
Computational Tractability Asymptotic Order of Growth Common Running Times

Analysis of Algorithms

T. M. Murali

January 21, 2016

Force-add: Visit https://www.cs.vt.edu/S16Force-Adds before 3:15pm today
and use the password �4104tmm$�

T. M. Murali January 21, 2016 Analysis of Algorithms

https://www.cs.vt.edu/S16Force-Adds


Computational Tractability Asymptotic Order of Growth Common Running Times

What is Algorithm Analysis?

I Measure resource requirements: how does the amount of time and space an
algorithm uses scale with increasing input size?

I How do we put this notion on a concrete footing?

I What does it mean for one function to grow faster or slower than another?

I Goal: Develop algorithms that provably run quickly and use low amounts of
space.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

What is Algorithm Analysis?

I Measure resource requirements: how does the amount of time and space an
algorithm uses scale with increasing input size?

I How do we put this notion on a concrete footing?

I What does it mean for one function to grow faster or slower than another?

I Goal: Develop algorithms that provably run quickly and use low amounts of
space.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Worst-case Running Time

I We will measure worst-case running time of an algorithm.

I Bound the largest possible running time the algorithm over all inputs of size
n, as a function of n.

I Why worst-case? Why not average-case or on random inputs?

I Input size = number of elements in the input. Values in the input do not
matter, except for speci�c algorithms.

I Assume all elementary operations take unit time: assignment, arithmetic on a
�xed-size number, comparisons, array lookup, following a pointer, etc.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Worst-case Running Time

I We will measure worst-case running time of an algorithm.

I Bound the largest possible running time the algorithm over all inputs of size
n, as a function of n.

I Why worst-case? Why not average-case or on random inputs?

I Input size = number of elements in the input. Values in the input do not
matter, except for speci�c algorithms.

I Assume all elementary operations take unit time: assignment, arithmetic on a
�xed-size number, comparisons, array lookup, following a pointer, etc.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Worst-case Running Time

I We will measure worst-case running time of an algorithm.

I Bound the largest possible running time the algorithm over all inputs of size
n, as a function of n.

I Why worst-case? Why not average-case or on random inputs?

I Input size = number of elements in the input.

Values in the input do not
matter, except for speci�c algorithms.

I Assume all elementary operations take unit time: assignment, arithmetic on a
�xed-size number, comparisons, array lookup, following a pointer, etc.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Worst-case Running Time

I We will measure worst-case running time of an algorithm.

I Bound the largest possible running time the algorithm over all inputs of size
n, as a function of n.

I Why worst-case? Why not average-case or on random inputs?

I Input size = number of elements in the input. Values in the input do not
matter, except for speci�c algorithms.

I Assume all elementary operations take unit time: assignment, arithmetic on a
�xed-size number, comparisons, array lookup, following a pointer, etc.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Polynomial Time

I Brute force algorithm: Check every possible solution.

I What is a brute force algorithm for sorting: given n numbers, permute them
so that they appear in increasing order?

I Try all possible n! permutations of the numbers.
I For each permutation, check if it is sorted.
I Running time is nn!. Unacceptable in practice!

I Desirable scaling property: when the input size doubles, the algorithm should
only slow down by some constant factor c.

I An algorithm has a polynomial running time if there exist constants c > 0
and d > 0 such that on every input of size n, the running time of the
algorithm is bounded by cnd steps.

De�nition

An algorithm is e�cient if it has a polynomial running time.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Polynomial Time

I Brute force algorithm: Check every possible solution.

I What is a brute force algorithm for sorting: given n numbers, permute them
so that they appear in increasing order?

I Try all possible n! permutations of the numbers.
I For each permutation, check if it is sorted.
I Running time is nn!. Unacceptable in practice!

I Desirable scaling property: when the input size doubles, the algorithm should
only slow down by some constant factor c.

I An algorithm has a polynomial running time if there exist constants c > 0
and d > 0 such that on every input of size n, the running time of the
algorithm is bounded by cnd steps.

De�nition

An algorithm is e�cient if it has a polynomial running time.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Polynomial Time

I Brute force algorithm: Check every possible solution.

