Divide and Conquer Algorithms

T. M. Murali

March 17, 2014
Divide and Conquer

- Break up a problem into several parts.
- Solve each part recursively.
- Solve base cases by brute force.
- Efficiently combine solutions for sub-problems into final solution.
Divide and Conquer

- Break up a problem into several parts.
- Solve each part recursively.
- Solve base cases by brute force.
- Efficiently combine solutions for sub-problems into final solution.

Common use:
- Partition problem into two equal sub-problems of size \(n/2 \).
- Solve each part recursively.
- Combine the two solutions in \(O(n) \) time.
- Resulting running time is \(O(n \log n) \).
Mergesort

Sort

INSTANCE: Nonempty list \(L = x_1, x_2, \ldots, x_n \) of integers.

SOLUTION: A permutation \(y_1, y_2, \ldots, y_n \) of \(x_1, x_2, \ldots, x_n \) such that \(y_i \leq y_{i+1} \), for all \(1 \leq i < n \).

▶ Mergesort is a divide-and-conquer algorithm for sorting.

1. Partition \(L \) into two lists \(A \) and \(B \) of size \(\lceil n/2 \rceil \) and \(\lfloor n/2 \rfloor \) respectively.
2. Recursively sort \(A \).
3. Recursively sort \(B \).
4. Merge the sorted lists \(A \) and \(B \) into a single sorted list.
Merging Two Sorted Lists

- Merge two sorted lists $A = a_1, a_2, \ldots, a_k$ and $B = b_1, b_2, \ldots, b_l$.

 Maintain a *current* pointer for each list.
 Initialise each pointer to the front of the list.
 While both lists are nonempty:

 Let a_i and b_j be the elements pointed to by the *current* pointers.
 Append the smaller of the two to the output list.
 Advance the current pointer in the list that the smaller element belonged to.

 EndWhile

 Append the rest of the non-empty list to the output.

 Running time of this algorithm is $O(k + l)$.

T. M. Murali March 17, 2014 Divide and Conquer Algorithms
Merging Two Sorted Lists

- Merge two sorted lists $A = a_1, a_2, \ldots, a_k$ and $B = b_1, b_2, \ldots b_l$.

 Maintain a *current* pointer for each list.
 Initialise each pointer to the front of the list.
 While both lists are nonempty:

 Let a_i and b_j be the elements pointed to by the *current* pointers.
 Append the smaller of the two to the output list.
 Advance the current pointer in the list that the smaller element belonged to.

 EndWhile

 Append the rest of the non-empty list to the output.

- Running time of this algorithm is $O(k + l)$.
Analysing Mergesort

1. Partition L into two lists A and B of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively.
2. Recursively sort A.
3. Recursively sort B.
4. Merge the sorted lists A and B into a single sorted list.
Analysing Mergesort

1. Partition \(L \) into two lists \(A \) and \(B \) of size \(\lfloor n/2 \rfloor \) and \(\lceil n/2 \rceil \) respectively.
2. Recursively sort \(A \).
3. Recursively sort \(B \).
4. Merge the sorted lists \(A \) and \(B \) into a single sorted list.

Worst-case running time for \(n \) elements \(\leq \)

- Worst-case running time for \(\lfloor n/2 \rfloor \) elements +
- Worst-case running time for \(\lceil n/2 \rceil \) elements +
- Time to split the input into two lists +
- Time to merge two sorted lists.
Analysing Mergesort

1. Partition L into two lists A and B of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively.
2. Recursively sort A.
3. Recursively sort B.
4. Merge the sorted lists A and B into a single sorted list.

Worst-case running time for n elements ≤
- Worst-case running time for $\lfloor n/2 \rfloor$ elements +
- Worst-case running time for $\lceil n/2 \rceil$ elements +
- Time to split the input into two lists +
- Time to merge two sorted lists.

- Assume n is a power of 2.
- Define $T(n) \equiv$ Worst-case running time for n elements, for every $n \geq 1$.
Analyzing Mergesort

1. Partition L into two lists A and B of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively.
2. Recursively sort A.
3. Recursively sort B.
4. Merge the sorted lists A and B into a single sorted list.

