Coping with NP-Completeness

T. M. Murali

May 5, 7, 2014
How Do We Tackle an \mathcal{NP}-Complete Problem?

- These problems come up in real life.
How Do We Tackle an \mathcal{NP}-Complete Problem?

My Hobby:

Embedding NP-Complete Problems in Restaurant Orders

<table>
<thead>
<tr>
<th>Appetizers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed Fruit</td>
<td>2.15</td>
</tr>
<tr>
<td>French Fries</td>
<td>2.75</td>
</tr>
<tr>
<td>Side Salad</td>
<td>3.35</td>
</tr>
<tr>
<td>Hot Wings</td>
<td>3.55</td>
</tr>
<tr>
<td>Mozzarella Sticks</td>
<td>4.20</td>
</tr>
<tr>
<td>Sampler Plate</td>
<td>5.80</td>
</tr>
<tr>
<td>Sandwiches</td>
<td></td>
</tr>
<tr>
<td>Barbecue</td>
<td>6.55</td>
</tr>
</tbody>
</table>

We'd like exactly $15.05 worth of appetizers, please.

...exactly? Uhh ...

Here, these papers on the knapsack problem might help you out.

Listen, I have six other tables to get to —

As fast as possible, of course. Want something on traveling salesman?
How Do We Tackle an \(NP \)-Complete Problem?

- These problems come up in real life.

- \(NP \)-Complete means that a problem is hard to solve in the worst case. Can we come up with better solutions at least in some cases?
How Do We Tackle an \(\mathcal{NP} \)-Complete Problem?

- These problems come up in real life.
- \(\mathcal{NP} \)-Complete means that a problem is hard to solve in the worst case. Can we come up with better solutions at least in some cases?
 - Develop algorithms that are exponential in one parameter in the problem.
 - Consider special cases of the input, e.g., graphs that “look like” trees.
 - Develop algorithms that can provably compute a solution close to the optimal.
Vertex Cover Problem

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain a vertex cover of size at most k?

- The problem has two parameters: k and n, the number of nodes in G.
- What is the running time of a brute-force algorithm?
Vertex Cover Problem

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain a vertex cover of size at most k?

- The problem has two parameters: k and n, the number of nodes in G.
- What is the running time of a brute-force algorithm? $O(kn\binom{n}{k}) = O(kn^{k+1})$.
Vertex Cover Problem

INSTANCE: Undirected graph \(G \) and an integer \(k \)

QUESTION: Does \(G \) contain a vertex cover of size at most \(k \)?

- The problem has two parameters: \(k \) and \(n \), the number of nodes in \(G \).
- What is the running time of a brute-force algorithm? \(O(kn^\binom{n}{k}) = O(kn^{k+1}) \).
- Can we devise an algorithm whose running time is exponential in \(k \) but polynomial in \(n \), e.g., \(O(2^k n) \)?
Designing the Vertex Cover Algorithm

- Intuition: if a graph has a small vertex cover, it cannot have too many edges.
Designing the Vertex Cover Algorithm

- Intuition: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
Designing the Vertex Cover Algorithm

- Intuition: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- Easy part of algorithm: Return no if G has more than kn edges.
Designing the Vertex Cover Algorithm

- Intuition: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- Easy part of algorithm: Return no if G has more than kn edges.
- $G - \{u\}$ is the graph G without node u and the edges incident on u.
Designing the Vertex Cover Algorithm

- Intuition: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- Easy part of algorithm: Return no if G has more than kn edges.
- $G - \{u\}$ is the graph G without node u and the edges incident on u.
- Consider an edge (u, v). Either u or v must be in the vertex cover.
Designing the Vertex Cover Algorithm

- Intuition: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- Easy part of algorithm: Return no if G has more than kn edges.
- $G - \{u\}$ is the graph G without node u and the edges incident on u.
- Consider an edge (u, v). Either u or v must be in the vertex cover.
- Claim: G has a vertex cover of size at most k iff for any edge (u, v) either $G - \{u\}$ or $G - \{v\}$ has a vertex cover of size at most $k - 1$.

![Graph](image)
Vertex Cover Algorithm

To search for a k-node vertex cover in G:

If G contains no edges, then the empty set is a vertex cover

If G contains $> k \ |V|$ edges, then it has no k-node vertex cover

Else let $e = (u, v)$ be an edge of G

Recursively check if either of $G \setminus \{u\}$ or $G \setminus \{v\}$

has a vertex cover of size $k - 1$

If neither of them does, then G has no k-node vertex cover

Else, one of them (say, $G \setminus \{u\}$) has a $(k - 1)$-node vertex cover T

In this case, $T \cup \{u\}$ is a k-node vertex cover of G

Endif

Endif
Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters
Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let $T(n, k)$ denote the worst-case running time of the algorithm on an instance of VERTEX COVER with parameters n and k.

\quad
Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let $T(n, k)$ denote the worst-case running time of the algorithm on an instance of Vertex Cover with parameters n and k.
- $T(n, 1) \leq cn$.

Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let $T(n, k)$ denote the worst-case running time of the algorithm on an instance of VERTEX COVER with parameters n and k.
 - $T(n, 1) \leq cn$.
 - $T(n, k) \leq 2T(n, k - 1) + ckn$.
 - We need $O(kn)$ time to count the number of edges.
Analysing the Vertex Cover Algorithm

- Develop a recurrence relation for the algorithm with parameters n and k.
- Let $T(n, k)$ denote the worst-case running time of the algorithm on an instance of VERTEX COVER with parameters n and k.
- $T(n, 1) \leq cn$.
- $T(n, k) \leq 2T(n, k - 1) + ckn$.
 - We need $O(kn)$ time to count the number of edges.
- Claim: $T(n, k) = O(2^k kn)$.
Solving \(\mathcal{NP} \)-Hard Problems on Trees

- \(\mathcal{NP} \)-Hard': at least as hard as \(\mathcal{NP} \)-Complete. We will use \(\mathcal{NP} \)-Hard to refer to optimisation versions of decision problems.
Solving \mathcal{NP}-Hard Problems on Trees

- "\mathcal{NP}-Hard": at least as hard as \mathcal{NP}-Complete. We will use \mathcal{NP}-Hard to refer to optimisation versions of decision problems.
- Many \mathcal{NP}-Hard problems can be solved efficiently on trees.
- Intuition: subtree rooted at any node v of the tree "interacts" with the rest of tree only through v. Therefore, depending on whether we include v in the solution or not, we can decouple solving the problem in v’s subtree from the rest of the tree.
Designing Greedy Algorithm for Independent Set

Optimisation problem: Find the largest independent set in a tree.
Designing Greedy Algorithm for Independent Set

- Optimisation problem: Find the largest independent set in a tree.
- Claim: Every tree $T(V, E)$ has a leaf, a node with degree 1.
- Claim: If a tree T has a leaf v, then there exists a maximum-size independent set in T that contains v.
Designing Greedy Algorithm for Independent Set

▶ Optimisation problem: Find the largest independent set in a tree.
▶ Claim: Every tree $T(V, E)$ has a leaf, a node with degree 1.
▶ Claim: If a tree T has a leaf v, then there exists a maximum-size independent set in T that contains v. Prove by exchange argument.
 ▶ Let S be a maximum-size independent set that does not contain v.
 ▶ Let v be connected to u.
 ▶ u must be in S; otherwise, we can add v to S, which means S is not maximum size.
 ▶ Since u is in S, we can swap u and v.
Optimisation problem: Find the largest independent set in a tree.

Claim: Every tree $T(V, E)$ has a leaf, a node with degree 1.

Claim: If a tree T has a leaf v, then there exists a maximum-size independent set in T that contains v. Prove by exchange argument.

- Let S be a maximum-size independent set that does not contain v.
- Let v be connected to u.
- u must be in S; otherwise, we can add v to S, which means S is not maximum size.
- Since u is in S, we can swap u and v.

Claim: If a tree T has a leaf v, then a maximum-size independent set in T is v and a maximum-size independent set in $T - \{v\}$.
Greedy Algorithm for Independent Set

- A *forest* is a graph where every connected component is a tree.

To find a maximum-size independent set in a forest F:

1. Let S be the independent set to be constructed (initially empty)
2. While F has at least one edge
 - Let $e = (u, v)$ be an edge of F such that v is a leaf
 - Add v to S
 - Delete from F nodes u and v, and all edges incident to them
3. Endwhile
4. Return S
Greedy Algorithm for Independent Set

- A *forest* is a graph where every connected component is a tree.
- Running time of the algorithm is $O(n)$.

To find a maximum-size independent set in a forest F:

Let S be the independent set to be constructed (initially empty)

While F has at least one edge

- Let $e = (u, v)$ be an edge of F such that v is a leaf
- Add v to S
- Delete from F nodes u and v, and all edges incident to them

Endwhile

Return S
Greedy Algorithm for Independent Set

- A *forest* is a graph where every connected component is a tree.
- Running time of the algorithm is $O(n)$.
- The algorithm works correctly on any graph for which we can repeatedly find a leaf.

To find a maximum-size independent set in a forest F:

1. Let S be the independent set to be constructed (initially empty)
2. While F has at least one edge
 - Let $e = (u, v)$ be an edge of F such that v is a leaf
 - Add v to S
 - Delete from F nodes u and v, and all edges incident to them
3. Endwhile
4. Return S
Maximum Weight Independent Set

- Consider the **Independent Set** problem but with a weight w_v on every node v.
- Goal is to find an independent set S such that $\sum_{v \in S} w_v$ is as large as possible.
Consider the **Independent Set** problem but with a weight w_v on every node v.

Goal is to find an independent set S such that $\sum_{v \in S} w_v$ is as large as possible.

Can we extend the greedy algorithm?
Consider the **INDEPENDENT SET** problem but with a weight w_v on every node v.

- Goal is to find an independent set S such that $\sum_{v \in S} w_v$ is as large as possible.
- Can we extend the greedy algorithm? Exchange argument fails: if u is a parent of a leaf v, w_u may be larger than w_v.

Consider the **Independent Set** problem but with a weight \(w_v \) on every node \(v \).

Goal is to find an independent set \(S \) such that \(\sum_{v \in S} w_v \) is as large as possible.

Can we extend the greedy algorithm? Exchange argument fails: if \(u \) is a parent of a leaf \(v \), \(w_u \) may be larger than \(w_v \).

But there are still only two possibilities: either include \(u \) in the independent set or include all neighbours of \(u \) that are leaves.
Consider the **INDEPENDENT SET** problem but with a weight w_v on every node v.

Goal is to find an independent set S such that $\sum_{v \in S} w_v$ is as large as possible.

Can we extend the greedy algorithm? Exchange argument fails: if u is a parent of a leaf v, w_u may be larger than w_v.

But there are still only two possibilities: either include u in the independent set or include *all* neighbours of u that are leaves.

Suggests dynamic programming algorithm.
Designing Dynamic Programming Algorithm

- Dynamic programming algorithm needs a set of sub-problems, recursion to combine sub-problems, and order over sub-problems.
- What are the sub-problems?

Pick a node r and root tree at r: orient edges towards r.

Parent $p(u)$ of a node u is the node adjacent to u along the path to r.

Sub-problems are T_u: subtree induced by u and all its descendants.

