Divide and Conquer Algorithms

T. M. Murali

March 19 and 24, 2013
Divide and Conquer Algorithms

- Study three divide and conquer algorithms:
 - Counting inversions.
 - Finding the closest pair of points.
 - Integer multiplication.

- First two problems use clever conquer strategies.
- Third problem uses a clever divide strategy.
Motivation

- Collaborative filtering: match one user’s preferences to those of other users, e.g., music.
- Meta-search engines: merge results of multiple search engines to into a better search result.
Motivation

- Collaborative filtering: match one user’s preferences to those of other users, e.g., music.
- Meta-search engines: merge results of multiple search engines to into a better search result.
- Fundamental question: how do we compare a pair of rankings?
 - My ranking of songs: ordered list of integers from 1 to n.
 - Your ranking of songs: a_1, a_2, \ldots, a_n, a permutation of the integers from 1 to n.

\begin{tabular}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\end{tabular}

\begin{tabular}{cccccccccccc}
4 & 1 & 2 & 6 & 8 & 5 & 3 & 9 & 7 & 11 & 12 & 10 \\
\end{tabular}
Comparing Rankings

1 2 3 4 5 6 7 8 9 10 11 12

4 1 2 6 8 5 3 9 7 11 12 10

Suggestion: two rankings of songs are very similar if they have few inversions.
Comparing Rankings

- Suggestion: two rankings of songs are very similar if they have few inversions.
 - The second ranking has an *inversion* if there exist \(i, j \) such that \(i < j \) but \(a_i > a_j \).
 - The number of inversions \(s \) is a measure of the difference between the rankings.

- Question also arises in statistics: *Kendall’s rank correlation* of two lists of numbers is \(1 - 2s/(n(n-1)) \).
Counting Inversions

Count Inversions

INSTANCE: A list \(L = x_1, x_2, \ldots, x_n \) of distinct integers between 1 and \(n \).

SOLUTION: The number of pairs \((i, j), 1 \leq i < j \leq n\) such \(x_i > x_j \).
Counting Inversions

Count Inversions

Instance: A list \(L = x_1, x_2, \ldots, x_n \) of distinct integers between 1 and \(n \).

Solution: The number of pairs \((i, j), 1 \leq i < j \leq n\) such \(x_i > x_j \).
Count Inversions

Instance: A list \(L = x_1, x_2, \ldots, x_n \) of distinct integers between 1 and \(n \).

Solution: The number of pairs \((i, j), 1 \leq i < j \leq n\) such \(x_i > x_j \).
Counting Inversions: Algorithm

- How many inversions can be there in a list of n numbers?
Counting Inversions: Algorithm

- How many inversions can be there in a list of \(n \) numbers? \(\Omega(n^2) \). We cannot afford to compute each inversion explicitly.

```
4 1 2 6 8 5 3 9 7 11 12 10
```

4 1 2 6 8 5 3 9 7 11 12 10
Counting Inversions: Algorithm

- How many inversions can be there in a list of \(n \) numbers? \(\Omega(n^2) \). We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in \(O(n \log n) \) time. Can we modify the Mergesort algorithm to count inversions?
Counting Inversions: Algorithm

- How many inversions can be there in a list of n numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?
- Candidate algorithm:
 1. Partition L into two lists A and B of size $n/2$ each.
 2. Recursively count the number of inversions in A.
 3. Recursively count the number of inversions in B.
 4. Count the number of inversions involving one element in A and one element in B.

4 1 2 6 8 5 3 9 7 11 12 10
Counting Inversions: Algorithm

- How many inversions can be there in a list of n numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?
- Candidate algorithm:
 1. Partition L into two lists A and B of size $n/2$ each.
 2. Recursively count the number of inversions in A.
 3. Recursively count the number of inversions in B.
 4. Count the number of inversions involving one element in A and one element in B.

```
4 1 2 6 8 5 3 9 7 11 12 10
```
Counting Inversions: Algorithm

▷ How many inversions can be there in a list of \(n \) numbers? \(\Omega(n^2) \). We cannot afford to compute each inversion explicitly.

▷ Sorting removes all inversions in \(O(n \log n) \) time. Can we modify the Mergesort algorithm to count inversions?

▷ Candidate algorithm:

1. Partition \(L \) into two lists \(A \) and \(B \) of size \(n/2 \) each.
2. Recursively count the number of inversions in \(A \).
3. Recursively count the number of inversions in \(B \).
4. Count the number of inversions involving one element in \(A \) and one element in \(B \).
Counting Inversions: Algorithm

- How many inversions can be there in a list of n numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?
- Candidate algorithm:
 1. Partition L into two lists A and B of size $n/2$ each.
 2. Recursively count the number of inversions in A.
 3. Recursively count the number of inversions in B.
 4. Count the number of inversions involving one element in A and one element in B.

\[
\begin{array}{cccccccccc}
4 & 1 & 2 & 6 & 8 & 5 & 3 & 9 & 7 & 11 & 12 & 10 \\
\end{array}
\]
Counting Inversions: Conquer Step

Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.
Counting Inversions: Conquer Step

- Given lists \(A = a_1, a_2, \ldots, a_m \) and \(B = b_1, b_2, \ldots b_m \), compute the number of pairs \(a_i \) and \(b_j \) such \(a_i > b_j \).
- Key idea: problem is much easier if \(A \) and \(B \) are sorted!
Given lists \(A = a_1, a_2, \ldots, a_m \) and \(B = b_1, b_2, \ldots b_m \), compute the number of pairs \(a_i \) and \(b_j \) such \(a_i > b_j \).

Key idea: problem is much easier if \(A \) and \(B \) are sorted!

Merge procedure:
1. Maintain a *current* pointer for each list.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 4.1 Let \(a_i \) and \(b_j \) be the elements pointed to by the *current* pointers.
 4.2 Append the smaller of the two to the output list.
 4.4 Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return the merged list.
Counting Inversions: Conquer Step

Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.

Key idea: problem is much easier if A and B are sorted!