Worst-case running time for n elements \leq
- Worst-case running time for $\lfloor n/2 \rfloor$ elements +
- Worst-case running time for $\lceil n/2 \rceil$ elements +
- Time to split the input into two lists +
- Time to merge two sorted lists.

- Assume n is a power of 2.
- Define $T(n) \equiv$ Worst-case running time for n elements, for every $n \geq 1$.

$$T(n) \leq 2T(n/2) + cn, \quad n > 2$$
$$T(2) \leq c$$
Analyzing Mergesort

1. Partition \(L \) into two lists \(A \) and \(B \) of size \(\lfloor n/2 \rfloor \) and \(\lceil n/2 \rceil \) respectively.
2. Recursively sort \(A \).
3. Recursively sort \(B \).
4. Merge the sorted lists \(A \) and \(B \) into a single sorted list.

Worst-case running time for \(n \) elements \(\leq \)
- Worst-case running time for \(\lfloor n/2 \rfloor \) elements +
- Worst-case running time for \(\lceil n/2 \rceil \) elements +
- Time to split the input into two lists +
- Time to merge two sorted lists.

- Assume \(n \) is a power of 2.
- Define \(T(n) \equiv \) Worst-case running time for \(n \) elements, for every \(n \geq 1 \).

\[
T(n) \leq 2T(n/2) + cn, \quad n > 2
\]
\[
T(2) \leq c
\]

Three basic ways of solving this recurrence relation:
1. “Unroll” the recurrence (somewhat informal method).
2. Guess a solution and substitute into recurrence to check.
3. Guess solution in \(O() \) form and substitute into recurrence to determine the constants.
Unrolling the recurrence

Recursion tree has $\log n$ levels.

Total work done at each level is cn.

Running time of the algorithm is $cn \log n$.

Use this method only to get an idea of the solution.

Figure 5.1 Unrolling the recurrence $T(n) \leq 2T(n/2) + O(n)$.

Level 0: cn

Level 1: $cn/2 + cn/2 = cn$ total

Level 2: $4(cn/4) = cn$ total
Unrolling the recurrence

Recursion tree has log \(n \) levels.
- Total work done at each level is \(cn \).
- Running time of the algorithm is \(cn \log n \).
- Use this method only to get an idea of the solution.

Figure 5.1 Unrolling the recurrence \(T(n) \leq 2T(n/2) + O(n) \).
Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.

- Base case: $n = 2$. Is $T(2) = c \leq 2$?
 Yes.

- (Strong) Inductive hypothesis: assume $T(m) \leq cm \log 2m$ for all $m < n$.

- Therefore, $T(n/2) \leq (cn/2) \log(n/2)$.

- Inductive step: Prove $T(n) \leq cn \log n$.

 $T(n) \leq 2T(n/2) + cn \leq 2(cn/2) \log(n/2) + cn = cn \log n - cn + cn = cn \log n$.

- Why is $T(n) \leq kn^2$ a "loose" bound?
- Why doesn't an attempt to prove $T(n) \leq kn$ for some $k > 0$ work?
Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n = 2$. Is $T(2) = c \leq 2c \log 2$? Yes.
Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n = 2$. Is $T(2) = c \leq 2c \log 2$? Yes.
- (Strong) Inductive hypothesis: assume $T(m) \leq cm \log_2 m$ for all $m < n$.

Therefore, $T(n/2) \leq (cn/2) \log(n/2)$.

Inductive step: Prove $T(n) \leq cn \log n$.

$T(n) \leq 2T(n/2) + cn \leq 2(cn/2) \log(n/2) + cn = cn \log(n/2) + cn = cn \log n - cn + cn = cn \log n$.

Why is $T(n) \leq kn^2$ a "loose" bound?