I What is a brute force algorithm for sorting: given n numbers, permute them
so that they appear in increasing order?

I Try all possible n! permutations of the numbers.
I For each permutation, check if it is sorted.

I Running time is nn!. Unacceptable in practice!

I Desirable scaling property: when the input size doubles, the algorithm should
only slow down by some constant factor c.

I An algorithm has a polynomial running time if there exist constants c > 0
and d > 0 such that on every input of size n, the running time of the
algorithm is bounded by cnd steps.

De�nition

An algorithm is e�cient if it has a polynomial running time.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Polynomial Time

I Brute force algorithm: Check every possible solution.

I What is a brute force algorithm for sorting: given n numbers, permute them
so that they appear in increasing order?

I Try all possible n! permutations of the numbers.
I For each permutation, check if it is sorted.
I Running time is nn!. Unacceptable in practice!

I Desirable scaling property: when the input size doubles, the algorithm should
only slow down by some constant factor c.

I An algorithm has a polynomial running time if there exist constants c > 0
and d > 0 such that on every input of size n, the running time of the
algorithm is bounded by cnd steps.

De�nition

An algorithm is e�cient if it has a polynomial running time.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Polynomial Time

I Brute force algorithm: Check every possible solution.

I What is a brute force algorithm for sorting: given n numbers, permute them
so that they appear in increasing order?

I Try all possible n! permutations of the numbers.
I For each permutation, check if it is sorted.
I Running time is nn!. Unacceptable in practice!

I Desirable scaling property: when the input size doubles, the algorithm should
only slow down by some constant factor c.

I An algorithm has a polynomial running time if there exist constants c > 0
and d > 0 such that on every input of size n, the running time of the
algorithm is bounded by cnd steps.

De�nition

An algorithm is e�cient if it has a polynomial running time.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Polynomial Time

I Brute force algorithm: Check every possible solution.

I What is a brute force algorithm for sorting: given n numbers, permute them
so that they appear in increasing order?

I Try all possible n! permutations of the numbers.
I For each permutation, check if it is sorted.
I Running time is nn!. Unacceptable in practice!

I Desirable scaling property: when the input size doubles, the algorithm should
only slow down by some constant factor c.

I An algorithm has a polynomial running time if there exist constants c > 0
and d > 0 such that on every input of size n, the running time of the
algorithm is bounded by cnd steps.

De�nition

An algorithm is e�cient if it has a polynomial running time.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Polynomial Time

I Brute force algorithm: Check every possible solution.

I What is a brute force algorithm for sorting: given n numbers, permute them
so that they appear in increasing order?

I Try all possible n! permutations of the numbers.
I For each permutation, check if it is sorted.
I Running time is nn!. Unacceptable in practice!

I Desirable scaling property: when the input size doubles, the algorithm should
only slow down by some constant factor c.

I An algorithm has a polynomial running time if there exist constants c > 0
and d > 0 such that on every input of size n, the running time of the
algorithm is bounded by cnd steps.

De�nition

An algorithm is e�cient if it has a polynomial running time.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Comparing Functions

I Assume all functions take only positive arguments and values.

I Di�erent algorithms for the same problem may have di�erent (worst-case)
running times.

I Example of sorting:

bubble sort, insertion sort, quick sort, merge sort, etc.

I Bubble sort and insertion sort take roughly n2 comparisons while quick sort
and merge sort take roughly n log

2
n comparisons.

I �Roughly� hides potentially large constants, e.g., running time of merge sort

may in reality be 100n log
2
n.

I How can make statements such as the following?
I 100n log

2
n ≤ n2

I 10000n ≤ n2

I 5n2 − 4n ≥ 1000n log n

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Comparing Functions

I Assume all functions take only positive arguments and values.

I Di�erent algorithms for the same problem may have di�erent (worst-case)
running times.

I Example of sorting: bubble sort, insertion sort, quick sort, merge sort, etc.

I Bubble sort and insertion sort take roughly n2 comparisons while quick sort
and merge sort take roughly n log

2
n comparisons.

I �Roughly� hides potentially large constants, e.g., running time of merge sort

may in reality be 100n log
2
n.