Merge-and-Count procedure:

1. Maintain a current pointer for each list.
2. Maintain a variable count initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 4.1 Let a_i and b_j be the elements pointed to by the current pointers.
 4.2 Append the smaller of the two to the output list.
 4.3 If $b_j < a_i$, increment count by the number of elements remaining in A.
 4.4 Advance current in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return count and the merged list.
Given lists \(A = a_1, a_2, \ldots, a_m \) and \(B = b_1, b_2, \ldots, b_m \), compute the number of pairs \(a_i \) and \(b_j \) such \(a_i > b_j \).

Key idea: problem is much easier if \(A \) and \(B \) are sorted!

Merge-and-Count procedure:

1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 4.1 Let \(a_i \) and \(b_j \) be the elements pointed to by the *current* pointers.
 4.2 Append the smaller of the two to the output list.
 4.3 If \(b_j < a_i \), increment *count* by the number of elements remaining in \(A \).
 4.4 Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return *count* and the merged list.

Running time of this algorithm is \(O(m) \).
Counting Inversions: Conquer Step

Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.

Key idea: problem is much easier if A and B are sorted!

Merge-and-Count procedure:

1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let a_i and b_j be the elements pointed to by the *current* pointers.
 2. Append the smaller of the two to the output list.
 3. If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 4. Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return *count* and the merged list.

Running time of this algorithm is $O(m)$.
Counting Inversions: Conquer Step

\[count = 0 \]

- Given lists \(A = a_1, a_2, \ldots, a_m \) and \(B = b_1, b_2, \ldots b_m \), compute the number of pairs \(a_i \) and \(b_j \) such \(a_i > b_j \).
- Key idea: problem is much easier if \(A \) and \(B \) are sorted!
- Merge-and-Count procedure:
 1. Maintain a current pointer for each list.
 2. Maintain a variable \(count \) initialised to 0.
 3. Initialise each pointer to the front of the list.
 4. While both lists are nonempty:
 4.1 Let \(a_i \) and \(b_j \) be the elements pointed to by the current pointers.
 4.2 Append the smaller of the two to the output list.
 4.3 If \(b_j < a_i \), increment \(count \) by the number of elements remaining in \(A \).
 4.4 Advance current in the list containing the smaller element.
 5. Append the rest of the non-empty list to the output.
 6. Return \(count \) and the merged list.
- Running time of this algorithm is \(O(m) \).
Counting Inversions: Conquer Step

\[\text{count} = 0 \]

Given lists \(A = a_1, a_2, \ldots, a_m \) and \(B = b_1, b_2, \ldots b_m \), compute the number of pairs \(a_i \) and \(b_j \) such \(a_i > b_j \).

Key idea: problem is much easier if \(A \) and \(B \) are sorted!

Merge-and-Count procedure:

1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 4.1 Let \(a_i \) and \(b_j \) be the elements pointed to by the *current* pointers.
 4.2 Append the smaller of the two to the output list.
 4.3 If \(b_j < a_i \), increment \(\text{count} \) by the number of elements remaining in \(A \).
 4.4 Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return \(\text{count} \) and the merged list.

Running time of this algorithm is \(O(m) \).
Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.

Key idea: problem is much easier if A and B are sorted!

Merge-and-Count procedure:

1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let a_i and b_j be the elements pointed to by the *current* pointers.
 2. Append the smaller of the two to the output list.
 3. If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 4. Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return *count* and the merged list.

Running time of this algorithm is $O(m)$.
Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.

Key idea: problem is much easier if A and B are sorted!

Merge-and-Count procedure:

1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 1. Let a_i and b_j be the elements pointed to by the *current* pointers.
 2. Append the smaller of the two to the output list.
 3. If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 4. Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return *count* and the merged list.

Running time of this algorithm is $O(m)$.

Note:

- **Merge** - and **Count**
Counting Inversions: Conquer Step

\[\text{count} = 4 \]

Given lists \(A = a_1, a_2, \ldots, a_m \) and \(B = b_1, b_2, \ldots, b_m \), compute the number of pairs \(a_i \) and \(b_j \) such \(a_i > b_j \).

Key idea: problem is much easier if \(A \) and \(B \) are sorted!

Merge-and-Count procedure:
1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 4.1 Let \(a_i \) and \(b_j \) be the elements pointed to by the *current* pointers.
 4.2 Append the smaller of the two to the output list.
 4.3 If \(b_j < a_i \), increment *count* by the number of elements remaining in \(A \).
 4.4 Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return *count* and the merged list.

Running time of this algorithm is \(O(m) \).
Given lists \(A = a_1, a_2, \ldots, a_m \) and \(B = b_1, b_2, \ldots b_m \), compute the number of pairs \(a_i \) and \(b_j \) such \(a_i > b_j \).

Key idea: problem is much easier if \(A \) and \(B \) are sorted!

Merge-and-Count procedure:

1. Maintain a current pointer for each list.
2. Maintain a variable \(count \) initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 4.1 Let \(a_i \) and \(b_j \) be the elements pointed to by the current pointers.
 4.2 Append the smaller of the two to the output list.
 4.3 If \(b_j < a_i \), increment \(count \) by the number of elements remaining in \(A \).
 4.4 Advance current in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return \(count \) and the merged list.

Running time of this algorithm is \(O(m) \).
Counting Inversions: Conquer Step

Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.

Key idea: problem is much easier if A and B are sorted!

Merge-and-Count procedure:

1. Maintain a current pointer for each list.
2. Maintain a variable count initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 4.1 Let a_i and b_j be the elements pointed to by the current pointers.
 4.2 Append the smaller of the two to the output list.
 4.3 If $b_j < a_i$, increment count by the number of elements remaining in A.
 4.4 Advance current in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return count and the merged list.

Running time of this algorithm is $O(m)$.

$\text{count} = 5$

1 2 4 5 6 8 3 7 9 10 11 12
Counting Inversions: Conquer Step

Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.

Key idea: problem is much easier if A and B are sorted!