Why doesn't an attempt to prove $T(n) \leq kn$, for some $k > 0$ work?
Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq cn\log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n = 2$. Is $T(2) = c \leq 2c\log 2$? Yes.
- (Strong) Inductive hypothesis: assume $T(m) \leq cm\log_2 m$ for all $m < n$. Therefore, $T(n/2) \leq (cn/2)\log(n/2)$.
Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).

Use induction to check if the solution satisfies the recurrence relation.

Base case: $n = 2$. Is $T(2) = c \leq 2c \log 2$? Yes.

(Strong) Inductive hypothesis: assume $T(m) \leq cm \log_2 m$ for all $m < n$. Therefore, $T(n/2) \leq (cn/2) \log(n/2)$.

Inductive step: Prove $T(n) \leq cn \log n$.
Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n = 2$. Is $T(2) = c \leq 2c \log 2$? Yes.
- (Strong) Inductive hypothesis: assume $T(m) \leq cm \log_2 m$ for all $m < n$. Therefore, $T(n/2) \leq (cn/2) \log(n/2)$.
- Inductive step: Prove $T(n) \leq cn \log n$.

\[
T(n) \leq 2T\left(\frac{n}{2}\right) + cn
\]
\[
\leq 2 \left(\frac{cn}{2} \log \left(\frac{n}{2} \right) \right) + cn, \text{ by the inductive hypothesis}
\]
\[
= cn \log \left(\frac{n}{2} \right) + cn
\]
\[
= cn \log n - cn + cn
\]
\[
= cn \log n.
\]
Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n = 2$. Is $T(2) = c \leq 2c \log 2$? Yes.
- (Strong) Inductive hypothesis: assume $T(m) \leq cm \log_2 m$ for all $m < n$. Therefore, $T(n/2) \leq (cn/2) \log(n/2)$.
- Inductive step: Prove $T(n) \leq cn \log n$.

$$T(n) \leq 2T\left(\frac{n}{2}\right) + cn$$

$$\leq 2\left(\frac{cn}{2} \log \left(\frac{n}{2}\right)\right) + cn,$$\text{ by the inductive hypothesis}\quad\text{(by the inductive hypothesis)}

$$= cn \log \left(\frac{n}{2}\right) + cn$$

$$= cn \log n - cn + cn$$

$$= cn \log n.$$

- Why is $T(n) \leq kn^2$ a “loose” bound?
Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n = 2$. Is $T(2) = c \leq 2c \log 2$? Yes.
- (Strong) Inductive hypothesis: assume $T(m) \leq cm \log_2 m$ for all $m < n$. Therefore, $T(n/2) \leq (cn/2) \log(n/2)$.
- Inductive step: Prove $T(n) \leq cn \log n$.

\[
T(n) \leq 2T\left(\frac{n}{2}\right) + cn \\
\leq 2\left(\frac{cn}{2} \log \left(\frac{n}{2}\right)\right) + cn, \text{ by the inductive hypothesis} \\
= cn \log \left(\frac{n}{2}\right) + cn \\
= cn \log n - cn + cn \\
= cn \log n.
\]

- Why is $T(n) \leq kn^2$ a “loose” bound?
- Why doesn’t an attempt to prove $T(n) \leq kn$, for some $k > 0$ work?
Partial Substitution

- Guess that the solution is $kn \log n$ (logarithm to the base 2).
- Substitute guess into the recurrence relation to check what value of k will satisfy the recurrence relation.
Partial Substitution

- Guess that the solution is $kn \log n$ (logarithm to the base 2).
- Substitute guess into the recurrence relation to check what value of k will satisfy the recurrence relation.
- $k \geq c$ will work.
Proof for All Values of n

- We assumed n is a power of 2.
- How do we generalise the proof?
Proof for All Values of n

- We assumed n is a power of 2.
- How do we generalise the proof?
- Basic axiom: $T(n) \leq T(n + 1)$, for all n: worst case running time increases as input size increases.
- Let m be the smallest power of 2 larger than n.
- $T(n) \leq T(m) = O(m \log m)$
Proof for All Values of n

