Analysis of Algorithms

T. M. Murali

January 21, 2016

What is Algorithm Analysis?

- Measure resource requirements: how does the amount of time and space an algorithm uses scale with increasing input size?
- How do we put this notion on a concrete footing?
- What does it mean for one function to grow faster or slower than another?
What is Algorithm Analysis?

- Measure resource requirements: how does the amount of time and space an algorithm uses scale with increasing input size?
- How do we put this notion on a concrete footing?
- What does it mean for one function to grow faster or slower than another?
- Goal: Develop algorithms that provably run quickly and use low amounts of space.
Worst-case Running Time

- We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.
Worst-case Running Time

- We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.
- Why worst-case? Why not average-case or on random inputs?
Worst-case Running Time

- We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.
- Why worst-case? Why not average-case or on random inputs?
- Input size = number of elements in the input.
Worst-case Running Time

▶ We will measure worst-case running time of an algorithm.
▶ Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.
▶ Why worst-case? Why not average-case or on random inputs?
▶ Input size = number of elements in the input. Values in the input do not matter, except for specific algorithms.
▶ Assume all elementary operations take unit time: assignment, arithmetic on a fixed-size number, comparisons, array lookup, following a pointer, etc.
Polynomial Time

- Brute force algorithm: Check every possible solution.
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting: given n numbers, permute them so that they appear in increasing order?
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting: given n numbers, permute them so that they appear in increasing order?
 - Try all possible $n!$ permutations of the numbers.
 - For each permutation, check if it is sorted.
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting: given n numbers, permute them so that they appear in increasing order?
 - Try all possible $n!$ permutations of the numbers.
 - For each permutation, check if it is sorted.
 - Running time is $nn!$. Unacceptable in practice!
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting: given n numbers, permute them so that they appear in increasing order?
 - Try all possible $n!$ permutations of the numbers.
 - For each permutation, check if it is sorted.
 - Running time is $nn!$. Unacceptable in practice!
- Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor c.

...
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting: given n numbers, permute them so that they appear in increasing order?
 - Try all possible $n!$ permutations of the numbers.
 - For each permutation, check if it is sorted.
 - Running time is $nn!$. Unacceptable in practice!
- Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor c.
- An algorithm has a *polynomial* running time if there exist constants $c > 0$ and $d > 0$ such that on every input of size n, the running time of the algorithm is bounded by cn^d steps.
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting: given n numbers, permute them so that they appear in increasing order?
 - Try all possible $n!$ permutations of the numbers.
 - For each permutation, check if it is sorted.
 - Running time is $nn!$. Unacceptable in practice!
- Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor c.
- An algorithm has a *polynomial* running time if there exist constants $c > 0$ and $d > 0$ such that on every input of size n, the running time of the algorithm is bounded by cn^d steps.

Definition

An algorithm is *efficient* if it has a polynomial running time.
Comparing Functions

- Assume all functions take only positive arguments and values.
- Different algorithms for the same problem may have different (worst-case) running times.
- Example of sorting:
Comparing Functions

- Assume all functions take only positive arguments and values.
- Different algorithms for the same problem may have different (worst-case) running times.
- Example of sorting: bubble sort, insertion sort, quick sort, merge sort, etc.
Comparing Functions

- Assume all functions take only positive arguments and values.
- Different algorithms for the same problem may have different (worst-case) running times.
- Example of sorting: bubble sort, insertion sort, quick sort, merge sort, etc.
- Bubble sort and insertion sort take roughly n^2 comparisons while quick sort and merge sort take roughly $n \log_2 n$ comparisons.
 - “Roughly” hides potentially large constants, e.g., running time of merge sort may in reality be $100n \log_2 n$.

