Problem Example

Find Minimum

INSTANCE: Nonempty list x_1, x_2, \ldots, x_n of integers.

SOLUTION: Pair (i, x_i) such that $x_i = \min\{x_j \mid 1 \leq j \leq n\}$.

Algorithm Example

Find-Minimum(x_1, x_2, \ldots, x_n)
1 $i \leftarrow 1$
2 for $j \leftarrow 2$ to n
3 do if $x_j < x_i$
4 then $i \leftarrow j$
5 return (i, x_i)
Running Time of Algorithm

Find-Minimum(x_1, x_2, \ldots, x_n)

1. $i \leftarrow 1$
2. for $j \leftarrow 2$ to n
3. do if $x_j < x_i$
4. then $i \leftarrow j$
5. return (i, x_i)
Running Time of Algorithm

Find-Minimum(x_1, x_2, \ldots, x_n)

1 $i \leftarrow 1$
2 for $j \leftarrow 2$ to n
3 do if $x_j < x_i$
4 then $i \leftarrow j$
5 return (i, x_i)

- At most $2n - 1$ assignments and $n - 1$ comparisons.
Correctness of Algorithm: Proof 1

Find-Minimum(x_1, x_2, \ldots, x_n)

1. $i \leftarrow 1$
2. for $j \leftarrow 2$ to n
3. do if $x_j < x_i$
4. then $i \leftarrow j$
5. return (i, x_i)
Correctness of Algorithm: Proof 1

Find-Minimum\((x_1, x_2, \ldots, x_n)\)

\begin{verbatim}
1 \textit{i} \leftarrow 1
2 \textbf{for} j \leftarrow 2 \textbf{ to } n
3 \textbf{do if } x_j < x_i
4 \textbf{then } i \leftarrow j
5 \textbf{return } (i, x_i)
\end{verbatim}

▶ Proof by contradiction:
Correctness of Algorithm: Proof 1

Find-Minimum(x_1, x_2, \ldots, x_n)
1 $i \leftarrow 1$
2 for $j \leftarrow 2$ to n
3 do if $x_j < x_i$
4 then $i \leftarrow j$
5 return (i, x_i)

▷ Proof by contradiction: Suppose algorithm returns (a, x_a) but there exists $1 \leq c \leq n$ such that $x_c < x_a$ and $x_c = \min\{x_j \mid 1 \leq j \leq n\}$.
Correctness of Algorithm: Proof 1

Find-Minimum(x_1, x_2, \ldots, x_n)
1 $i \leftarrow 1$
2 for $j \leftarrow 2$ to n
3 do if $x_j < x_i$
4 then $i \leftarrow j$
5 return (i, x_i)

▶ Proof by contradiction: Suppose algorithm returns (a, x_a) but there exists $1 \leq c \leq n$ such that $x_c < x_a$ and $x_c = \min\{x_j \mid 1 \leq j \leq n\}$.

▶ Is $a < c$?
Correctness of Algorithm: Proof 1

Find-Minimum\((x_1, x_2, \ldots, x_n)\)
1 \hspace{1em} i \leftarrow 1
2 \hspace{1em} for \hspace{0.5em} j \leftarrow 2 \hspace{0.5em} to \hspace{0.5em} n \\
3 \hspace{1.5em} \text{do if} \hspace{0.5em} x_j \leq x_i \hspace{0.5em} \text{then} \hspace{0.5em} i \leftarrow j
4 \hspace{1em} \text{return} \hspace{0.5em} (i, x_i)

\begin{itemize}
 \item Proof by contradiction: Suppose algorithm returns \((a, x_a)\) but there exists \(1 \leq c \leq n\) such that \(x_c < x_a\) and \(x_c = \min\{x_j \mid 1 \leq j \leq n\}\).
 \item Is \(a < c\)? No. Since the algorithm returns \((a, x_a)\), \(x_a \leq x_j\), for all \(a < j \leq n\). Therefore \(c < a\).
\end{itemize}
Correctness of Algorithm: Proof 1

Find-Minimum(x_1, x_2, \ldots, x_n)
1 \(i \leftarrow 1 \)
2 \(\text{for } j \leftarrow 2 \text{ to } n \)
3 \(\text{do if } x_j < x_i \)
4 \(\text{then } i \leftarrow j \)
5 \(\text{return } (i, x_i) \)

▶ Proof by contradiction: Suppose algorithm returns \((a, x_a)\) but there exists \(1 \leq c \leq n\) such that \(x_c < x_a\) and \(x_c = \min\{x_j \mid 1 \leq j \leq n\}\).
▶ Is \(a < c\)? No. Since the algorithm returns \((a, x_a)\), \(x_a \leq x_j\), for all \(a < j \leq n\). Therefore \(c < a\).
▶ What does the algorithm do when \(j = c\)? It must set \(i\) to \(c\), since we have been told that \(x_c\) is the smallest element.
▶ What does the algorithm do when \(j = a\) (which happens after \(j = c\))? Since \(x_c < x_a\), the value of \(i\) does not change.
▶ Therefore, the algorithm does not return \((a, x_a)\) yielding a contradiction.
Correctness of Algorithm: Proof 2