Merge-and-Count procedure:
1. Maintain a current pointer for each list.
2. Maintain a variable $count$ initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 4.1 Let a_i and b_j be the elements pointed to by the current pointers.
 4.2 Append the smaller of the two to the output list.
 4.3 If $b_j < a_i$, increment $count$ by the number of elements remaining in A.
 4.4 Advance current in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return $count$ and the merged list.

Running time of this algorithm is $O(m)$.

$\text{count} = 5$
Counting Inversions: Conquer Step

- Given lists $A = a_1, a_2, \ldots, a_m$ and $B = b_1, b_2, \ldots b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.
- Key idea: problem is much easier if A and B are sorted!
- **Merge-and-Count** procedure:
 1. Maintain a *current* pointer for each list.
 2. Maintain a variable *count* initialised to 0.
 3. Initialise each pointer to the front of the list.
 4. While both lists are nonempty:
 4.1 Let a_i and b_j be the elements pointed to by the *current* pointers.
 4.2 Append the smaller of the two to the output list.
 4.3 If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 4.4 Advance *current* in the list containing the smaller element.
 5. Append the rest of the non-empty list to the output.
 6. Return *count* and the merged list.
- Running time of this algorithm is $O(m)$.

```plaintext
4 12 6 85 3 9 7 11 12 10
```

```
count = 5
```
Counting Inversions: Conquer Step

Given lists \(A = a_1, a_2, \ldots, a_m \) and \(B = b_1, b_2, \ldots b_m \), compute the number of pairs \(a_i \) and \(b_j \) such \(a_i > b_j \).

Key idea: problem is much easier if \(A \) and \(B \) are sorted!

Merge-and-Count procedure:

1. Maintain a *current* pointer for each list.
2. Maintain a variable *count* initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:
 4.1 Let \(a_i \) and \(b_j \) be the elements pointed to by the *current* pointers.
 4.2 Append the smaller of the two to the output list.
 4.3 If \(b_j < a_i \), increment *count* by the number of elements remaining in \(A \).
 4.4 Advance *current* in the list containing the smaller element.
5. Append the rest of the non-empty list to the output.
6. Return *count* and the merged list.

Running time of this algorithm is \(O(m) \).
Counting Inversions: Final Algorithm

Sort-and-Count(L)

If the list has one element then
 there are no inversions
Else
 Divide the list into two halves:
 A contains the first $\lfloor n/2 \rfloor$ elements
 B contains the remaining $\lceil n/2 \rceil$ elements
 ($r_A, A) = \text{Sort-and-Count}(A)$
 ($r_B, B) = \text{Sort-and-Count}(B)$
 ($r, L) = \text{Merge-and-Count}(A, B)$
Endif

Return $r = r_A + r_B + r$, and the sorted list L
Counting Inversions: Final Algorithm

Sort-and-Count(L)

If the list has one element then
 there are no inversions
Else
 Divide the list into two halves:
 A contains the first \([n/2]\) elements
 B contains the remaining \([n/2]\) elements
 \((r_A, A) = \text{Sort-and-Count}(A)\)
 \((r_B, B) = \text{Sort-and-Count}(B)\)
 \((r, L) = \text{Merge-and-Count}(A, B)\)
Endif
Return \(r = r_A + r_B + r\), and the sorted list \(L\)

▶ Running time \(T(n)\) of the algorithm is \(O(n \log n)\) because
\(T(n) \leq 2T(n/2) + O(n)\).
Counting Inversions: Correctness of Sort-and-Count

- Prove by induction. **Strategy:** every inversion in the data is counted exactly once.
Counting Inversions: Correctness of Sort-and-Count

- Prove by induction. **Strategy:** every inversion in the data is counted exactly once.

- **Base case:** \(n = 1 \).

- **Inductive hypothesis:** Algorithm counts number of inversions correctly for all sets of \(n - 1 \) or fewer numbers.

- **Inductive step:** Pick an arbitrary \(k \) and \(l \) such that \(k < l \) but \(x_k > x_l \). When is this inversion counted by the algorithm?
 - \(k, l \leq \lfloor n/2 \rfloor \):
 - \(k, l \geq \lceil n/2 \rceil \):
 - \(k \leq \lfloor n/2 \rfloor, l \geq \lceil n/2 \rceil \):
Counting Inversions: Correctness of Sort-and-Count

- Prove by induction. **Strategy:** every inversion in the data is counted exactly once.
- **Base case:** \(n = 1 \).
- **Inductive hypothesis:** Algorithm counts number of inversions correctly for all sets of \(n - 1 \) or fewer numbers.
- **Inductive step:** Pick an arbitrary \(k \) and \(l \) such that \(k < l \) but \(x_k > x_l \). When is this inversion counted by the algorithm?
 - \(k, l \leq \lceil n/2 \rceil \): \(x_k, x_l \in A \), counted in \(r_A \).
 - \(k, l \geq \lceil n/2 \rceil \): \(x_k, x_l \in B \), counted in \(r_B \).
 - \(k \leq \lfloor n/2 \rfloor, l \geq \lceil n/2 \rceil \):
Counting Inversions: Correctness of Sort-and-Count

- Prove by induction. **Strategy:** every inversion in the data is counted exactly once.
- **Base case:** $n = 1$.
- **Inductive hypothesis:** Algorithm counts number of inversions correctly for all sets of $n - 1$ or fewer numbers.
- **Inductive step:** Pick an arbitrary k and l such that $k < l$ but $x_k > x_l$. When is this inversion counted by the algorithm?
 - $k, l \leq \lfloor n/2 \rfloor$: $x_k, x_l \in A$, counted in r_A.
 - $k, l \geq \lceil n/2 \rceil$: $x_k, x_l \in B$, counted in r_B.
 - $k \leq \lfloor n/2 \rfloor, l \geq \lceil n/2 \rceil$: $x_k \in A, x_l \in B$. Is this inversion counted by **Merge-and-Count**?

