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Computational Tractability Asymptotic Order of Growth Common Running Times

What is Algorithm Analysis?

I Measure resource requirements: how does the amount of time and space an
algorithm uses scale with increasing input size?

I How do we put this notion on a concrete footing?

I What does it mean for one function to grow faster or slower than another?

I Goal: Develop algorithms that provably run quickly and use low amounts of
space.
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Worst-case Running Time

I We will measure worst-case running time of an algorithm.

I Bound the largest possible running time the algorithm over all inputs of size
n, as a function of n.

I Why worst-case? Why not average-case or on random inputs?

I Input size = number of elements in the input. Values in the input do not
matter, except for speci�c algorithms.

I Assume all elementary operations take unit time: assignment, arithmetic on a
�xed-size number, comparisons, array lookup, following a pointer, etc.
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Polynomial Time

I Brute force algorithm: Check every possible solution.

I What is a brute force algorithm for sorting: given n numbers, permute them
so that they appear in increasing order?

I Try all possible n! permutations of the numbers.
I For each permutation, check if it is sorted.
I Running time is nn!. Unacceptable in practice!

I Desirable scaling property: when the input size doubles, the algorithm should
only slow down by some constant factor c.

I An algorithm has a polynomial running time if there exist constants c > 0
and d > 0 such that on every input of size n, the running time of the
algorithm is bounded by cnd steps.

De�nition

An algorithm is e�cient if it has a polynomial running time.
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Comparing Functions

I Assume all functions take only positive arguments and values.

I Di�erent algorithms for the same problem may have di�erent (worst-case)
running times.

I Example of sorting:

bubble sort, insertion sort, quick sort, merge sort, etc.

I Bubble sort and insertion sort take roughly n2 comparisons while quick sort
and merge sort take roughly n log

2
n comparisons.

I �Roughly� hides potentially large constants, e.g., running time of merge sort

may in reality be 100n log
2
n.

I How can make statements such as the following?
I 100n log

2
n ≤ n2

I 10000n ≤ n2

I 5n2 − 4n ≥ 1000n log n
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�10000n ≤ n
2�
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Upper Bound

De�nition

Asymptotic upper bound: A function f (n) is O(g(n)) if

there exist constant

s

c > 0 and n0 ≥ 0 such that

for all n

≥ n0

, we have f (n) ≤

c

g(n).
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Lower Bound

De�nition

Asymptotic lower bound: A function f (n) is Ω(g(n)) if

there exist constant

s

c > 0 and n0 ≥ 0 such that

for all n

≥ n0

, we have f (n) ≥

c

g(n).
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Meaning of �Lower Bound� in Di�erent Contexts

I Functions:

n is a lower bound for n log n/10, i.e., n log n/10 = Ω(n). This
statement is purely about these two mathematical functions without
relevance to any algorithm or problem.

I Algorithms: The lower bound on the running time of bubble sort is Ω(n2).
There is some input of n numbers that will cause bubble sort to take at least
Ω(n2) time, e.g., input the numbers in decreasing order.

I Problems: The problem of sorting n numbers has a lower bound of
Ω(n log n). For any comparison-based sorting algorithm, there is at least one
input for which that algorithm will take Ω(n log n) steps.
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Tight Bound

De�nition

Asymptotic tight bound: A function f (n) is Θ(g(n)) if f (n) is O(g(n)) and f (n)
is Ω(g(n)).

I In all these de�nitions, c and n0 are constants independent of n.

I Abuse of notation: say g(n) = O(f (n)), g(n) = Ω(f (n)), g(n) = Θ(f (n)).
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Properties of Asymptotic Growth Rates

Transitivity I If f = O(g) and g = O(h), then f = O(h).
I If f = Ω(g) and g = Ω(h), then f = Ω(h).
I If f = Θ(g) and g = Θ(h), then f = Θ(h).

Additivity I If f = O(h) and g = O(h), then f + g = O(h).
I Similar statements hold for lower and tight bounds.
I If k is a constant and there are k functions

fi = O(h), 1 ≤ i ≤ k, then f1 + f2 + . . .+ fk = O(h).
I If f = O(g), then f + g = Θ(g).
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Examples

I f (n) = pn2 + qn + r is

θ(n2). Can ignore lower order terms.

I Is f (n) = pn2 + qn + r = O(n3)?

I f (n) =
∑

0≤i≤d
ain

i = O(nd), if d > 0 is an integer constant and ad > 0.

I O(nd ) is the de�nition of polynomial time.

I Is an algorithm with running time O(n1.59) a polynomial-time algorithm?

I O(loga n) = O(logb n) for any pair of constants a, b > 1.

I For every constant x > 0, log n = O(nx).

I For every constant r > 1 and every constant d > 0, nd = O(rn).
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Linear Time

I Running time is at most a constant factor times the size of the input.

I Finding the minimum, merging two sorted lists.

I Computing the median (or kth smallest) element in an unsorted list.
�Median-of-median� algorithm.

I Sub-linear time. Binary search in a sorted array of n numbers takes O(log n)
time.
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O(n log n) Time

I Any algorithm where the costliest step is sorting.
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Quadratic Time

I Enumerate all pairs of elements.

I Given a set of n points in the plane, �nd the pair that are the closest.
Surprising fact: will solve this problem in O(n log n) time later in the
semester.
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O(nk) Time

I Does a graph have an independent set of size k, where k is a constant, i.e.
there are k nodes such that no two are joined by an edge?

I Algorithm: For each subset S of k nodes, check if S is an independent set. If
the answer is yes, report it.

I Running time is

O(k2
(
n

k

)
) = O(nk).
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Beyond Polynomial Time

I What is the largest size of an independent set in a graph with n nodes?

I Algorithm: For each 1 ≤ i ≤ n, check if the graph has an independent size of
size i . Output largest independent set found.

I What is the running time? O(n22n).
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