T. M. Murali
Analysis of Algorithms
Comparing Functions

- Assume all functions take only positive arguments and values.
- Different algorithms for the same problem may have different (worst-case) running times.
- Example of sorting: bubble sort, insertion sort, quick sort, merge sort, etc.
- Bubble sort and insertion sort take roughly n^2 comparisons while quick sort and merge sort take roughly $n \log_2 n$ comparisons.
 - “Roughly” hides potentially large constants, e.g., running time of merge sort may in reality be $100n \log_2 n$.
- How can make statements such as the following?
 - $100n \log_2 n \leq n^2$
 - $10000n \leq n^2$
 - $5n^2 - 4n \geq 1000n \log n$
“10000n ≤ n^2”
"10000n \leq n^2"

10000n vs. $O(n^2)$
Upper Bound

Definition

Asymptotic upper bound: A function $f(n)$ is $O(g(n))$ if for all n, we have $f(n) \leq g(n)$.

10000n is $O(n^2)$, $c = 1$, $n_0 = 10000$.

$10000n \leq c \cdot 10^4$.

$10000n$ is $O(n^2)$.

Graph showing the comparison between $10000n$ and n^2.
Upper Bound

Definition

Asymptotic upper bound: A function $f(n)$ is $O(g(n))$ if there exists constant $c > 0$ such that for all $n \geq n_0$, we have $f(n) \leq cg(n)$.

$10000n$ is $O(n^2)$,
Upper Bound

Definition

Asymptotic upper bound: A function $f(n)$ is $O(g(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ such that for all $n \geq n_0$, we have $f(n) \leq cg(n)$.

![Graph showing $10000n$ and n^2 as examples of functions with $O(n^2)$ upper bound.](image-url)
Upper Bound

Definition

Asymptotic upper bound: A function $f(n)$ is $O(g(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ such that for all $n \geq n_0$, we have $f(n) \leq cg(n)$.

10000n is $O(n^2)$, $c = 1$, $n_0 = 10000$
$100n \log_2 n \text{ and } n^2$

$100n \log_2 n$ is $O(n^2)$,
$100n \log_2 n$ and n^2

$100n \log_2 n$ is $O(n^2)$, $c = 1$, $n_0 = 1500$
$100n \log_2 n$ and n^2

$100n \log_2 n$ is $O(n^2)$, $c = 100$, $n_0 = 1$
Lower Bound

Definition

Asymptotic lower bound: A function $f(n)$ is $\Omega(g(n))$ if for all $n \geq n_0$, we have $f(n) \geq c \cdot g(n)$.
Lower Bound

Definition

Asymptotic lower bound: A function $f(n)$ is $\Omega(g(n))$ if there exists constant $c > 0$ such that for all $n \geq n_0$, we have $f(n) \geq cg(n)$.
Lower Bound

Definition

Asymptotic lower bound: A function $f(n)$ is $\Omega(g(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ such that for all $n \geq n_0$, we have $f(n) \geq cg(n)$.

Lower Bound

Definition

Asymptotic lower bound: A function $f(n)$ is $\Omega(g(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ such that for all $n \geq n_0$, we have $f(n) \geq cg(n)$.
Lower Bound

Definition

Asymptotic lower bound: A function \(f(n) \) is \(\Omega(g(n)) \) if there exist constants \(c > 0 \) and \(n_0 \geq 0 \) such that for all \(n \geq n_0 \), we have \(f(n) \geq cg(n) \).

\[n \log_2 n/10 \text{ is } \Omega(n), \quad c = 1, \quad n_0 = 1024 \]
Meaning of “Lower Bound” in Different Contexts

- Functions:
 - $n\log n \geq 10$, i.e., $n\log n/10 = \Omega(n)$. This statement is purely about these two mathematical functions without relevance to any algorithm or problem.

- Algorithms: The lower bound on the running time of bubble sort is $\Omega(n^2)$. There is some input of n numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g., input the numbers in decreasing order.

- Problems: The problem of sorting n numbers has a lower bound of $\Omega(n\log n)$. For any comparison-based sorting algorithm, there is at least one input for which that algorithm will take $\Omega(n\log n)$ steps.
Meaning of “Lower Bound” in Different Contexts

- **Functions**: n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$.