Find-Minimum(x_1, x_2, \ldots, x_n)

1. $i \leftarrow 1$
2. for $j \leftarrow 2$ to n
3. \hspace{1em} do if $x_j < x_i$
4. \hspace{2em} then $i \leftarrow j$
5. return (i, x_i)

- Proof by induction: What is true at the end of each iteration?
Correctness of Algorithm: Proof 2

Find-Minimum(x_1, x_2, \ldots, x_n)
1 \(i \leftarrow 1 \)
2 \textbf{for} \(j \leftarrow 2 \) \textbf{to} \(n \)
3 \textbf{do} \textbf{if} \(x_j < x_i \)
4 \textbf{then} \(i \leftarrow j \)
5 \textbf{return} \((i, x_i)\)

▶ Proof by induction: What is true at the end of each iteration?
▶ Claim: At the end of iteration \(j \), \(x_i = \min\{x_m \mid 1 \leq m \leq j\} \), for all \(1 \leq j \leq n \).
▶ Claim is true
Correctness of Algorithm: Proof 2

Find-Minimum(x_1, x_2, \ldots, x_n)

1. $i \leftarrow 1$
2. for $j \leftarrow 2$ to n
 3. do if $x_j < x_i$
 4. then $i \leftarrow j$
5. return (i, x_i)

- Proof by induction: What is true at the end of each iteration?
- Claim: At the end of iteration j, $x_i = \min\{x_m \mid 1 \leq m \leq j\}$, for all $1 \leq j \leq n$.
- Claim is true \Rightarrow algorithm is correct (set $j = n$).
Correctness of Algorithm: Proof 2

Find-Minimum(x_1, x_2, \ldots, x_n)

1. $i \leftarrow 1$
2. for $j \leftarrow 2$ to n
 3. do if $x_j < x_i$
 4. then $i \leftarrow j$
3. return (i, x_i)

▶ Proof by induction: What is true at the end of each iteration?
▶ Claim: At the end of iteration j, $x_i = \min\{x_m \mid 1 \leq m \leq j\}$, for all $1 \leq j \leq n$.
▶ Claim is true \Rightarrow algorithm is correct (set $j = n$).
▶ Proof of the claim involves three steps.

1. Base case: $j = 1$ (before loop). $x_i = \min\{x_m \mid 1 \leq m \leq 1\}$ is trivially true.
2. Inductive hypothesis: Assume $x_i = \min\{x_m \mid 1 \leq m \leq j\}$.
3. Inductive step: Prove $x_i = \min\{x_m \mid 1 \leq m \leq j + 1\}$.
 ▶ In the loop, i is set to be $j + 1$ if and only if $x_{j+1} < x_i$.
 ▶ Therefore, x_i is the smallest of $x_1, x_2, \ldots, x_{j+1}$ when the loop ends.
Format of Proof by Induction

- Goal: prove some proposition $P(n)$ is true for all n.
- Strategy: prove base case, assume inductive hypothesis, prove inductive step.
Format of Proof by Induction

- **Goal:** prove some proposition $P(n)$ is true for all n.
- **Strategy:** prove base case, assume inductive hypothesis, prove inductive step.
- **Base case:** prove that $P(1)$ or $P(2)$ (or P (small number)) is true.
- **Inductive hypothesis:** assume $P(k - 1)$ is true.
- **Inductive step:** prove that $P(k - 1) \Rightarrow P(k)$.
Format of Proof by Induction

- Goal: prove some proposition $P(n)$ is true for all n.
- Strategy: prove base case, assume inductive hypothesis, prove inductive step.
- Base case: prove that $P(1)$ or $P(2)$ (or P (small number)) is true.
- Inductive hypothesis: assume $P(k-1)$ is true.
- Inductive step: prove that $P(k-1) \Rightarrow P(k)$.
- Why does this strategy work?
Sum of first n natural numbers

\[P(n) = \sum_{i=1}^{n} i = \]
Sum of first n natural numbers

$$P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$
Sum of first n natural numbers

$$P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

Proof by Induction:

- Base case:
Sum of first n natural numbers

$$P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

Proof by Induction:

- Base case: $k = 1$: $P(1) = 1 = 1 \times 2/2$.