Ordering the sub-problems: start at leaves and work our way up to the root.
Designing Dynamic Programming Algorithm

- Dynamic programming algorithm needs a set of sub-problems, recursion to combine sub-problems, and order over sub-problems.
- What are the sub-problems?
 - Pick a node \(r \) and root tree at \(r \): orient edges towards \(r \).
 - parent \(p(u) \) of a node \(u \) is the node adjacent to \(u \) along the path to \(r \).
 - Sub-problems are \(T_u \): subtree induced by \(u \) and all its descendants.
Designing Dynamic Programming Algorithm

- Dynamic programming algorithm needs a set of sub-problems, recursion to combine sub-problems, and order over sub-problems.
- What are the sub-problems?
 - Pick a node \(r \) and **root** tree at \(r \): orient edges towards \(r \).
 - **parent** \(p(u) \) of a node \(u \) is the node adjacent to \(u \) along the path to \(r \).
 - Sub-problems are \(T_u \): subtree induced by \(u \) and all its descendants.
- Ordering the sub-problems: start at leaves and work our way up to the root.
Recursion for Dynamic Programming Algorithm

Either we include u in an optimal solution or exclude u.

- $OPT_{in}(u)$: maximum weight of an independent set in T_u that includes u.
- $OPT_{out}(u)$: maximum weight of an independent set in T_u that excludes u.

Base cases:
For a leaf u, $OPT_{in}(u) = w_u$ and $OPT_{out}(u) = 0$.

Recurrence: Include u or exclude u.

1. If we include u, all children must be excluded. $OPT_{in}(u) = w_u + \sum_{v \in \text{children}(u)} OPT_{out}(v)$
2. If we exclude u, a child may or may not be excluded. $OPT_{out}(u) = \sum_{v \in \text{children}(u)} \max(\text{OPT}_{in}(v), \text{OPT}_{out}(v))$
Recursion for Dynamic Programming Algorithm

Either we include u in an optimal solution or exclude u.

- $OPT_{in}(u)$: maximum weight of an independent set in T_u that includes u.
- $OPT_{out}(u)$: maximum weight of an independent set in T_u that excludes u.

Base cases:
Recursion for Dynamic Programming Algorithm

- Either we include u in an optimal solution or exclude u.
 - $OPT_{in}(u)$: maximum weight of an independent set in T_u that includes u.
 - $OPT_{out}(u)$: maximum weight of an independent set in T_u that excludes u.
- Base cases: For a leaf u, $OPT_{in}(u) = w_u$ and $OPT_{out}(u) = 0$.
- Recurrence: Include u or exclude u.
Recursion for Dynamic Programming Algorithm

Either we include \(u \) in an optimal solution or exclude \(u \).

- \(OPT_{in}(u) \): maximum weight of an independent set in \(T_u \) that includes \(u \).
- \(OPT_{out}(u) \): maximum weight of an independent set in \(T_u \) that excludes \(u \).

Base cases: For a leaf \(u \), \(OPT_{in}(u) = w_u \) and \(OPT_{out}(u) = 0 \).

Recurrence: Include \(u \) or exclude \(u \).

1. If we include \(u \), all children must be excluded.
\[
OPT_{in}(u) = w_u + \sum_{v \in \text{children}(u)} OPT_{out}(v)
\]
Recursion for Dynamic Programming Algorithm

- Either we include \(u \) in an optimal solution or exclude \(u \).
 - \(OPT_{in}(u) \): maximum weight of an independent set in \(T_u \) that includes \(u \).
 - \(OPT_{out}(u) \): maximum weight of an independent set in \(T_u \) that excludes \(u \).
- Base cases: For a leaf \(u \), \(OPT_{in}(u) = w_u \) and \(OPT_{out}(u) = 0 \).
- Recurrence: Include \(u \) or exclude \(u \).
 1. If we include \(u \), all children must be excluded.
 \[OPT_{in}(u) = w_u + \sum_{v \in \text{children}(u)} OPT_{out}(v) \]
 2. If we exclude \(u \), a child may or may not be excluded.
 \[OPT_{out}(u) = \sum_{v \in \text{children}(u)} \max(OPT_{in}(v), OPT_{out}(v)) \]
Dynamic Programming Algorithm

To find a maximum-weight independent set of a tree T:

1. Root the tree at a node r
2. For all nodes u of T in post-order
 - If u is a leaf then set the values:
 \[
 M_{\text{out}}[u] = 0 \\
 M_{\text{in}}[u] = w_u
 \]
 - Else set the values:
 \[
 M_{\text{out}}[u] = \sum_{v \in \text{children}(u)} \max(M_{\text{out}}[v], M_{\text{in}}[v]) \\
 M_{\text{in}}[u] = w_u + \sum_{v \in \text{children}(u)} M_{\text{out}}[u].
 \]
3. Endif
4. Endfor
5. Return $\max(M_{\text{out}}[r], M_{\text{in}}[r])$
Dynamic Programming Algorithm

To find a maximum-weight independent set of a tree T:

Root the tree at a node r

For all nodes u of T in post-order

If u is a leaf then set the values:

$$M_{\text{out}}[u] = 0$$

$$M_{\text{in}}[u] = w_u$$

Else set the values:

$$M_{\text{out}}[u] = \sum_{v \in \text{children}(u)} \max(M_{\text{out}}[v], M_{\text{in}}[v])$$

$$M_{\text{in}}[u] = w_u + \sum_{v \in \text{children}(u)} M_{\text{out}}[u].$$

Endif

Endfor

Return $\max(M_{\text{out}}[r], M_{\text{in}}[r])$

- Running time of the algorithm is $O(n)$.
Approximation Algorithms

- Methods for optimisation versions of \(\mathcal{NP} \)-Complete problems.
- Run in polynomial time.
- Solution returned is guaranteed to be within a small factor of the optimal solution.
Load Balancing Problem