I How can make statements such as the following?
I 100n log

2
n ≤ n2

I 10000n ≤ n2

I 5n2 − 4n ≥ 1000n log n

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Comparing Functions

I Assume all functions take only positive arguments and values.

I Di�erent algorithms for the same problem may have di�erent (worst-case)
running times.

I Example of sorting: bubble sort, insertion sort, quick sort, merge sort, etc.

I Bubble sort and insertion sort take roughly n2 comparisons while quick sort
and merge sort take roughly n log

2
n comparisons.

I �Roughly� hides potentially large constants, e.g., running time of merge sort

may in reality be 100n log
2
n.

I How can make statements such as the following?
I 100n log

2
n ≤ n2

I 10000n ≤ n2

I 5n2 − 4n ≥ 1000n log n

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Comparing Functions

I Assume all functions take only positive arguments and values.

I Di�erent algorithms for the same problem may have di�erent (worst-case)
running times.

I Example of sorting: bubble sort, insertion sort, quick sort, merge sort, etc.

I Bubble sort and insertion sort take roughly n2 comparisons while quick sort
and merge sort take roughly n log

2
n comparisons.

I �Roughly� hides potentially large constants, e.g., running time of merge sort

may in reality be 100n log
2
n.

I How can make statements such as the following?
I 100n log

2
n ≤ n2

I 10000n ≤ n2

I 5n2 − 4n ≥ 1000n log n

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

�10000n ≤ n
2�

0 200 400 600 800 1,000

0

0.2

0.4

0.6

0.8

1

·107

n

10000n vs. n2

10000n

n2

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

�10000n ≤ n
2�

0 0.5 1 1.5 2

·104

0

1

2

3

4

·108

n

10000n vs. O(n2)

10000n

n2

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Upper Bound

De�nition

Asymptotic upper bound: A function f (n) is O(g(n)) if

there exist constant

s

c > 0 and n0 ≥ 0 such that

for all n

≥ n0

, we have f (n) ≤

c

g(n).

0 0.5 1 1.5 2

·104

0

1

2

3

4

·108

n

10000n is O(n2),

c = 1, n0 = 10000

10000n

n2

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Upper Bound

De�nition

Asymptotic upper bound: A function f (n) is O(g(n)) if there exists constant

s

c > 0

and n0 ≥ 0

such that for all n

≥ n0

, we have f (n) ≤ cg(n).

0 0.5 1 1.5 2

·104

0

1

2

3

4

·108

n

10000n is O(n2),

c = 1, n0 = 10000

10000n

n2

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Upper Bound

De�nition

Asymptotic upper bound: A function f (n) is O(g(n)) if there exist constants
c > 0 and n0 ≥ 0 such that for all n ≥ n0, we have f (n) ≤ cg(n).

0 0.5 1 1.5 2

·104

0

1

2

3

4

·108

n

10000n is O(n2),

c = 1, n0 = 10000

10000n

n2

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Upper Bound

De�nition

Asymptotic upper bound: A function f (n) is O(g(n)) if there exist constants
c > 0 and n0 ≥ 0 such that for all n ≥ n0, we have f (n) ≤ cg(n).

0 0.5 1 1.5 2

·104

0

1

2

3

4

·108

n

10000n is O(n2), c = 1, n0 = 10000

10000n

n2

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

100n log2 n and n
2

0 500 1,000 1,500 2,000

0

1

2

3

4

·106

n

100n log
2
n is O(n2),

c = 1, n0 = 1500

100n log
2
n

n2

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

100n log2 n and n
2

0 500 1,000 1,500 2,000

0

1

2

3

4

·106

n

100n log
2
n is O(n2), c = 1, n0 = 1500

100n log
2
n

n2

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

100n log2 n and n
2

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

·106

n

100n log
2
n is O(n2), c = 100, n0 = 1

100n log
2
n

100n2

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Lower Bound

De�nition

Asymptotic lower bound: A function f (n) is Ω(g(n)) if

there exist constant

s

c > 0 and n0 ≥ 0 such that

for all n

≥ n0

, we have f (n) ≥

c

g(n).