Meaning of “Lower Bound” in Different Contexts

- **Functions:** n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$. This statement is purely about these two mathematical functions without relevance to any algorithm or problem.
Meaning of “Lower Bound” in Different Contexts

- **Functions:** n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$. This statement is purely about these two mathematical functions without relevance to any algorithm or problem.

- **Algorithms:** The lower bound on the running time of bubble sort is $\Omega(n^2)$.
Meaning of “Lower Bound” in Different Contexts

- **Functions:** \(n \) is a lower bound for \(n \log n/10 \), i.e., \(n \log n/10 = \Omega(n) \). This statement is purely about these two mathematical functions without relevance to any algorithm or problem.

- **Algorithms:** The lower bound on the running time of bubble sort is \(\Omega(n^2) \). There is some input of \(n \) numbers that will cause bubble sort to take at least \(\Omega(n^2) \) time, e.g.,
Meaning of “Lower Bound” in Different Contexts

- **Functions:** n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$. This statement is purely about these two mathematical functions without relevance to any algorithm or problem.

- **Algorithms:** The lower bound on the running time of bubble sort is $\Omega(n^2)$. There is some input of n numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g., input the numbers in decreasing order.
Meaning of “Lower Bound” in Different Contexts

- **Functions:** n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$. This statement is purely about these two mathematical functions without relevance to any algorithm or problem.

- **Algorithms:** The lower bound on the running time of bubble sort is $\Omega(n^2)$. There is some input of n numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g., input the numbers in decreasing order.

- **Problems:** The problem of sorting n numbers has a lower bound of $\Omega(n \log n)$.
Meaning of “Lower Bound” in Different Contexts

- **Functions:** n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$. This statement is purely about these two mathematical functions without relevance to any algorithm or problem.

- **Algorithms:** The lower bound on the running time of bubble sort is $\Omega(n^2)$. There is some input of n numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g., input the numbers in decreasing order.

- **Problems:** The problem of sorting n numbers has a lower bound of $\Omega(n \log n)$. For *any* comparison-based sorting algorithm, there is at least one input for which that algorithm will take $\Omega(n \log n)$ steps.
Definition

Asymptotic tight bound: A function $f(n)$ is $\Theta(g(n))$ if $f(n)$ is $O(g(n))$ and $f(n)$ is $\Omega(g(n))$.
Tight Bound

Definition
Asymptotic tight bound: A function $f(n)$ is $\Theta(g(n))$ if $f(n)$ is $O(g(n))$ and $f(n)$ is $\Omega(g(n))$.

- In all these definitions, c and n_0 are constants independent of n.
- Abuse of notation: say $g(n) = O(f(n))$, $g(n) = \Omega(f(n))$, $g(n) = \Theta(f(n))$.
Properties of Asymptotic Growth Rates

Transitivity

▶ If \(f = O(g) \) and \(g = O(h) \), then \(f = O(h) \).
▶ If \(f = \Omega(g) \) and \(g = \Omega(h) \), then \(f = \Omega(h) \).
▶ If \(f = \Theta(g) \) and \(g = \Theta(h) \), then \(f = \Theta(h) \).
Properties of Asymptotic Growth Rates

Transitivity

- If \(f = O(g) \) and \(g = O(h) \), then \(f = O(h) \).
- If \(f = \Omega(g) \) and \(g = \Omega(h) \), then \(f = \Omega(h) \).
- If \(f = \Theta(g) \) and \(g = \Theta(h) \), then \(f = \Theta(h) \).

Additivity

- If \(f = O(h) \) and \(g = O(h) \), then \(f + g = O(h) \).
- Similar statements hold for lower and tight bounds.
Properties of Asymptotic Growth Rates

Transitivity
- If \(f = O(g) \) and \(g = O(h) \), then \(f = O(h) \).
- If \(f = \Omega(g) \) and \(g = \Omega(h) \), then \(f = \Omega(h) \).
- If \(f = \Theta(g) \) and \(g = \Theta(h) \), then \(f = \Theta(h) \).