- Given set of m machines $M_1, M_2, \ldots M_m$.
- Given a set of n jobs: job j has processing time t_j.
- Assign each job to one machine so that the total time spent is minimised.
Load Balancing Problem

- Given set of m machines M_1, M_2, \ldots, M_m.
- Given a set of n jobs: job j has processing time t_j.
- Assign each job to one machine so that the total time spent is minimised.
- Let $A(i)$ be the set of jobs assigned to machine M_i.
- Total time spent on machine i is $T_i = \sum_{k \in A(i)} t_k$.
- Minimise makespan $T = \max_i T_i$, the largest load on any machine.
Load Balancing Problem

- Given set of m machines M_1, M_2, \ldots, M_m.
- Given a set of n jobs: job j has processing time t_j.
- Assign each job to one machine so that the total time spent is minimised.
- Let $A(i)$ be the set of jobs assigned to machine M_i.
- Total time spent on machine i is $T_i = \sum_{k \in A(i)} t_k$.
- Minimise makespan $T = \max_i T_i$, the largest load on any machine.
- Minimising makespan is \mathcal{NP}-Complete.
Greedy-Balance Algorithm

- Adopt a greedy approach.
- Process jobs in any order.
- Assign next job to the processor that has smallest total load so far.

Greedy-Balance:

Start with no jobs assigned

Set $T_i = 0$ and $A(i) = \emptyset$ for all machines M_i

For $j = 1, \ldots, n$

- Let M_i be a machine that achieves the minimum $\min_k T_k$
- Assign job j to machine M_i
- Set $A(i) \leftarrow A(i) \cup \{j\}$
- Set $T_i \leftarrow T_i + t_j$

EndFor
Example of Greedy-Balance Algorithm

Job time

Jobs

Job index

Machines

$T = T_2$

T_1, T_3

Jobs

1 1 2 4 1

3 3 4 1

42 2

Machines

M_1

M_2

M_3
Lower Bounds on the Optimal Makespan

- We need a lower bound on the optimum makespan T^*.

"...lower bound on the optimum makespan T^*."
Lower Bounds on the Optimal Makespan

- We need a lower bound on the optimum makespan T^\ast.
- The two bounds below will suffice:

\[T^\ast \geq \frac{1}{m} \sum_j t_j \]

\[T^\ast \geq \max_j t_j \]
Analysing Greedy-Balance

Claim: Computed makespan $T \leq 2T^\ast$.

Let M_i be the machine whose load is T and j be the last job placed on M_i. What was the situation just before placing this job? M_i had the smallest load and its load was $T - t_j$. For every machine M_k, load $T_k \geq T - t_j$.

Sum over all machines $\sum T_k \geq m(T - t_j)$, where k ranges over all machines.

Sum over all jobs $\sum t_j \geq m(T - t_j)$, where j ranges over all jobs.

$T_j \leq 1/m \sum t_j \leq T^\ast$.

$T \leq 2T^\ast$, since $t_j \leq T^\ast$.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness
Analysing Greedy-Balance

- Claim: Computed makespan $T \leq 2T^*$.
- Let M_i be the machine whose load is T and j be the last job placed on M_i.
- What was the situation just before placing this job?
Analysing Greedy-Balance

- **Claim:** Computed makespan $T \leq 2T^*$.
- Let M_i be the machine whose load is T and j be the last job placed on M_i.
- What was the situation just before placing this job?
- M_i had the smallest load and its load was $T - t_j$.
- For every machine M_k, load $T_k \geq T - t_j$.

![Diagram showing machines and time intervals](image)
Analysing Greedy-Balance

- Claim: Computed makespan $T \leq 2T^*$.
- Let M_i be the machine whose load is T and j be the last job placed on M_i.
- What was the situation just before placing this job?
 - M_i had the smallest load and its load was $T - t_j$.
- For every machine M_k, load
 $T_k \geq T - t_j$.

\[
\sum_{k} T_k \geq m(T - t_j), \text{ where } k \text{ ranges over all machines}
\]

\[
\sum_{j} t_j \geq m(T - t_j), \text{ where } j \text{ ranges over all jobs}
\]

\[
T - t_j \leq 1/m \sum_{j} t_j \leq T^*
\]

\[
T \leq 2T^*, \text{ since } t_j \leq T^*
\]
Improving the Bound

- It is easy to construct an example for which the greedy algorithm produces a solution close to a factor of 2 away from optimal.
Improving the Bound

- It is easy to construct an example for which the greedy algorithm produces a solution close to a factor of 2 away from optimal.
- How can we improve the algorithm?
Improving the Bound

- It is easy to construct an example for which the greedy algorithm produces a solution close to a factor of 2 away from optimal.
- How can we improve the algorithm?
- What if we process the jobs in decreasing order of processing time?
Sorted-Balance Algorithm

Sorted-Balance:
Start with no jobs assigned
Set $T_i = 0$ and $A(i) = \emptyset$ for all machines M_i
Sort jobs in decreasing order of processing times t_j
Assume that $t_1 \geq t_2 \geq \ldots \geq t_n$
For $j = 1, \ldots, n$
 Let M_i be the machine that achieves the minimum $\min_k T_k$
 Assign job j to machine M_i
 Set $A(i) \leftarrow A(i) \cup \{j\}$
 Set $T_i \leftarrow T_i + t_j$
EndFor
Sorted-Balance Algorithm

