}[u] = \text{false}$ then
    - Set $\text{Explored}[u] = \text{true}$
    - For each edge $(u, v)$ incident to $u$
      - Add $v$ to the stack $S$
  - Endfor
- Endif
- Endwhile

- How many times is a node’s adjacency list scanned? Exactly once.
Analysing DFS

DFS(s):
   Initialize S to be a stack with one element s
   While S is not empty
      Take a node u from S
      If Explored[u] = false then
         Set Explored[u] = true
         For each edge (u, v) incident to u
            Add v to the stack S
      Endfor
   Endif
Endwhile

- How many times is a node’s adjacency list scanned? Exactly once.
- The total amount of time to process edges incident on node u’s is
Analysing DFS

DFS(s):
Initialize $S$ to be a stack with one element $s$
While $S$ is not empty
    Take a node $u$ from $S$
    If Explored[$u$] = false then
        Set Explored[$u$] = true
        For each edge $(u, v)$ incident to $u$
            Add $v$ to the stack $S$
    Endfor
Endif
Endwhile

- How many times is a node’s adjacency list scanned? Exactly once.
- The total amount of time to process edges incident on node $u$’s is $O(n_u)$.
- The total running time of the algorithm is $O(n + m)$. 
Analysing DFS

DFS(s):
   Initialize $S$ to be a stack with one element $s$
   While $S$ is not empty
      Take a node $u$ from $S$
      If $\text{Explored}[u] = \text{false}$ then
         Set $\text{Explored}[u] = \text{true}$
         For each edge $(u, v)$ incident to $u$
            Add $v$ to the stack $S$
      Endfor
   Endif
Endwhile

- How many times is a node's adjacency list scanned? Exactly once.
- The total amount of time to process edges incident on node $u$'s is $O(n_u)$.
- The total running time of the algorithm is $O(n + m)$. 