0 500 1,000 1,500 2,000

0

500

1,000

1,500

2,000

n

n log
2
n/10 is Ω(n), c = 1, n0 = 1024

n log n/10
n

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Lower Bound

De�nition

Asymptotic lower bound: A function f (n) is Ω(g(n)) if there exists constant

s

c > 0

and n0 ≥ 0

such that for all n

≥ n0

, we have f (n) ≥ cg(n).

0 500 1,000 1,500 2,000

0

500

1,000

1,500

2,000

n

n log
2
n/10 is Ω(n), c = 1, n0 = 1024

n log n/10
n

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Lower Bound

De�nition

Asymptotic lower bound: A function f (n) is Ω(g(n)) if there exist constants
c > 0 and n0 ≥ 0 such that for all n ≥ n0, we have f (n) ≥ cg(n).

0 500 1,000 1,500 2,000

0

500

1,000

1,500

2,000

n

n log
2
n/10 is Ω(n), c = 1, n0 = 1024

n log n/10
n

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Lower Bound

De�nition

Asymptotic lower bound: A function f (n) is Ω(g(n)) if there exist constants
c > 0 and n0 ≥ 0 such that for all n ≥ n0, we have f (n) ≥ cg(n).

0 20 40 60 80 100

0

20

40

60

80

100

n

n log
2
n/10 and Ω(n)

n log n/10
n

0 500 1,000 1,500 2,000

0

500

1,000

1,500

2,000

n

n log
2
n/10 is Ω(n), c = 1, n0 = 1024

n log n/10
n

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Lower Bound

De�nition

Asymptotic lower bound: A function f (n) is Ω(g(n)) if there exist constants
c > 0 and n0 ≥ 0 such that for all n ≥ n0, we have f (n) ≥ cg(n).

0 500 1,000 1,500 2,000

0

500

1,000

1,500

2,000

n

n log
2
n/10 is Ω(n), c = 1, n0 = 1024

n log n/10
n

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Meaning of �Lower Bound� in Di�erent Contexts

I Functions:

n is a lower bound for n log n/10, i.e., n log n/10 = Ω(n). This
statement is purely about these two mathematical functions without
relevance to any algorithm or problem.

I Algorithms: The lower bound on the running time of bubble sort is Ω(n2).
There is some input of n numbers that will cause bubble sort to take at least
Ω(n2) time, e.g., input the numbers in decreasing order.

I Problems: The problem of sorting n numbers has a lower bound of
Ω(n log n). For any comparison-based sorting algorithm, there is at least one
input for which that algorithm will take Ω(n log n) steps.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Meaning of �Lower Bound� in Di�erent Contexts

I Functions: n is a lower bound for n log n/10, i.e., n log n/10 = Ω(n).

This
statement is purely about these two mathematical functions without
relevance to any algorithm or problem.

I Algorithms: The lower bound on the running time of bubble sort is Ω(n2).
There is some input of n numbers that will cause bubble sort to take at least
Ω(n2) time, e.g., input the numbers in decreasing order.

I Problems: The problem of sorting n numbers has a lower bound of
Ω(n log n). For any comparison-based sorting algorithm, there is at least one
input for which that algorithm will take Ω(n log n) steps.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Meaning of �Lower Bound� in Di�erent Contexts

I Functions: n is a lower bound for n log n/10, i.e., n log n/10 = Ω(n). This
statement is purely about these two mathematical functions without
relevance to any algorithm or problem.

I Algorithms: The lower bound on the running time of bubble sort is Ω(n2).
There is some input of n numbers that will cause bubble sort to take at least
Ω(n2) time, e.g., input the numbers in decreasing order.

I Problems: The problem of sorting n numbers has a lower bound of
Ω(n log n). For any comparison-based sorting algorithm, there is at least one
input for which that algorithm will take Ω(n log n) steps.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Meaning of �Lower Bound� in Di�erent Contexts

I Functions: n is a lower bound for n log n/10, i.e., n log n/10 = Ω(n). This
statement is purely about these two mathematical functions without
relevance to any algorithm or problem.

I Algorithms: The lower bound on the running time of bubble sort is Ω(n2).

There is some input of n numbers that will cause bubble sort to take at least
Ω(n2) time, e.g., input the numbers in decreasing order.