Sorted-Balance:
Start with no jobs assigned
Set $T_i = 0$ and $A(i) = \emptyset$ for all machines M_i
Sort jobs in decreasing order of processing times t_j
Assume that $t_1 \geq t_2 \geq \ldots \geq t_n$
For $j = 1, \ldots, n$
 Let M_i be the machine that achieves the minimum $\min_k T_k$
 Assign job j to machine M_i
 Set $A(i) \leftarrow A(i) \cup \{j\}$
 Set $T_i \leftarrow T_i + t_j$
EndFor

- This algorithm assigns the first m jobs to m distinct machines.
Example of Sorted-Balance Algorithm

Job time Jobs

3
2
4
4
3
3
2
2
4
Jobs

Job index

1
2
3
4
5
6
1
1
1
1
Machines

M_1
M_2
M_3
1
1
1
1
8
6
1
1
9
2
1
3
4
10
5
7
1
1

T = T_1
T_2, T_3
Analyzing Sorted-Balance

- Claim: if there are fewer than m jobs, algorithm is optimal.
- Claim: if there are more than m jobs, then $T^* \geq 2t_{m+1}$.

M
Analyzing Sorted-Balance

- Claim: if there are fewer than \(m \) jobs, algorithm is optimal.
- Claim: if there are more than \(m \) jobs, then \(T^* \geq 2t_{m+1} \).
 - Consider only the first \(m + 1 \) jobs in sorted order.
 - Consider any assignment of these \(m + 1 \) jobs to machines.
 - Some machine must be assigned two jobs, each with processing time at least \(t_{m+1} \).
 - This machine will have load at least \(2t_{m+1} \).
Analyzing Sorted-Balance

- Claim: if there are fewer than \(m \) jobs, algorithm is optimal.
- Claim: if there are more than \(m \) jobs, then \(T^* \geq 2t_{m+1} \).
 - Consider only the first \(m + 1 \) jobs in sorted order.
 - Consider any assignment of these \(m + 1 \) jobs to machines.
 - Some machine must be assigned two jobs, each with processing time at least \(t_{m+1} \).
 - This machine will have load at least \(2t_{m+1} \).
- Claim: \(T \leq 3T^*/2 \).
Analyzing Sorted-Balance

- Claim: if there are fewer than \(m \) jobs, algorithm is optimal.
- Claim: if there are more than \(m \) jobs, then \(T^* \geq 2t_{m+1} \).
 - Consider only the first \(m + 1 \) jobs in sorted order.
 - Consider any assignment of these \(m + 1 \) jobs to machines.
 - Some machine must be assigned two jobs, each with processing time at least \(t_{m+1} \).
 - This machine will have load at least \(2t_{m+1} \).
- Claim: \(T \leq 3T^*/2 \).
- Let \(M_i \) be the machine whose load is \(T \) and \(j \) be the last job placed on \(M_i \). \((M_i \) has at least two jobs.)
Analyzing Sorted-Balance

- Claim: if there are fewer than \(m \) jobs, algorithm is optimal.
- Claim: if there are more than \(m \) jobs, then \(T^* \geq 2t_{m+1} \).
 - Consider only the first \(m+1 \) jobs in sorted order.
 - Consider any assignment of these \(m+1 \) jobs to machines.
 - Some machine must be assigned two jobs, each with processing time at least \(t_{m+1} \).
 - This machine will have load at least \(2t_{m+1} \).
- Claim: \(T \leq 3T^*/2 \).
- Let \(M_i \) be the machine whose load is \(T \) and \(j \) be the last job placed on \(M_i \). (\(M_i \) has at least two jobs.)

\[
t_j \leq t_{m+1} \leq T^*/2, \text{ since } j \geq m+1
\]

\[
T - t_j \leq T^*, \text{ Greedy-Balance proof}
\]

\[
T \leq 3T^*/2
\]
Set Cover

Set Cover

INSTANCE: A set U of n elements, a collection S_1, S_2, \ldots, S_m of subsets of U, each with an associated weight w.

SOLUTION: A collection C of sets in the collection such that $\bigcup_{S_i \in C} S_i = U$ and $\sum_{S_i \in C} w_i$ is minimised.
Greedy Approach
Solving NP-Complete Problems

Small Vertex Covers

Trees

Load Balancing

Set Cover

Greedy Approach

1.1

0.25

0.25

0.25

0.25

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness
Greedy Approach

1.1

1.1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
Greedy Approach

1.1 1.1

1

1

1

0.5

0.25

0.25

0.25

1

0.5

0.25

0.25

1
Greedy Approach

Solving \(\mathcal{NP} \)-Complete Problems

Small Vertex Covers

Trees

Load Balancing

Set Cover

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness
Greedy Approach

1.1

1
1
1
1
1
1
1
1
0.25 0.25 0.5 1

0.5
0.25
0.25
0.25
0.25
0.25
0.25
0.25

Solving \(\mathcal{NP} \)-Complete Problems
Small Vertex Covers
Trees
Load Balancing
Set Cover

T. M. Murali
May 5, 7, 2014
Coping with NP-Completeness
Greedy-Set-Cover

To get a greedy algorithm, in what order should we process the sets?
Greedy-Set-Cover

- To get a greedy algorithm, in what order should we process the sets?
- Maintain set R of uncovered elements.
- Process set in decreasing order of $w_i/|S_i \cap R|$.

The algorithm computes a set cover whose weight is at most $O(\log n)$ times the optimal weight (Johnson 1974, Lovász 1975, Chvatal 1979).
Greedy-Set-Cover

To get a greedy algorithm, in what order should we process the sets?
- Maintain set R of uncovered elements.
- Process set in decreasing order of $w_i/|S_i \cap R|$.

Greedy-Set-Cover:

Start with $R = U$ and no sets selected

While $R \neq \emptyset$
 Select set S_i that minimizes $w_i/|S_i \cap R|
 Delete set S_i from R

EndWhile

Return the selected sets
Greedy-Set-Cover

To get a greedy algorithm, in what order should we process the sets?