Count = 5

1 2 4 5 6 8 3 7 9 10 11 12
Counting Inversions: Correctness of Sort-and-Count

- Prove by induction. Strategy: every inversion in the data is counted exactly once.
- Base case: $n = 1$.
- Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of $n - 1$ or fewer numbers.
- Inductive step: Pick an arbitrary k and l such that $k < l$ but $x_k > x_l$. When is this inversion counted by the algorithm?
 - $k, l \leq \lfloor n/2 \rfloor$: $x_k, x_l \in A$, counted in r_A.
 - $k, l \geq \lceil n/2 \rceil$: $x_k, x_l \in B$, counted in r_B.
 - $k \leq \lfloor n/2 \rfloor, l \geq \lceil n/2 \rceil$: $x_k \in A, x_l \in B$. Is this inversion counted by \text{Merge-and-Count}? Yes, when x_l is output.
Counting Inversions: Correctness of Sort-and-Count

- Prove by induction. Strategy: every inversion in the data is counted exactly once.
- Base case: \(n = 1 \).
- Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of \(n - 1 \) or fewer numbers.
- Inductive step: Pick an arbitrary \(k \) and \(l \) such that \(k < l \) but \(x_k > x_l \). When is this inversion counted by the algorithm?
 - \(k, l \leq \lfloor n/2 \rfloor \): \(x_k, x_l \in A \), counted in \(r_A \).
 - \(k, l \geq \lceil n/2 \rceil \): \(x_k, x_l \in B \), counted in \(r_B \).
 - \(k \leq \lfloor n/2 \rfloor, l \geq \lceil n/2 \rceil \): \(x_k \in A, x_l \in B \). Is this inversion counted by Merge-and-Count? Yes, when \(x_l \) is output.
 - Why is no non-inversion counted, i.e., Why does every pair counted correspond to an inversion?

\[
\text{count} = 5
\]
Counting Inversions: Correctness of Sort-and-Count

- Prove by induction. Strategy: every inversion in the data is counted exactly once.
- Base case: $n = 1$.
- Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of $n - 1$ or fewer numbers.
- Inductive step: Pick an arbitrary k and l such that $k < l$ but $x_k > x_l$. When is this inversion counted by the algorithm?
 - $k, l \leq \lfloor n/2 \rfloor$: $x_k, x_l \in A$, counted in r_A.
 - $k, l \geq \lceil n/2 \rceil$: $x_k, x_l \in B$, counted in r_B.
 - $k \leq \lfloor n/2 \rfloor, l \geq \lceil n/2 \rceil$: $x_k \in A, x_l \in B$. Is this inversion counted by **Merge-and-Count**? Yes, when x_l is output.
- Why is no non-inversion counted, i.e., Why does every pair counted correspond to an inversion? When x_l is output, it is smaller than all remaining elements in A, since A is sorted.

\[
\text{count} = 5
\]
Integer Multiplication

Multiply Integers

INSTANCE: Two n-digit binary integers x and y

SOLUTION: The product xy
Integer Multiplication

Multiply Integers

INSTANCE: Two n-digit binary integers x and y

SOLUTION: The product xy

- Multiply two n-digit integers.
Integer Multiplication

MULTIPLY INTEGERS

INSTANCE: Two n-digit binary integers x and y

SOLUTION: The product xy

- Multiply two n-digit integers.
- Result has at most $2n$ digits.
Integer Multiplication

MUNIPLY INTEGERS

INSTANCE: Two \(n \)-digit binary integers \(x \) and \(y \)

SOLUTION: The product \(xy \)

- Multiply two \(n \)-digit integers.
- Result has at most \(2n \) digits.
- Algorithm we learnt in school takes

\[
\begin{array}{c}
 \underline{1100} \\
 \times \underline{1101} \\
\end{array}
\]

\[
\begin{array}{c}
 12 \\
 \times \underline{13} \\
 \underline{36} \\
 12 \\
\end{array} \quad \begin{array}{c}
 1100 \\
 \underline{0000} \\
 1100 \\
 1100 \\
\end{array} \\
\]

\[
\begin{array}{c}
 156 \\
\end{array} \quad \begin{array}{c}
 10011100 \\
\end{array}
\]

Figure 5.8 The elementary-school algorithm for multiplying two integers, in (a) decimal and (b) binary representation.
Integer Multiplication

Multiply Integers

INSTANCE: Two n-digit binary integers x and y

SOLUTION: The product xy

- Multiply two n-digit integers.
- Result has at most $2n$ digits.
- Algorithm we learnt in school takes $O(n^2)$ operations. **Size of the input is not 2 but** $2n$,

$$
\begin{array}{c}
1100 \\
\times 1101 \\
\hline
1100 \\
0000 \\
1100 \\
1100 \\
\hline
1001100
\end{array}
$$

(a) (b)

Figure 5.8 The elementary-school algorithm for multiplying two integers, in (a) decimal and (b) binary representation.
Counting Inversions

Integer Multiplication

Closest Pair of Points

Divide-and-Conquer Algorithm

- Assume integers are binary.
- Let us use divide and conquer.

Algorithm: each of x_1, x_0, y_1, y_0 has $n/2$ bits, so we can compute x_1y_1, x_1y_0, x_0y_1, and x_0y_0 recursively, and merge the answers in $O(n)$ time.