I Problems: The problem of sorting n numbers has a lower bound of
Ω(n log n). For any comparison-based sorting algorithm, there is at least one
input for which that algorithm will take Ω(n log n) steps.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Meaning of �Lower Bound� in Di�erent Contexts

I Functions: n is a lower bound for n log n/10, i.e., n log n/10 = Ω(n). This
statement is purely about these two mathematical functions without
relevance to any algorithm or problem.

I Algorithms: The lower bound on the running time of bubble sort is Ω(n2).
There is some input of n numbers that will cause bubble sort to take at least
Ω(n2) time, e.g.,

input the numbers in decreasing order.

I Problems: The problem of sorting n numbers has a lower bound of
Ω(n log n). For any comparison-based sorting algorithm, there is at least one
input for which that algorithm will take Ω(n log n) steps.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Meaning of �Lower Bound� in Di�erent Contexts

I Functions: n is a lower bound for n log n/10, i.e., n log n/10 = Ω(n). This
statement is purely about these two mathematical functions without
relevance to any algorithm or problem.

I Algorithms: The lower bound on the running time of bubble sort is Ω(n2).
There is some input of n numbers that will cause bubble sort to take at least
Ω(n2) time, e.g., input the numbers in decreasing order.

I Problems: The problem of sorting n numbers has a lower bound of
Ω(n log n). For any comparison-based sorting algorithm, there is at least one
input for which that algorithm will take Ω(n log n) steps.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Meaning of �Lower Bound� in Di�erent Contexts

I Functions: n is a lower bound for n log n/10, i.e., n log n/10 = Ω(n). This
statement is purely about these two mathematical functions without
relevance to any algorithm or problem.

I Algorithms: The lower bound on the running time of bubble sort is Ω(n2).
There is some input of n numbers that will cause bubble sort to take at least
Ω(n2) time, e.g., input the numbers in decreasing order.

I Problems: The problem of sorting n numbers has a lower bound of
Ω(n log n).

For any comparison-based sorting algorithm, there is at least one
input for which that algorithm will take Ω(n log n) steps.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Meaning of �Lower Bound� in Di�erent Contexts

I Functions: n is a lower bound for n log n/10, i.e., n log n/10 = Ω(n). This
statement is purely about these two mathematical functions without
relevance to any algorithm or problem.

I Algorithms: The lower bound on the running time of bubble sort is Ω(n2).
There is some input of n numbers that will cause bubble sort to take at least
Ω(n2) time, e.g., input the numbers in decreasing order.

I Problems: The problem of sorting n numbers has a lower bound of
Ω(n log n). For any comparison-based sorting algorithm, there is at least one
input for which that algorithm will take Ω(n log n) steps.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Tight Bound

De�nition

Asymptotic tight bound: A function f (n) is Θ(g(n)) if f (n) is O(g(n)) and f (n)
is Ω(g(n)).

I In all these de�nitions, c and n0 are constants independent of n.

I Abuse of notation: say g(n) = O(f (n)), g(n) = Ω(f (n)), g(n) = Θ(f (n)).

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Tight Bound

De�nition

Asymptotic tight bound: A function f (n) is Θ(g(n)) if f (n) is O(g(n)) and f (n)
is Ω(g(n)).

I In all these de�nitions, c and n0 are constants independent of n.

I Abuse of notation: say g(n) = O(f (n)), g(n) = Ω(f (n)), g(n) = Θ(f (n)).

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Properties of Asymptotic Growth Rates

Transitivity I If f = O(g) and g = O(h), then f = O(h).
I If f = Ω(g) and g = Ω(h), then f = Ω(h).
I If f = Θ(g) and g = Θ(h), then f = Θ(h).

Additivity I If f = O(h) and g = O(h), then f + g = O(h).
I Similar statements hold for lower and tight bounds.
I If k is a constant and there are k functions

fi = O(h), 1 ≤ i ≤ k, then f1 + f2 + . . .+ fk = O(h).
I If f = O(g), then f + g = Θ(g).

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Properties of Asymptotic Growth Rates

Transitivity I If f = O(g) and g = O(h), then f = O(h).
I If f = Ω(g) and g = Ω(h), then f = Ω(h).
I If f = Θ(g) and g = Θ(h), then f = Θ(h).