Maintain set R of uncovered elements.

Process set in decreasing order of $w_i/|S_i \cap R|$.

Greedy-Set-Cover:
Start with $R = U$ and no sets selected

While $R \neq \emptyset$

Select set S_i that minimizes $w_i/|S_i \cap R|

Delete set S_i from R

EndWhile

Return the selected sets

The algorithm computes a set cover whose weight is at most $O(\log n)$ times the optimal weight (Johnson 1974, Lovász 1975, Chvatal 1979).
Add Bookkeeping to Greedy-Set-Cover

- Good lower bounds on the weight w^* of the optimum set cover are not easy to obtain.
Add Bookkeeping to Greedy-Set-Cover

- Good lower bounds on the weight \(w^* \) of the optimum set cover are not easy to obtain.
- Bookkeeping: record the per-element cost paid when selecting \(S_i \).
Add Bookkeeping to Greedy-Set-Cover

- Good lower bounds on the weight w^* of the optimum set cover are not easy to obtain.
- Bookkeeping: record the per-element cost paid when selecting S_i.
- In the algorithm, after selecting S_i, add the line
 \[\text{Define } c_s = w_i / |S_i \cap R| \text{ for all } s \in S_i \cap R. \]
- As each set S_i is selected, distribute its weight over the costs c_s of the newly-covered elements.
- Each element in the universe assigned cost exactly once.
Add Bookkeeping to Greedy-Set-Cover

- Good lower bounds on the weight w^* of the optimum set cover are not easy to obtain.
- Bookkeeping: record the per-element cost paid when selecting S_i.
- In the algorithm, after selecting S_i, add the line

 Define $c_s = w_i / |S_i \cap R|$ for all $s \in S_i \cap R$.

- As each set S_i is selected, distribute its weight over the costs c_s of the newly-covered elements.
- Each element in the universe assigned cost exactly once.
Starting the Analysis of Greedy-Set-Cover

- Let C be the set cover computed by Greedy-Set-Cover.
- Claim: $\sum_{S_i \in C} w_i = \sum_{s \in U} c_s$.

$$\sum_{S_i \in C} w_i = \sum_{S_i \in C} \left(\sum_{s \in S_i \cap R} c_s \right), \text{ by definition of } c_s$$

$$= \sum_{s \in U} c_s, \text{ since each element in the universe contributes exactly once}$$

- In other words, the total weight of the solution computed by Greedy-Set-Cover is the total costs it assigns to the elements in the universe.
- Can “switch” between set-based weight of solution and element-based costs.
- Note: sets have weights whereas Greedy-Set-Cover assigns costs to elements.
Intuition Behind the Proof

- Suppose C^* is the optimal set cover: $w^* = \sum_{S_j \in C^*} w_j$.
- Goal is to relate total weight of sets in C to total weight of sets in C^*.
Intuition Behind the Proof

- Suppose C^* is the optimal set cover: $w^* = \sum_{S_j \in C^*} w_j$.
- Goal is to relate total weight of sets in C to total weight of sets in C^*.
- What is the total cost assigned by \texttt{Greedy-Set-Cover} to the elements in the sets in the optimal cover C^*?
Intuition Behind the Proof

- Suppose C^* is the optimal set cover: \(w^* = \sum_{S_j \in C^*} w_j \).
- Goal is to relate total weight of sets in C to total weight of sets in C^*.
- What is the total cost assigned by \textsc{Greedy-Set-Cover} to the elements in the sets in the optimal cover C^*?

- Since C^* is a set cover, \(\sum_{S_j \in C^*} \left(\sum_{s \in S_j} c_s \right) \geq \sum_{s \in U} c_s = \sum_{S_i \in C} w_i = w \).
Intuition Behind the Proof

► Suppose C^* is the optimal set cover: $w^* = \sum_{S_j \in C^*} w_j$.
► Goal is to relate total weight of sets in C to total weight of sets in C^*.
► What is the total cost assigned by GREEDY-SET-COVER to the elements in the sets in the optimal cover C^*?

► Since C^* is a set cover, $\sum_{S_j \in C^*} \left(\sum_{s \in S_j} c_s \right) \geq \sum_{s \in U} c_s = \sum_{S_i \in C} w_i = w$.
► In the sum on the left, S_j is a set in C^* (need not be a set in C). How large can total cost of elements in such a set be?
Intuition Behind the Proof

- Suppose C^* is the optimal set cover: $w^* = \sum_{S_j \in C^*} w_j$.
- Goal is to relate total weight of sets in C to total weight of sets in C^*.
- What is the total cost assigned by GREEDY-SET-COVER to the elements in the sets in the optimal cover C^*?

Since C^* is a set cover, \[\sum_{S_j \in C^*} \left(\sum_{s \in S_j} c_s \right) \geq \sum_{s \in U} c_s = \sum_{S_i \in C} w_i = w. \]

In the sum on the left, S_j is a set in C^* (need not be a set in C). How large can total cost of elements in such a set be?
- For any set S_k, suppose we can prove $\sum_{s \in S_k} c_s \leq \alpha w_k$, for some fixed $\alpha > 0$, i.e., total cost assigned by GREEDY-SET-COVER to the elements in S_k cannot be much larger than the weight of s_k.
Intuition Behind the Proof

- Suppose C^* is the optimal set cover: $w^* = \sum_{S_j \in C^*} w_j$.
- Goal is to relate total weight of sets in C to total weight of sets in C^*.
- What is the total cost assigned by GREEDY-SET-COVER to the elements in the sets in the optimal cover C^*?