What is the running time $T(n)$?

$$T(n) \leq 4T(n/2) + cn \leq O(n^2).$$
Divide-and-Conquer Algorithm

- Assume integers are binary.
- Let us use divide and conquer by splitting each number into first $n/2$ bits and last $n/2$ bits.
- Let x be split into x_0 (lower-order bits) and x_1 (higher-order bits) and y into y_0 (lower-order bits) and y_1 (higher-order bits).

$$xy =$$
Divide-and-Conquer Algorithm

- Assume integers are binary.
- Let us use divide and conquer by splitting each number into first $n/2$ bits and last $n/2$ bits.
- Let x be split into x_0 (lower-order bits) and x_1 (higher-order bits) and y into y_0 (lower-order bits) and y_1 (higher-order bits).

\[
xy = (x_12^{n/2} + x_0)(y_12^{n/2} + y_0) = x_1y_12^n + (x_1y_0 + x_0y_1)2^{n/2} + x_0y_0.
\]
Divide-and-Conquer Algorithm

- Assume integers are binary.
- Let us use divide and conquer by splitting each number into first $n/2$ bits and last $n/2$ bits.
- Let x be split into x_0 (lower-order bits) and x_1 (higher-order bits) and y into y_0 (lower-order bits) and y_1 (higher-order bits).

\[
x y = (x_1 2^{n/2} + x_0)(y_1 2^{n/2} + y_0)
\]
\[
= x_1 y_1 2^n + (x_1 y_0 + x_0 y_1)2^{n/2} + x_0 y_0.
\]

- Algorithm: each of x_1, x_0, y_1, y_0 has $n/2$ bits, so we can compute $x_1 y_1$, $x_1 y_0$, $x_0 y_1$, and $x_0 y_0$ recursively, and merge the answers in $O(n)$ time.
Divide-and-Conquer Algorithm

- Assume integers are binary.
- Let us use divide and conquer by splitting each number into first $n/2$ bits and last $n/2$ bits.
- Let x be split into x_0 (lower-order bits) and x_1 (higher-order bits) and y into y_0 (lower-order bits) and y_1 (higher-order bits).

\[
xy = (x_12^{n/2} + x_0)(y_12^{n/2} + y_0) \\
= x_1y_12^n + (x_1y_0 + x_0y_1)2^{n/2} + x_0y_0.
\]

- Algorithm: each of x_1, x_0, y_1, y_0 has $n/2$ bits, so we can compute $x_1y_1, x_1y_0, x_0y_1,$ and x_0y_0 recursively, and merge the answers in $O(n)$ time.
- What is the running time $T(n)$?
Divide-and-Conquer Algorithm

- Assume integers are binary.
- Let us use divide and conquer by splitting each number into first \(n/2 \) bits and last \(n/2 \) bits.
- Let \(x \) be split into \(x_0 \) (lower-order bits) and \(x_1 \) (higher-order bits) and \(y \) into \(y_0 \) (lower-order bits) and \(y_1 \) (higher-order bits).

\[
xy = (x_1 2^{n/2} + x_0)(y_1 2^{n/2} + y_0) \\
= x_1 y_1 2^n + (x_1 y_0 + x_0 y_1)2^{n/2} + x_0 y_0.
\]

- Algorithm: each of \(x_1, x_0, y_1, y_0 \) has \(n/2 \) bits, so we can compute \(x_1 y_1, x_1 y_0, x_0 y_1, \) and \(x_0 y_0 \) recursively, and merge the answers in \(O(n) \) time.
- What is the running time \(T(n) \)?

\[
T(n) \leq 4T(n/2) + cn
\]
Divide-and-Conquer Algorithm

- Assume integers are binary.
- Let us use divide and conquer by splitting each number into first \(n/2 \) bits and last \(n/2 \) bits.
- Let \(x \) be split into \(x_0 \) (lower-order bits) and \(x_1 \) (higher-order bits) and \(y \) into \(y_0 \) (lower-order bits) and \(y_1 \) (higher-order bits).

\[
xy = (x_1 2^{n/2} + x_0)(y_1 2^{n/2} + y_0) = x_1 y_1 2^n + (x_1 y_0 + x_0 y_1)2^{n/2} + x_0 y_0.
\]

- Algorithm: each of \(x_1, x_0, y_1, y_0 \) has \(n/2 \) bits, so we can compute \(x_1 y_1, x_1 y_0, x_0 y_1, \) and \(x_0 y_0 \) recursively, and merge the answers in \(O(n) \) time.
- What is the running time \(T(n) \)?

\[
T(n) \leq 4T(n/2) + cn \leq O(n^2)
\]
Improving the Algorithm

▶ Four sub-problems lead to an $O(n^2)$ algorithm.
▶ How can we reduce the number of sub-problems?
Improving the Algorithm

- Four sub-problems lead to an $O(n^2)$ algorithm.
- How can we reduce the number of sub-problems?
 - We do not need to compute x_1y_0 and x_0y_1 independently; we just need their sum.

\[
x_1y_1 + (x_1y_0 + x_0y_1) + x_0y_0 = (x_0 + x_1)(y_0 + y_1)
\]
Improving the Algorithm

- Four sub-problems lead to an $O(n^2)$ algorithm.
- How can we reduce the number of sub-problems?
 - We do not need to compute x_1y_0 and x_0y_1 independently; we just need their sum.
 - $x_1y_1 + (x_1y_0 + x_0y_1) + x_0y_0 = (x_0 + x_1)(y_0 + y_1)$
 - Compute x_1y_1, x_0y_0 and $(x_0 + x_1)(y_0 + y_1)$ recursively and then compute $(x_1y_0 + x_0y_1)$ by subtraction.
 - We have three sub-problems of size $n/2$.
 - Strategy: simple arithmetic manipulations.

- What is the running time $T(n)$?
Counting Inversions

Integer Multiplication

Closest Pair of Points

Improving the Algorithm

- Four sub-problems lead to an $O(n^2)$ algorithm.
- How can we reduce the number of sub-problems?
 - We do not need to compute x_1y_0 and x_0y_1 independently; we just need their sum.
 - $x_1y_1 + (x_1y_0 + x_0y_1) + x_0y_0 = (x_0 + x_1)(y_0 + y_1)$
 - Compute x_1y_1, x_0y_0 and $(x_0 + x_1)(y_0 + y_1)$ recursively and then compute $(x_1y_0 + x_0y_1)$ by subtraction.
 - We have three sub-problems of size $n/2$.
 - Strategy: simple arithmetic manipulations.