Additivity I If f = O(h) and g = O(h), then f + g = O(h).
I Similar statements hold for lower and tight bounds.

I If k is a constant and there are k functions
fi = O(h), 1 ≤ i ≤ k, then f1 + f2 + . . .+ fk = O(h).

I If f = O(g), then f + g = Θ(g).

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Properties of Asymptotic Growth Rates

Transitivity I If f = O(g) and g = O(h), then f = O(h).
I If f = Ω(g) and g = Ω(h), then f = Ω(h).
I If f = Θ(g) and g = Θ(h), then f = Θ(h).

Additivity I If f = O(h) and g = O(h), then f + g = O(h).
I Similar statements hold for lower and tight bounds.
I If k is a constant and there are k functions

fi = O(h), 1 ≤ i ≤ k,

then f1 + f2 + . . .+ fk = O(h).
I If f = O(g), then f + g = Θ(g).

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Properties of Asymptotic Growth Rates

Transitivity I If f = O(g) and g = O(h), then f = O(h).
I If f = Ω(g) and g = Ω(h), then f = Ω(h).
I If f = Θ(g) and g = Θ(h), then f = Θ(h).

Additivity I If f = O(h) and g = O(h), then f + g = O(h).
I Similar statements hold for lower and tight bounds.
I If k is a constant and there are k functions

fi = O(h), 1 ≤ i ≤ k, then f1 + f2 + . . .+ fk = O(h).

I If f = O(g), then f + g = Θ(g).

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Properties of Asymptotic Growth Rates

Transitivity I If f = O(g) and g = O(h), then f = O(h).
I If f = Ω(g) and g = Ω(h), then f = Ω(h).
I If f = Θ(g) and g = Θ(h), then f = Θ(h).

Additivity I If f = O(h) and g = O(h), then f + g = O(h).
I Similar statements hold for lower and tight bounds.
I If k is a constant and there are k functions

fi = O(h), 1 ≤ i ≤ k, then f1 + f2 + . . .+ fk = O(h).
I If f = O(g), then f + g =

Θ(g).

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Properties of Asymptotic Growth Rates

Transitivity I If f = O(g) and g = O(h), then f = O(h).
I If f = Ω(g) and g = Ω(h), then f = Ω(h).
I If f = Θ(g) and g = Θ(h), then f = Θ(h).

Additivity I If f = O(h) and g = O(h), then f + g = O(h).
I Similar statements hold for lower and tight bounds.
I If k is a constant and there are k functions

fi = O(h), 1 ≤ i ≤ k, then f1 + f2 + . . .+ fk = O(h).
I If f = O(g), then f + g = Θ(g).

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Examples

I f (n) = pn2 + qn + r is

θ(n2). Can ignore lower order terms.

I Is f (n) = pn2 + qn + r = O(n3)?

I f (n) =
∑

0≤i≤d
ain

i = O(nd), if d > 0 is an integer constant and ad > 0.

I O(nd ) is the de�nition of polynomial time.

I Is an algorithm with running time O(n1.59) a polynomial-time algorithm?

I O(loga n) = O(logb n) for any pair of constants a, b > 1.

I For every constant x > 0, log n = O(nx).

I For every constant r > 1 and every constant d > 0, nd = O(rn).

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Examples

I f (n) = pn2 + qn + r is θ(n2). Can ignore lower order terms.

I Is f (n) = pn2 + qn + r = O(n3)?

I f (n) =
∑

0≤i≤d
ain

i = O(nd), if d > 0 is an integer constant and ad > 0.

I O(nd ) is the de�nition of polynomial time.

I Is an algorithm with running time O(n1.59) a polynomial-time algorithm?

I O(loga n) = O(logb n) for any pair of constants a, b > 1.

I For every constant x > 0, log n = O(nx).

I For every constant r > 1 and every constant d > 0, nd = O(rn).

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Examples

I f (n) = pn2 + qn + r is θ(n2). Can ignore lower order terms.

I Is f (n) = pn2 + qn + r = O(n3)?

I f (n) =
∑

0≤i≤d
ain

i = O(nd), if d > 0 is an integer constant and ad > 0.