Additivity
- If \(f = O(h) \) and \(g = O(h) \), then \(f + g = O(h) \).
- Similar statements hold for lower and tight bounds.
- If \(k \) is a constant and there are \(k \) functions \(f_i = O(h), 1 \leq i \leq k \),
Properties of Asymptotic Growth Rates

Transitivity
- If $f = O(g)$ and $g = O(h)$, then $f = O(h)$.
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

Additivity
- If $f = O(h)$ and $g = O(h)$, then $f + g = O(h)$.
- Similar statements hold for lower and tight bounds.
- If k is a constant and there are k functions $f_i = O(h), 1 \leq i \leq k$, then $f_1 + f_2 + \ldots + f_k = O(h)$.
Properties of Asymptotic Growth Rates

Transitivity

- If \(f = O(g) \) and \(g = O(h) \), then \(f = O(h) \).
- If \(f = \Omega(g) \) and \(g = \Omega(h) \), then \(f = \Omega(h) \).
- If \(f = \Theta(g) \) and \(g = \Theta(h) \), then \(f = \Theta(h) \).

Additivity

- If \(f = O(h) \) and \(g = O(h) \), then \(f + g = O(h) \).
- Similar statements hold for lower and tight bounds.
- If \(k \) is a constant and there are \(k \) functions \(f_i = O(h), 1 \leq i \leq k \), then \(f_1 + f_2 + \ldots + f_k = O(h) \).
- If \(f = O(g) \), then \(f + g = \)
Properties of Asymptotic Growth Rates

Transitivity
- If $f = O(g)$ and $g = O(h)$, then $f = O(h)$.
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

Additivity
- If $f = O(h)$ and $g = O(h)$, then $f + g = O(h)$.
- Similar statements hold for lower and tight bounds.
- If k is a constant and there are k functions $f_i = O(h), 1 \leq i \leq k$, then $f_1 + f_2 + \ldots + f_k = O(h)$.
- If $f = O(g)$, then $f + g = \Theta(g)$.
Examples

- $f(n) = pn^2 + qn + r$ is
Examples

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
Examples

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
- Is $f(n) = pn^2 + qn + r = O(n^3)$?
Examples

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
- Is $f(n) = pn^2 + qn + r = O(n^3)$?
- $f(n) = \sum_{0 \leq i \leq d} a_i n^i =$
Examples

- \(f(n) = pn^2 + qn + r \) is \(\theta(n^2) \). Can ignore lower order terms.
- Is \(f(n) = pn^2 + qn + r = O(n^3) \)?
- \(f(n) = \sum_{0 \leq i \leq d} a_i n^i = O(n^d) \), if \(d > 0 \) is an integer constant and \(a_d > 0 \).
 - \(O(n^d) \) is the definition of polynomial time.
Examples

- \(f(n) = pn^2 + qn + r \) is \(\theta(n^2) \). Can ignore lower order terms.
- Is \(f(n) = pn^2 + qn + r = O(n^3) \)?
- \(f(n) = \sum_{0 \leq i \leq d} a_i n^i = O(n^d) \), if \(d > 0 \) is an integer constant and \(a_d > 0 \).
 - \(O(n^d) \) is the definition of *polynomial time*.
- Is an algorithm with running time \(O(n^{1.59}) \) a polynomial-time algorithm?
Examples

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
- Is $f(n) = pn^2 + qn + r = O(n^3)$?
- $f(n) = \sum_{0 \leq i \leq d} a_i n^i = O(n^d)$, if $d > 0$ is an integer constant and $a_d > 0$.
 - $O(n^d)$ is the definition of polynomial time.
- Is an algorithm with running time $O(n^{1.59})$ a polynomial-time algorithm?
- $O(\log_a n) = O(\log_b n)$ for any pair of constants $a, b > 1$.
- For every constant $x > 0$, $\log n = O(n^x)$.
Examples