August 28, 2014 Analysis of Algorithms
Sum of first n natural numbers

\[P(n) = \sum_{i=1}^{n} i = \frac{n(n + 1)}{2}. \]

Proof by Induction:

- Base case: $k = 1$: $P(1) = 1 = 1 \times 2 / 2$.
- Inductive hypothesis:
Sum of first n natural numbers

$$P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

Proof by Induction:

- **Base case**: $k = 1$: \(P(1) = 1 = 1 \times 2/2 \).
- **Inductive hypothesis**: assume \(P(k) = k(k + 1)/2 \).
Sum of first n natural numbers

$P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

Proof by Induction:

- **Base case:** $k = 1$: $P(1) = 1 = 1 \times 2/2$.
- **Inductive hypothesis:** assume $P(k) = k(k + 1)/2$.
- **Inductive step:** Assuming $P(k) = k(k + 1)/2$, prove that $P(k + 1) = (k + 1)(k + 2)/2$.
Sum of first \(n \) natural numbers

\[P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}. \]

Proof by Induction:

- **Base case:** \(k = 1 \): \(P(1) = 1 = 1 \times 2/2 \).
- **Inductive hypothesis:** assume \(P(k) = k(k+1)/2 \).
- **Inductive step:** Assuming \(P(k) = k(k+1)/2 \), prove that \(P(k+1) = (k+1)(k+2)/2 \).

\[P(k+1) = \sum_{i=1}^{k+1} i = \frac{(k+1)(k+2)}{2} \]
Sum of first \(n \) natural numbers

\[
P(n) = \sum_{i=1}^{n} i = \frac{n(n + 1)}{2}.
\]

Proof by Induction:

\begin{itemize}
 \item Base case: \(k = 1 \): \(P(1) = 1 = 1 \times 2/2 \).
 \item Inductive hypothesis: assume \(P(k) = k(k + 1)/2 \).
 \item Inductive step: Assuming \(P(k) = k(k + 1)/2 \), prove that \(P(k + 1) = (k + 1)(k + 2)/2 \)
\end{itemize}

\[
P(k + 1) = \sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k + 1)
\]
Sum of first n natural numbers

\[P(n) = \sum_{i=1}^{n} i = \frac{n(n + 1)}{2}. \]

Proof by Induction:

- **Base case:** $k = 1$: $P(1) = 1 = 1 \times 2/2$.
- **Inductive hypothesis:** assume $P(k) = k(k + 1)/2$.
- **Inductive step:** Assuming $P(k) = k(k + 1)/2$, prove that $P(k + 1) = (k + 1)(k + 2)/2$

\[P(k + 1) = \sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k + 1) = \frac{k(k + 1)}{2} + (k + 1) \]
Sum of first n natural numbers

$$P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

Proof by Induction:

- **Base case:** $k = 1$: $P(1) = 1 = 1 \times 2/2$.
- **Inductive hypothesis:** assume $P(k) = k(k+1)/2$.
- **Inductive step:** Assuming $P(k) = k(k+1)/2$, prove that $P(k+1) = (k+1)(k+2)/2$

\[P(k+1) = \sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k+1) = \frac{k(k+1)}{2} + (k+1) \]
\[= (k+1)(\frac{k}{2} + 2) = \frac{(k+1)(k+2)}{2}. \]
Recurrence Relation

Given

\[P(n) = \begin{cases}
P(\lfloor \frac{n}{2} \rfloor) + 1 & \text{if } n > 1 \\
1 & \text{if } n = 1
\end{cases} \]

prove that

\[P(n) \leq \]

August 28, 2014 Analysis of Algorithms
Recurrence Relation

Given

\[P(n) = \begin{cases}
 P(\lfloor \frac{n}{2} \rfloor) + 1 & \text{if } n > 1 \\
 1 & \text{if } n = 1
\end{cases} \]

prove that

\[P(n) \leq 1 + \log_2 n. \]
Recurrence Relation

Given

\[P(n) = \begin{cases}
 P(\lfloor \frac{n}{2} \rfloor) + 1 & \text{if } n > 1 \\
 1 & \text{if } n = 1
\end{cases} \]

prove that

\[P(n) \leq 1 + \log_2 n. \]

- **Basis**: \(k = 1 \): \(P(1) = 1 \leq 1 + \log_2 1. \)
Recurrence Relation

Given

\[P(n) = \begin{cases}
 P(\lfloor \frac{n}{2} \rfloor) + 1 & \text{if } n > 1 \\
 1 & \text{if } n = 1
\end{cases} \]

prove that

\[P(n) \leq 1 + \log_2 n. \]

- **Basis:** \(k = 1: \) \(P(1) = 1 \leq 1 + \log_2 1. \)
- **Inductive hypothesis:** Assume \(P(k) \leq 1 + \log_2 k. \) Prove \(P(k + 1) \leq 1 + \log_2 (k + 1). \)
Recurrence Relation