I O(nd ) is the de�nition of polynomial time.

I Is an algorithm with running time O(n1.59) a polynomial-time algorithm?

I O(loga n) = O(logb n) for any pair of constants a, b > 1.

I For every constant x > 0, log n = O(nx).

I For every constant r > 1 and every constant d > 0, nd = O(rn).

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Examples

I f (n) = pn2 + qn + r is θ(n2). Can ignore lower order terms.

I Is f (n) = pn2 + qn + r = O(n3)?

I f (n) =
∑

0≤i≤d
ain

i =

O(nd), if d > 0 is an integer constant and ad > 0.

I O(nd ) is the de�nition of polynomial time.

I Is an algorithm with running time O(n1.59) a polynomial-time algorithm?

I O(loga n) = O(logb n) for any pair of constants a, b > 1.

I For every constant x > 0, log n = O(nx).

I For every constant r > 1 and every constant d > 0, nd = O(rn).

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Examples

I f (n) = pn2 + qn + r is θ(n2). Can ignore lower order terms.

I Is f (n) = pn2 + qn + r = O(n3)?

I f (n) =
∑

0≤i≤d
ain

i = O(nd), if d > 0 is an integer constant and ad > 0.

I O(nd ) is the de�nition of polynomial time.

I Is an algorithm with running time O(n1.59) a polynomial-time algorithm?

I O(loga n) = O(logb n) for any pair of constants a, b > 1.

I For every constant x > 0, log n = O(nx).

I For every constant r > 1 and every constant d > 0, nd = O(rn).

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Examples

I f (n) = pn2 + qn + r is θ(n2). Can ignore lower order terms.

I Is f (n) = pn2 + qn + r = O(n3)?

I f (n) =
∑

0≤i≤d
ain

i = O(nd), if d > 0 is an integer constant and ad > 0.

I O(nd ) is the de�nition of polynomial time.

I Is an algorithm with running time O(n1.59) a polynomial-time algorithm?

I O(loga n) = O(logb n) for any pair of constants a, b > 1.

I For every constant x > 0, log n = O(nx).

I For every constant r > 1 and every constant d > 0, nd = O(rn).

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Examples

I f (n) = pn2 + qn + r is θ(n2). Can ignore lower order terms.

I Is f (n) = pn2 + qn + r = O(n3)?

I f (n) =
∑

0≤i≤d
ain

i = O(nd), if d > 0 is an integer constant and ad > 0.

I O(nd ) is the de�nition of polynomial time.

I Is an algorithm with running time O(n1.59) a polynomial-time algorithm?

I O(loga n) = O(logb n) for any pair of constants a, b > 1.

I For every constant x > 0, log n = O(nx).

I For every constant r > 1 and every constant d > 0, nd = O(rn).

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Examples

I f (n) = pn2 + qn + r is θ(n2). Can ignore lower order terms.

I Is f (n) = pn2 + qn + r = O(n3)?

I f (n) =
∑

0≤i≤d
ain

i = O(nd), if d > 0 is an integer constant and ad > 0.

I O(nd ) is the de�nition of polynomial time.

I Is an algorithm with running time O(n1.59) a polynomial-time algorithm?

I O(loga n) = O(logb n) for any pair of constants a, b > 1.

I For every constant x > 0, log n = O(nx).

I For every constant r > 1 and every constant d > 0, nd = O(rn).

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

0 2 4 6 8 10 12

0

500

1,000

1,500

2,000

n

Di�erent functions of n

n

n log n

n2

n3

2n

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

0 5 10 15 20

0

5

10

15

20

n

More functions of n

n

log
2
n

log
3
n

n0.5

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Linear Time

I Running time is at most a constant factor times the size of the input.

I Finding the minimum, merging two sorted lists.

I Computing the median (or kth smallest) element in an unsorted list.
�Median-of-median� algorithm.

I Sub-linear time. Binary search in a sorted array of n numbers takes O(log n)
time.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Linear Time

I Running time is at most a constant factor times the size of the input.

I Finding the minimum, merging two sorted lists.

I Computing the median (or kth smallest) element in an unsorted list.
�Median-of-median� algorithm.