- Since C^* is a set cover, $\sum_{S_j \in C^*} \left(\sum_{s \in S_j} c_s \right) \geq \sum_{s \in U} c_s = \sum_{S_i \in C} w_i = w$.
- In the sum on the left, S_j is a set in C^* (need not be a set in C). How large can total cost of elements in such a set be?
- For any set S_k, suppose we can prove $\sum_{s \in S_k} c_s \leq \alpha w_k$, for some fixed $\alpha > 0$, i.e., total cost assigned by GREEDY-SET-COVER to the elements in S_k cannot be much larger than the weight of s_k.

- Then $\sum_{S_j \in C^*} \left(\sum_{s \in S_j} c_s \right) \leq \sum_{S_j \in C^*} \alpha w_j = \alpha w^*$.
Intuition Behind the Proof

- Suppose C^* is the optimal set cover: $w^* = \sum_{S_j \in C^*} w_j$.
- Goal is to relate total weight of sets in C to total weight of sets in C^*.
- What is the total cost assigned by \textsc{Greedy-Set-Cover} to the elements in the sets in the optimal cover C^*?

Since C^* is a set cover, \[
\sum_{S_j \in C^*} \left(\sum_{s \in S_j} c_s \right) \geq \sum_{s \in U} c_s = \sum_{S_i \in C} w_i = w.
\]

In the sum on the left, S_j is a set in C^* (need not be a set in C). How large can total cost of elements in such a set be?

For any set S_k, suppose we can prove $\sum_{s \in S_k} c_s \leq \alpha w_k$, for some fixed $\alpha > 0$, i.e., total cost assigned by \textsc{Greedy-Set-Cover} to the elements in S_k cannot be much larger than the weight of s_k.

Then $w \leq \sum_{S_j \in C^*} \left(\sum_{s \in S_j} c_s \right) \leq \sum_{S_j \in C^*} \alpha w_j = \alpha w^*$.

For every set S_k in the input, goal is to prove an upper bound on $\frac{\sum_{s \in S_k} c_s}{w_k}$.
Upper Bounding Cost-by-Weight Ratio

- Consider any set S_k (even one not selected by the algorithm).
- How large can $\frac{\sum_{s \in S_k} c_s}{w_k}$ get?
Upper Bounding Cost-by-Weight Ratio

- Consider any set S_k (even one not selected by the algorithm).

- How large can $\sum_{s \in S_k} \frac{c_s}{w_k}$ get?

- The harmonic function

$$H(n) = \sum_{i=1}^{n} \frac{1}{i} = \Theta(\ln n).$$
Consider any set S_k (even one not selected by the algorithm).

How large can $\frac{\sum_{s \in S_k} c_s}{w_k}$ get?

The harmonic function

$$H(n) = \sum_{i=1}^{n} \frac{1}{i} = \Theta(\ln n).$$

Claim: For every set S_k, the sum $\sum_{s \in S_k} c_s \leq H(|S_k|)w_k$.
Renumbering Elements in S_k

- Renumber elements in U so that elements in S_k are the first $d = |S_k|$ elements of U, i.e., $S_k = \{s_1, s_2, \ldots, s_d\}$.
- Order elements of S in the order they get covered by the algorithm (i.e., when they get assigned a cost by \textsc{Greedy-Set-Cover}).
Renumbering Elements in S_k

- Renumber elements in U so that elements in S_k are the first $d = |S_k|$ elements of U, i.e., $S_k = \{s_1, s_2, \ldots, s_d\}$.
- Order elements of S in the order they get covered by the algorithm (i.e., when they get assigned a cost by Greedy-Set-Cover).
Proving $\sum_{s \in S_k} c_s \leq H(|S_K|)w_k$

- What happens in the iteration when the algorithm covers element $s_j \in S_k, j \leq d$?
Proving $\sum_{s \in S_k} c_s \leq H(|S_k|)w_k$

- What happens in the iteration when the algorithm covers element $s_j \in S_k, j \leq d$?
- At the start of this iteration, R must contain $s_j, s_{j+1}, \ldots s_d$, i.e., $|S_k \cap R| \geq d - j + 1$. ($R$ may contain other elements of S_k as well.)
Proving $\sum_{s \in S_k} c_s \leq H(|S_k|)w_k$

- What happens in the iteration when the algorithm covers element $s_j \in S_k, j \leq d$?

- At the start of this iteration, R must contain $s_j, s_{j+1}, \ldots s_d$, i.e., $|S_k \cap R| \geq d - j + 1$. ($R$ may contain other elements of S_k as well.)

- Therefore, $\frac{w_k}{|S_k \cap R|} \leq \frac{w_k}{d - j + 1}$.
Proving $\sum_{s \in S_k} c_s \leq H(|S_k|)w_k$

- What happens in the iteration when the algorithm covers element $s_j \in S_k, j \leq d$?
- At the start of this iteration, R must contain $s_j, s_{j+1}, \ldots s_d$, i.e., $|S_k \cap R| \geq d - j + 1$. ($R$ may contain other elements of S_k as well.)
- Therefore, $\frac{w_k}{|S_k \cap R|} \leq \frac{w_k}{d - j + 1}$.
- What cost did the algorithm assign to s_j?
- Suppose the algorithm selected set S_i in this iteration. $c_{s_j} = \frac{w_i}{|S_i \cap R|} \leq \frac{w_k}{|S_k \cap R|} \leq \frac{w_k}{d - j + 1}$.

$\sum_{s \in S_k} c_s = d \sum_{j=1}^{d} c_{s_j} \leq d \sum_{j=1}^{d} \frac{w_k}{d - j + 1} = H(d)w_k$.