- What is the running time $T(n)$?

\[
T(n) \leq 3T(n/2) + cn
\]
Improving the Algorithm

- Four sub-problems lead to an $O(n^2)$ algorithm.
- How can we reduce the number of sub-problems?
 - We do not need to compute x_1y_0 and x_0y_1 independently; we just need their sum.
 - $x_1y_1 + (x_1y_0 + x_0y_1) + x_0y_0 = (x_0 + x_1)(y_0 + y_1)$
 - Compute x_1y_1, x_0y_0 and $(x_0 + x_1)(y_0 + y_1)$ recursively and then compute $(x_1y_0 + x_0y_1)$ by subtraction.
 - We have three sub-problems of size $n/2$.
 - Strategy: simple arithmetic manipulations.

- What is the running time $T(n)$?

$$T(n) \leq 3T(n/2) + cn$$
$$\leq O(n^{\log_2 3}) = O(n^{1.59})$$
Final Algorithm

Recursive-Multiply(x,y):
 Write \(x = x_1 \cdot 2^{n/2} + x_0 \)
 \(y = y_1 \cdot 2^{n/2} + y_0 \)
 Compute \(x_1 + x_0 \) and \(y_1 + y_0 \)
 \(p = \text{Recursive-Multiply}(x_1 + x_0, \ y_1 + y_0) \)
 \(x_1y_1 = \text{Recursive-Multiply}(x_1, y_1) \)
 \(x_0y_0 = \text{Recursive-Multiply}(x_0, y_0) \)
 Return \(x_1y_1 \cdot 2^n + (p - x_1y_1 - x_0y_0) \cdot 2^{n/2} + x_0y_0 \)
Computational Geometry

- Algorithms for geometric objects: points, lines, segments, triangles, spheres, polyhedra, etc.
- Started in 1975 by Shamos and Hoey.
- Problems studied have applications in a vast number of fields: ecology, molecular biology, statistics, computational finance, computer graphics, computer vision, etc.
Computational Geometry

- Algorithms for geometric objects: points, lines, segments, triangles, spheres, polyhedra, \ldots.
- Started in 1975 by Shamos and Hoey.
- Problems studied have applications in a vast number of fields:
 ecology, molecular biology, statistics, computational finance,
 computer graphics, computer vision, \ldots.

Closest Pair of Points

INSTANCE: A set P of n points in the plane

SOLUTION: The pair of points in P that are the closest to each other.
Computational Geometry

- Algorithms for geometric objects: points, lines, segments, triangles, spheres, polyhedra, \ldots.
- Started in 1975 by Shamos and Hoey.
- Problems studied have applications in a vast number of fields: ecology, molecular biology, statistics, computational finance, computer graphics, computer vision, \ldots

Closest Pair of Points

INSTANCE: A set P of n points in the plane

SOLUTION: The pair of points in P that are the closest to each other.

- At first glance, it seems any algorithm must take $\Omega(n^2)$ time.
- Shamos and Hoey figured out an ingenious $O(n \log n)$ divide and conquer algorithm.
Closest Pair: Set-up

- Let $P = \{p_1, p_2, \ldots, p_n\}$ with $p_i = (x_i, y_i)$.
- Use $d(p_i, p_j)$ to denote the Euclidean distance between p_i and p_j. For a specific pair of points, can compute $d(p_i, p_j)$ in $O(1)$ time.
- Goal: find the pair of points p_i and p_j that minimise $d(p_i, p_j)$.

How do we solve the problem in 1D?
- Sort: closest pair must be adjacent in the sorted order.
- Divide and conquer after sorting:
 1. closest pair in left half: distance δ_l.
 2. closest pair in right half: distance δ_r.
 3. closest among pairs that span the left and right halves and are at most $\min(\delta_l, \delta_r)$ apart. How many such pairs do we need to consider? Just one!

Generalize the second idea to 2D.
Closest Pair: Set-up

- Let \(P = \{p_1, p_2, \ldots, p_n\} \) with \(p_i = (x_i, y_i) \).
- Use \(d(p_i, p_j) \) to denote the Euclidean distance between \(p_i \) and \(p_j \). For a specific pair of points, can compute \(d(p_i, p_j) \) in \(O(1) \) time.
- Goal: find the pair of points \(p_i \) and \(p_j \) that minimise \(d(p_i, p_j) \).
- How do we solve the problem in 1D?
Closest Pair: Set-up

- Let $P = \{p_1, p_2, \ldots, p_n\}$ with $p_i = (x_i, y_i)$.
- Use $d(p_i, p_j)$ to denote the Euclidean distance between p_i and p_j. For a specific pair of points, can compute $d(p_i, p_j)$ in $O(1)$ time.
- Goal: find the pair of points p_i and p_j that minimise $d(p_i, p_j)$.
- How do we solve the problem in 1D?
 - Sort: closest pair must be adjacent in the sorted order.
Closest Pair: Set-up

- Let $P = \{p_1, p_2, \ldots, p_n\}$ with $p_i = (x_i, y_i)$.
- Use $d(p_i, p_j)$ to denote the Euclidean distance between p_i and p_j. For a specific pair of points, can compute $d(p_i, p_j)$ in $O(1)$ time.
- Goal: find the pair of points p_i and p_j that minimise $d(p_i, p_j)$.
- How do we solve the problem in 1D?
 - Sort: closest pair must be adjacent in the sorted order.
 - Divide and conquer after sorting: closest pair must be closest of
 1. closest pair in left half: distance δ_l.
 2. closest pair in right half: distance δ_r.
 3. closest among pairs that span the left and right halves and are at most $\min(\delta_l, \delta_r)$ apart. How many such pairs do we need to consider?
Closest Pair: Set-up

- Let \(P = \{ p_1, p_2, \ldots, p_n \} \) with \(p_i = (x_i, y_i) \).
- Use \(d(p_i, p_j) \) to denote the Euclidean distance between \(p_i \) and \(p_j \). For a specific pair of points, can compute \(d(p_i, p_j) \) in \(O(1) \) time.
- Goal: find the pair of points \(p_i \) and \(p_j \) that minimise \(d(p_i, p_j) \).
- How do we solve the problem in 1D?
 - Sort: closest pair must be adjacent in the sorted order.
 - Divide and conquer after sorting: closest pair must be closest of
 1. closest pair in left half: distance \(\delta_l \).
 2. closest pair in right half: distance \(\delta_r \).
 3. closest among pairs that span the left and right halves and are at most \(\min(\delta_l, \delta_r) \) apart. How many such pairs do we need to consider? Just one!