I Sub-linear time. Binary search in a sorted array of n numbers takes O(log n)
time.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Linear Time

I Running time is at most a constant factor times the size of the input.

I Finding the minimum, merging two sorted lists.

I Computing the median (or kth smallest) element in an unsorted list.

�Median-of-median� algorithm.

I Sub-linear time. Binary search in a sorted array of n numbers takes O(log n)
time.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Linear Time

I Running time is at most a constant factor times the size of the input.

I Finding the minimum, merging two sorted lists.

I Computing the median (or kth smallest) element in an unsorted list.
�Median-of-median� algorithm.

I Sub-linear time.

Binary search in a sorted array of n numbers takes O(log n)
time.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Linear Time

I Running time is at most a constant factor times the size of the input.

I Finding the minimum, merging two sorted lists.

I Computing the median (or kth smallest) element in an unsorted list.
�Median-of-median� algorithm.

I Sub-linear time. Binary search in a sorted array of n numbers takes O(log n)
time.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

O(n log n) Time

I Any algorithm where the costliest step is sorting.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Quadratic Time

I Enumerate all pairs of elements.

I Given a set of n points in the plane, �nd the pair that are the closest.
Surprising fact: will solve this problem in O(n log n) time later in the
semester.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Quadratic Time

I Enumerate all pairs of elements.

I Given a set of n points in the plane, �nd the pair that are the closest.

Surprising fact: will solve this problem in O(n log n) time later in the
semester.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Quadratic Time

I Enumerate all pairs of elements.

I Given a set of n points in the plane, �nd the pair that are the closest.
Surprising fact: will solve this problem in O(n log n) time later in the
semester.

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

O(nk) Time

I Does a graph have an independent set of size k, where k is a constant, i.e.
there are k nodes such that no two are joined by an edge?

I Algorithm: For each subset S of k nodes, check if S is an independent set. If
the answer is yes, report it.

I Running time is

O(k2
(
n

k

)
) = O(nk).

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

O(nk) Time

I Does a graph have an independent set of size k, where k is a constant, i.e.
there are k nodes such that no two are joined by an edge?

I Algorithm: For each subset S of k nodes, check if S is an independent set. If
the answer is yes, report it.

I Running time is O(k2
(
n

k

)
) = O(nk).

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

O(nk) Time

I Does a graph have an independent set of size k, where k is a constant, i.e.
there are k nodes such that no two are joined by an edge?

I Algorithm: For each subset S of k nodes, check if S is an independent set. If
the answer is yes, report it.

I Running time is O(k2
(
n

k

)
) = O(nk).

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

O(nk) Time

I Does a graph have an independent set of size k, where k is a constant, i.e.
there are k nodes such that no two are joined by an edge?

I Algorithm: For each subset S of k nodes, check if S is an independent set. If
the answer is yes, report it.

I Running time is O(k2
(
n

k

)
) = O(nk).

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Beyond Polynomial Time

I What is the largest size of an independent set in a graph with n nodes?

I Algorithm: For each 1 ≤ i ≤ n, check if the graph has an independent size of
size i . Output largest independent set found.

I What is the running time? O(n22n).

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Beyond Polynomial Time

I What is the largest size of an independent set in a graph with n nodes?

I Algorithm: For each 1 ≤ i ≤ n, check if the graph has an independent size of
size i . Output largest independent set found.

I What is the running time? O(n22n).

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Beyond Polynomial Time

I What is the largest size of an independent set in a graph with n nodes?

I Algorithm: For each 1 ≤ i ≤ n, check if the graph has an independent size of
size i . Output largest independent set found.

I What is the running time?

O(n22n).

T. M. Murali January 21, 2016 Analysis of Algorithms



Computational Tractability Asymptotic Order of Growth Common Running Times

Beyond Polynomial Time

I What is the largest size of an independent set in a graph with n nodes?

I Algorithm: For each 1 ≤ i ≤ n, check if the graph has an independent size of
size i . Output largest independent set found.

I What is the running time? O(n22n).

T. M. Murali January 21, 2016 Analysis of Algorithms


	Computational Tractability
	Asymptotic Order of Growth
	Common Running Times