1. Proving $\sum_{s \in S_k} c_s \leq H(|S_k|)w_k$
Proving $\sum_{s \in S_k} c_s \leq H(|S_K|)w_k$

- What happens in the iteration when the algorithm covers element $s_j \in S_k$, $j \leq d$?
- At the start of this iteration, R must contain $s_j, s_{j+1}, \ldots s_d$, i.e., $|S_k \cap R| \geq d - j + 1$. ($R$ may contain other elements of S_k as well.)
- Therefore, $\frac{w_k}{|S_k \cap R|} \leq \frac{w_k}{d - j + 1}$.
- What cost did the algorithm assign to s_j?
- Suppose the algorithm selected set S_i in this iteration.
 $c_{s_j} = \frac{w_i}{|S_i \cap R|} \leq \frac{w_k}{|S_k \cap R|} \leq \frac{w_k}{d - j + 1}$.
- We are done!

$$\sum_{s \in S_k} c_s = \sum_{j=1}^{d} c_{s_j} \leq \sum_{j=1}^{d} \frac{w_k}{d - j + 1} = H(d)w_k.$$
Proving Upper Bound on Cost of Greedy-Set-Cover

- Let us assume $\sum_{s \in S_k} c_s \leq H(|S_K|)w_k$.
- Let d^* be the size of the largest set in the collection.
- Recall that C^* is the optimal set cover and $w^* = \sum_{S_i \in C^*} w_i$.
Proving Upper Bound on Cost of Greedy-Set-Cover

- Let us assume $\sum_{s \in S_k} c_s \leq H(|S_K|)w_k$.
- Let d^* be the size of the largest set in the collection.
- Recall that C^* is the optimal set cover and $w^* = \sum_{S_i \in C^*} w_i$.
- For each set S_j in C^*, we have $w_j \geq \frac{\sum_{s \in S_j} c_s}{H(|S_i|)} \geq \frac{\sum_{s \in S_j} c_s}{H(d^*)}$.
- Combining with $\sum_{S_i \in C} w_i = \sum_{s \in U} c_s$, we have $w^* = \sum_{S_j \in C^*} w_j$
Proving Upper Bound on Cost of Greedy-Set-Cover

- Let us assume $\sum_{s \in S_k} c_s \leq H(|S_k|)w_k$.
- Let d^* be the size of the largest set in the collection.
- Recall that C^* is the optimal set cover and $w^* = \sum_{S_i \in C^*} w_i$.
- For each set S_j in C^*, we have $w_j \geq \frac{\sum_{s \in S_j} c_s}{H(|S_j|)} \geq \frac{\sum_{s \in S_j} c_s}{H(d^*)}$.
- Combining with $\sum_{S_i \in C} w_i = \sum_{s \in U} c_s$, we have

$$w^* = \sum_{S_j \in C^*} w_j \geq \sum_{S_j \in C^*} \frac{1}{H(d^*)} \sum_{s \in S_j} c_s \geq \frac{1}{H(d^*)} \sum_{s \in U} c_s$$
Proving Upper Bound on Cost of Greedy-Set-Cover

- Let us assume $\sum_{s \in S_k} c_s \leq H(|S_K|) w_k$.
- Let d^* be the size of the largest set in the collection.
- Recall that C^* is the optimal set cover and $w^* = \sum_{S_i \in C^*} w_i$.
- For each set S_j in C^*, we have $w_j \geq \frac{\sum_{s \in S_j} c_s}{H(|S_i|)} \geq \frac{\sum_{s \in S_j} c_s}{H(d^*)}$.
- Combining with $\sum_{S_i \in C} w_i = \sum_{s \in U} c_s$, we have

$$w^* = \sum_{S_j \in C^*} w_j \geq \sum_{S_j \in C^*} \frac{1}{H(d^*)} \sum_{s \in S_j} c_s \geq \frac{1}{H(d^*)} \sum_{s \in U} c_s = \frac{1}{H(d^*)} \sum_{S_i \in C} w_i = w.$$
Proving Upper Bound on Cost of Greedy-Set-Cover

- Let us assume $\sum_{s \in S_k} c_s \leq H(|S_K|)w_k$.
- Let d^* be the size of the largest set in the collection.
- Recall that C^* is the optimal set cover and $w^* = \sum_{S_i \in C^*} w_i$.
- For each set S_j in C^*, we have $w_j \geq \frac{\sum_{s \in S_j} c_s}{H(|S_i|)} \geq \frac{\sum_{s \in S_j} c_s}{H(d^*)}$.
- Combining with $\sum_{S_i \in C} w_i = \sum_{s \in U} c_s$, we have

\[w^* = \sum_{S_j \in C^*} w_j \geq \sum_{S_j \in C^*} \frac{1}{H(d^*)} \sum_{s \in S_j} c_s \geq \frac{1}{H(d^*)} \sum_{s \in U} c_s = \frac{1}{H(d^*)} \sum_{S_i \in C} w_i = w. \]

- We have proven that GREEDY-SET-COVER computes a set cover whose weight is at most $H(d^*)$ times the optimal weight.
How Badly Can Greedy-Set-Cover Perform?

- Generalise this example to show that algorithm produces a set cover of weight $\Omega(\log n)$ even though optimal weight is $2 + \varepsilon$.
- More complex constructions show greedy algorithm incurs a weight close to $H(n)$ times the optimal weight.
How Badly Can Greedy-Set-Cover Perform?

- Generalise this example to show that algorithm produces a set cover of weight $\Omega(\log n)$ even though optimal weight is $2 + \varepsilon$.
- More complex constructions show greedy algorithm incurs a weight close to $H(n)$ times the optimal weight.
- No polynomial time algorithm can achieve an approximation bound better than $H(n)$ times optimal unless $P = NP$ (Lund and Yannakakis, 1994).