\[\delta_Q \quad \delta_R \]
Closest Pair: Set-up

- Let \(P = \{p_1, p_2, \ldots, p_n\} \) with \(p_i = (x_i, y_i) \).
- Use \(d(p_i, p_j) \) to denote the Euclidean distance between \(p_i \) and \(p_j \). For a specific pair of points, can compute \(d(p_i, p_j) \) in \(O(1) \) time.
- Goal: find the pair of points \(p_i \) and \(p_j \) that minimise \(d(p_i, p_j) \).
- How do we solve the problem in 1D?
 - Sort: closest pair must be adjacent in the sorted order.
 - Divide and conquer after sorting: closest pair must be closest of
 1. closest pair in left half: distance \(\delta_l \).
 2. closest pair in right half: distance \(\delta_r \).
 3. closest among pairs that span the left and right halves and are at most \(\min(\delta_l, \delta_r) \) apart. How many such pairs do we need to consider? Just one!
- Generalize the second idea to 2D.
Closest Pair: Algorithm Skeleton

1. Divide P into two sets Q and R of $n/2$ points such that each point in Q has x-coordinate less than any point in R.

2. Recursively compute closest pair in Q and in R, respectively.
Closest Pair: Algorithm Skeleton

1. Divide P into two sets Q and R of $n/2$ points such that each point in Q has x-coordinate less than any point in R.
2. Recursively compute closest pair in Q and in R, respectively.
3. Let δ_Q be the distance computed for Q, δ_R be the distance computed for R, and $\delta = \min(\delta_Q, \delta_R)$.
Closest Pair: Algorithm Skeleton

1. Divide \(P \) into two sets \(Q \) and \(R \) of \(n/2 \) points such that each point in \(Q \) has \(x \)-coordinate less than any point in \(R \).
2. Recursively compute closest pair in \(Q \) and in \(R \), respectively.
3. Let \(\delta_Q \) be the distance computed for \(Q \), \(\delta_R \) be the distance computed for \(R \), and \(\delta = \min(\delta_Q, \delta_R) \).
4. Compute pair \((q, r)\) of points such that \(q \in Q \), \(r \in R \), \(d(q, r) < \delta \) and \(d(q, r) \) is the smallest possible.
Closest Pair: Proof Sketch

- Prove by induction: Let \((s, t)\) be the closest pair.
 (i) both are in \(Q\): computed correctly by recursive call.
 (ii) both are in \(R\): computed correctly by recursive call.
 (iii) one is in \(Q\) and the other is in \(R\): computed correctly in \(O(n)\) time by the procedure we will discuss.

- Strategy: Pairs of points for which we do not compute the distance between cannot be the closest pair.

- Overall running time is \(O(n \log n)\).
Closest Pair: Conquer Step

- Line L passes through right-most point in Q.
- Let S be the set of points within distance δ of L. (In image, $\delta = \delta_R$.)

$$
\delta = \min(\delta_Q, \delta_R)
$$

Claim: There exist $q \in Q$, $r \in R$ such that $d(q, r) < \delta$ if and only if $q, r \in S$.

Corollary: If $t \in Q - S$ or $u \in R - S$, then (t, u) cannot be the closest pair.
Closest Pair: Conquer Step

- Line \(L \) passes through right-most point in \(Q \).
- Let \(S \) be the set of points within distance \(\delta \) of \(L \). (In image, \(\delta = \delta_R \).)
- Claim: There exist \(q \in Q, r \in R \) such that \(d(q, r) < \delta \) if and only if \(q, r \in S \).
Closest Pair: Conquer Step

- Line L passes through right-most point in Q.
- Let S be the set of points within distance δ of L. (In image, $\delta = \delta_R$.)
- Claim: There exist $q \in Q$, $r \in R$ such that $d(q, r) < \delta$ if and only if $q, r \in S$.
- Corollary: If $t \in Q - S$ or $u \in R - S$, then (t, u) cannot be the closest pair.
Closest Pair: Packing Argument

- Intuition: “too many” points in S that are closer than δ to each other
 \Rightarrow there must be a pair in Q or in R that are less than δ apart.
Closest Pair: Packing Argument

- Intuition: “too many” points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.
- Let S_y denote the set of points in S sorted by increasing y-coordinate and let s_y denote the y-coordinate of a point $s \in S$.

\begin{itemize}
 \item Claim: If there exist $s, s' \in S$ such that $d(s, s') < \delta$ then s and s' are at most 15 indices apart in S_y.
 \item Converse of the claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y, then $s'_y - s_y \geq \delta$.
 \item Use the claim in the algorithm: For every point $s \in S_y$, compute distances only to the next 15 points in S_y.
 \item Other pairs of points cannot be candidates for the closest pair.
\end{itemize}
Closest Pair: Packing Argument

- Intuition: “too many” points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.
- Let S_y denote the set of points in S sorted by increasing y-coordinate and let s_y denote the y-coordinate of a point $s \in S$.
- Claim: If there exist $s, s' \in S$ such that $d(s, s') < \delta$ then s and s' are at most 15 indices apart in S_y.

```
Claim: If there exist s, s' \in S such that d(s, s') < \delta then s and s' are at most 15 indices apart in S_y.
```

T. M. Murali
March 19 and 24, 2013
CS 4104: Divide and Conquer Algorithms
Closest Pair: Packing Argument

> Intuition: “too many” points in S that are closer than δ to each other

\Rightarrow there must be a pair in Q or in R that are less than δ apart.

> Let S_y denote the set of points in S sorted by increasing y-coordinate and let s_y denote the y-coordinate of a point $s \in S$.

> Claim: If there exist $s, s' \in S$ such that $d(s, s') < \delta$ then s and s' are at most 15 indices apart in S_y.

> Converse of the claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y, then $s'_y - s_y \geq \delta$.