- We assumed n is a power of 2.
- How do we generalise the proof?
- Basic axiom: $T(n) \leq T(n + 1)$, for all n: worst case running time increases as input size increases.
- Let m be the smallest power of 2 larger than n.
- $T(n) \leq T(m) = O(m \log m) = O(n \log n)$, because $m \leq 2n$.
Other Recurrence Relations

- Divide into \(q \) sub-problems of size \(n/2 \) and merge in \(O(n) \) time. Two distinct cases: \(q = 1 \) and \(q > 2 \).
- Divide into two sub-problems of size \(n/2 \) and merge in \(O(n^2) \) time.
\[T(n) = q T(n/2) + cn, \quad q = 1 \]

- \(cn \) time, plus recursive calls
- Level 0: \(cn \) total
- Level 1: \(cn/2 \) total
- Level 2: \(cn/4 \) total

Figure 5.3 Unrolling the recurrence \(T(n) \leq T(n/2) + O(n) \).
\[T(n) = qT(n/2) + cn, \quad q = 1 \]

- Each invocation reduces the problem size by a factor of 2 \(\Rightarrow \) there are \(\log n \) levels in the recursion tree.
- At level \(i \) of the tree, the problem size is \(n/2^i \) and the work done is \(cn/2^i \).
- Therefore, the total work done is

\[
\sum_{i=0}^{i=\log n} \frac{cn}{2^i} = O(n).
\]

Figure 5.3 Unrolling the recurrence \(T(n) \leq T(n/2) + O(n) \).
\[T(n) = qT(n/2) + cn, \quad q > 2 \]

There are \(\log n \) levels in the recursion tree.

At level \(i \) of the tree, there are \(q^i \) sub-problems, each of size \(n/2^i \).

The total work done at level \(i \) is \(q^i cn/2^i \). Therefore, the total work done is

\[
T(n) \leq \sum_{i=0}^{\log n} q^i cn/2^i \leq cn \sum_{i=0}^{\log n} (q^2)^i \leq O(cn (q^2) \log n) = O(cn (q/2)^{\log q}) = O(n \log q/2) = O(n \log q).
\]

Figure 5.2 Unrolling the recurrence \(T(n) \leq 3T(n/2) + O(n) \).
\[T(n) = qT(n/2) + cn, \quad q > 2 \]

- There are \(\log n \) levels in the recursion tree.
- At level \(i \) of the tree, there are \(q^i \) sub-problems, each of size \(n/2^i \).
- The total work done at level \(i \) is \(q^i cn/2^i \). Therefore, the total work done is

\[
T(n) \leq \sum_{i=0}^{i=\log_2 n} q^i \frac{cn}{2^i} \leq \]

\[\leq \]

Figure 5.2 Unrolling the recurrence \(T(n) \leq 3T(n/2) + O(n) \).
\[T(n) = qT(n/2) + cn, \quad q > 2 \]

- There are \(\log n \) levels in the recursion tree.
- At level \(i \) of the tree, there are \(q^i \) sub-problems, each of size \(n/2^i \).
- The total work done at level \(i \) is \(q^i cn/2^i \). Therefore, the total work done is

\[
T(n) \leq \sum_{i=0}^{\log_2 n} q^i \frac{cn}{2^i} \leq cn \sum_{i=0}^{\log_2 n} \left(\frac{q}{2} \right)^i
\]

\[
= O\left(cn \left(\frac{q}{2} \right)^{\log_2 n} \right) = O\left(cn \left(\frac{q}{2} \right)^{\left(\log_{q/2} n \right) \left(\log_2 q/2 \right)} \right)
\]

\[
= O\left(cn n^{\log_2 q/2} \right) = O\left(n^{\log_2 q} \right).
\]
\[T(n) = 2T(n/2) + cn^2 \]

- Total work done is

\[
\sum_{i=0}^{\log n} 2^i \left(\frac{cn}{2^i} \right)^2 \leq \]

\[O(n^2) \]
\[T(n) = 2T(n/2) + cn^2 \]

- Total work done is

\[
\sum_{i=0}^{i=\log n} 2^i \left(\frac{cn}{2^i} \right)^2 \leq O(n^2).
\]