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
- Is $f(n) = pn^2 + qn + r = O(n^3)$?
- $f(n) = \sum_{0 \leq i \leq d} a_i n^i = O(n^d)$, if $d > 0$ is an integer constant and $a_d > 0$.
 - $O(n^d)$ is the definition of polynomial time.
- Is an algorithm with running time $O(n^{1.59})$ a polynomial-time algorithm?
- $O(\log_a n) = O(\log_b n)$ for any pair of constants $a, b > 1$.
- For every constant $x > 0$, $\log n = O(n^x)$.
- For every constant $r > 1$ and every constant $d > 0$, $n^d = O(r^n)$.

Different functions of n

- n
- $n \log n$
- n^2
- n^3
- 2^n
More functions of n

- n
- $\log_2 n$
- $\log_3 n$
- $n^{0.5}$
Linear Time

- Running time is at most a constant factor times the size of the input.
Linear Time

- Running time is at most a constant factor times the size of the input.
- Finding the minimum, merging two sorted lists.
Linear Time

- Running time is at most a constant factor times the size of the input.
- Finding the minimum, merging two sorted lists.
- Computing the median (or kth smallest) element in an unsorted list.
Linear Time

- Running time is at most a constant factor times the size of the input.
- Finding the minimum, merging two sorted lists.
- Computing the median (or kth smallest) element in an unsorted list. “Median-of-median” algorithm.
- Sub-linear time.
Linear Time

- Running time is at most a constant factor times the size of the input.
- Finding the minimum, merging two sorted lists.
- Computing the median (or kth smallest) element in an unsorted list. “Median-of-median” algorithm.
- Sub-linear time. Binary search in a sorted array of n numbers takes $O(\log n)$ time.
$O(n \log n)$ Time

- Any algorithm where the costliest step is sorting.
Quadratic Time

- Enumerate all pairs of elements.
Quadratic Time

- Enumerate all pairs of elements.
- Given a set of n points in the plane, find the pair that are the closest.
Quadratic Time

- Enumerate all pairs of elements.
- Given a set of n points in the plane, find the pair that are the closest. Surprising fact: will solve this problem in $O(n \log n)$ time later in the semester.
Does a graph have an independent set of size k, where k is a constant, i.e. there are k nodes such that no two are joined by an edge?
$O(n^k)$ Time

▶ Does a graph have an independent set of size k, where k is a constant, i.e. there are k nodes such that no two are joined by an edge?
Does a graph have an independent set of size k, where k is a constant, i.e. there are k nodes such that no two are joined by an edge?

Algorithm: For each subset S of k nodes, check if S is an independent set. If the answer is yes, report it.
Does a graph have an independent set of size k, where k is a constant, i.e. there are k nodes such that no two are joined by an edge?

Algorithm: For each subset S of k nodes, check if S is an independent set. If the answer is yes, report it.

Running time is $O(k^2 \binom{n}{k}) = O(n^k)$.

$O(n^k)$ Time
Beyond Polynomial Time

What is the largest size of an independent set in a graph with \(n \) nodes?

Algorithm: For each \(1 \leq i \leq n \), check if the graph has an independent set of size \(i \). Output largest independent set found.

What is the running time? \(O(n^2 \log n) \).
What is the largest size of an independent set in a graph with n nodes?

Algorithm: For each $1 \leq i \leq n$, check if the graph has an independent set of size i. Output largest independent set found.
Beyond Polynomial Time

What is the largest size of an independent set in a graph with \(n \) nodes?

Algorithm: For each \(1 \leq i \leq n \), check if the graph has an independent size of size \(i \). Output largest independent set found.

What is the running time?

\[O(n^2). \]
Beyond Polynomial Time

▶ What is the largest size of an independent set in a graph with \(n \) nodes?
▶ Algorithm: For each \(1 \leq i \leq n \), check if the graph has an independent size of size \(i \). Output largest independent set found.
▶ What is the running time? \(O(n^2 2^n) \).