Use the claim in the algorithm: For every point $s \in S_y$, compute distances only to the next 15 points in S_y.

Other pairs of points cannot be candidates for the closest pair.

L. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms
Closest Pair: Packing Argument

- Intuition: “too many” points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.
- Let S_y denote the set of points in S sorted by increasing y-coordinate and let s_y denote the y-coordinate of a point $s \in S$.
- Claim: If there exist $s, s' \in S$ such that $d(s, s') < \delta$ then s and s' are at most 15 indices apart in S_y.
- Converse of the claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y, then $s'_y - s_y \geq \delta$.
- Use the claim in the algorithm: For every point $s \in S_y$, compute distances only to the next 15 points in S_y.
- Other pairs of points cannot be candidates for the closest pair.
Closest Pair: Proof of Packing Argument

- Claim: If there exist \(s, s' \in S \) such that \(s' \) appears 16 or more indices after \(s \) in \(S_y \), then \(s'_y - s_y \geq \delta \).
Closest Pair: Proof of Packing Argument

- Claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y, then $s'_y - s_y \geq \delta$.
- Pack the plane with squares of side $\delta/2$.

![Diagram of packing squares with points](image)
Claim: If there exist \(s, s' \in S \) such that \(s' \) appears 16 or more indices after \(s \) in \(S_y \), then \(s'_y - s_y \geq \delta \).

Pack the plane with squares of side \(\delta/2 \).

Each square contains at most one point.
Closest Pair: Proof of Packing Argument

- **Claim:** If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y, then $s'_y - s_y \geq \delta$.
- Pack the plane with squares of side $\delta/2$.
- Each square contains at most one point.
- Let s lie in one of the squares.
Closest Pair: Proof of Packing Argument

- Claim: If there exist \(s, s' \in S \) such that \(s' \) appears 16 or more indices after \(s \) in \(S_y \), then \(s'_y - s_y \geq \delta \).
- Pack the plane with squares of side \(\delta/2 \).
- Each square contains at most one point.
- Let \(s \) lie in one of the squares.
- Any point in the third row of the packing below \(s \) has a \(y \)-coordinate at least \(\delta \) more than \(s_y \).
Closest Pair: Proof of Packing Argument

- **Claim:** If there exist \(s, s' \in S \) such that \(s' \) appears 16 or more indices after \(s \) in \(S_y \), then \(s'_y - s_y \geq \delta \).
- Pack the plane with squares of side \(\delta/2 \).
- Each square contains at most one point.
- Let \(s \) lie in one of the squares.
- Any point in the third row of the packing below \(s \) has a \(y \)-coordinate at least \(\delta \) more than \(s_y \).
- We get a count of 12 or more indices (textbook says 16).
Closest Pair: Final Algorithm

\[\text{Closest-Pair}(P) \]
- Construct \(P_x \) and \(P_y \) (\(O(n \log n) \) time)
 \((p_x^0, p_y^0) = \text{Closest-Pair-Rec}(P_x, P_y) \)

\[\text{Closest-Pair-Rec}(P_x, P_y) \]
- If \(|P| \leq 3 \) then
 find closest pair by measuring all pairwise distances
Endif

- Construct \(Q_x, Q_y, R_x, R_y \) (\(O(n) \) time)
 \((q_x^0, q_y^0) = \text{Closest-Pair-Rec}(Q_x, Q_y) \)
 \((r_x^0, r_y^0) = \text{Closest-Pair-Rec}(R_x, R_y) \)

\[\delta = \min(d(q_x^0, q_y^0), d(r_x^0, r_y^0)) \]

- \(x' = \text{maximum} \ x\text{-coordinate of a point in set } Q \)
- \(L = \{(x, y) : x = x'\} \)
- \(S = \text{points in } P \text{ within distance } \delta \text{ of } L. \)

- Construct \(S_y \) (\(O(n) \) time)
 For each point \(s \in S_y \), compute distance from \(s \)
 to each of next 15 points in \(S_y \)
 Let \(s, s' \) be pair achieving minimum of these distances
 (\(O(n) \) time)

 - If \(d(s, s') < \delta \) then
 Return \((s, s') \)
 - Else if \(d(q_x^0, q_y^0) < d(r_x^0, r_y^0) \) then
 Return \((q_x^0, q_y^0) \)
 - Else
 Return \((r_x^0, r_y^0) \)
Endif
Closest Pair: Final Algorithm

Closest-Pair\((P) \)

Construct \(P_x \) and \(P_y \) (\(O(n \log n) \) time)
\((p_0^*, p_1^*) = \text{Closest-Pair-Rec}(P_x, P_y)\)

Closest-Pair-Rec\((P_x, P_y) \)

If \(|P| \leq 3 \) then

find closest pair by measuring all pairwise distances

Endif

Construct \(Q_x, Q_y, R_x, R_y \) (\(O(n) \) time)
\((q_0^*, q_1^*) = \text{Closest-Pair-Rec}(Q_x, Q_y)\)
\((r_0^*, r_1^*) = \text{Closest-Pair-Rec}(R_x, R_y)\)

\(\delta = \min(d(q_0^*, q_1^*), d(r_0^*, r_1^*)) \)
\(x^* = \text{maximum } x\text{-coordinate of a point in set } Q \)
Closest Pair: Final Algorithm

\[x^* = \text{maximum } x\text{-coordinate of a point in set } Q \]
\[L = \{(x,y) : x = x^*\} \]
\[S = \text{points in } P \text{ within distance } \delta \text{ of } L. \]

Construct \(S_y \) (\(O(n) \) time)

For each point \(s \in S_y \), compute distance from \(s \)

to each of next 15 points in \(S_y \)

Let \(s, s' \) be pair achieving minimum of these distances

\((O(n) \text{ time})\)

If \(d(s,s') < \delta \) then

Return \((s,s')\)

Else if \(d(q_0^*,q_1^*) < d(r_0^*,r_1^*) \) then

Return \((q_0^*,q_1^*)\)

Else

Return \((r_0^*,r_1^*)\)

Endif