Given

\[P(n) = \begin{cases}
P(\lfloor \frac{n}{2} \rfloor) + 1 & \text{if } n > 1 \\
1 & \text{if } n = 1
\end{cases} \]

prove that

\[P(n) \leq 1 + \log_2 n. \]

- **Basis:** \(k = 1: \) \(P(1) = 1 \leq 1 + \log_2 1. \)
- **Inductive hypothesis:** Assume \(P(k) \leq 1 + \log_2 k. \) Prove \(P(k + 1) \leq 1 + \log_2 (k + 1). \)
- **Inductive step:** \(P(k + 1) = \)
Recurrence Relation

Given

\[P(n) = \begin{cases}
P(\lfloor \frac{n}{2} \rfloor) + 1 & \text{if } n > 1 \\
1 & \text{if } n = 1
\end{cases} \]

prove that

\[P(n) \leq 1 + \log_2 n. \]

- **Basis:** \(k = 1: \ P(1) = 1 \leq 1 + \log_2 1. \)
- **Inductive hypothesis:** Assume \(P(k) \leq 1 + \log_2 k. \) Prove \(P(k + 1) \leq 1 + \log_2 (k + 1). \)
- **Inductive step:** \(P(k + 1) = P(\lfloor \frac{k+1}{2} \rfloor) + 1. \)
Recurrence Relation

Given

\[P(n) = \begin{cases}
 P(\lfloor \frac{n}{2} \rfloor) + 1 & \text{if } n > 1 \\
 1 & \text{if } n = 1
\end{cases} \]

prove that

\[P(n) \leq 1 + \log_2 n. \]

- **Basis:** \(k = 1:\) \(P(1) = 1 \leq 1 + \log_2 1. \)
- **Inductive hypothesis:** Assume \(P(k) \leq 1 + \log_2 k. \) Prove \(P(k+1) \leq 1 + \log_2 (k+1). \)
- **Inductive step:** \(P(k + 1) = P(\lfloor \frac{k+1}{2} \rfloor) + 1. \)
- **We are stuck since inductive hypothesis does not say anything about** \(P(\lfloor \frac{k+1}{2} \rfloor). \)
Strong Induction

- Use strong induction: In the inductive hypothesis, assume that $P(i)$ is true for all $i \leq k$.

\[P(k + 1) = P\left(\left\lfloor \frac{k + 1}{2} \right\rfloor \right) + 1 \]
Use strong induction: In the inductive hypothesis, assume that $P(i)$ is true for all $i \leq k$.

\[
P(k + 1) = P(\lceil \frac{k + 1}{2} \rceil) + 1
\]
\[
\leq 1 + \log_2(\lceil \frac{k + 1}{2} \rceil) + 1
\]
\[
\leq 1 + \log_2(k + 1) - 1 + 1 = 1 + \log_2(k + 1)
\]
Efficiency

- Measure resource requirements: how does the amount of time and space an algorithm uses scale with increasing input size?
- How do we put this notion on a concrete footing?
- What does it mean for one function to grow faster or slower than another?
Efficiency

- Measure resource requirements: how does the amount of time and space an algorithm uses scale with increasing input size?
- How do we put this notion on a concrete footing?
- What does it mean for one function to grow faster or slower than another?
- Goal: Develop algorithms that provably run quickly and/or use low amounts of space.
Worst-case Running Time

- We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.
Worst-case Running Time

- We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.
- Why worst-case? Why not average-case or on random inputs?
We will measure worst-case running time of an algorithm.

Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.

Why worst-case? Why not average-case or on random inputs?

Input size = number of elements in the input.
Worst-case Running Time

- We will measure **worst-case** running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.
- Why worst-case? Why not average-case or on random inputs?
- **Input size** = number of elements in the input. **Values** in the input do not matter, except for specific algorithms.
- Assume all elementary operations take unit time: assignment, arithmetic on a fixed-size number, comparisons, array lookup, following a pointer, etc.
Polynomial Time

- Brute force algorithm: Check every possible solution.
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting: given n numbers, permute them so that they appear in increasing order?
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting: given n numbers, permute them so that they appear in increasing order?
 - Try all possible $n!$ permutations of the numbers.
 - For each permutation, check if it is sorted.
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting: given \(n \) numbers, permute them so that they appear in increasing order?
 - Try all possible \(n! \) permutations of the numbers.
 - For each permutation, check if it is sorted.
 - Running time is \(nn! \). Unacceptable in practice!
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting: given n numbers, permute them so that they appear in increasing order?
 - Try all possible $n!$ permutations of the numbers.
 - For each permutation, check if it is sorted.
 - Running time is $nn!$. Unacceptable in practice!
- Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor c.
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting: given n numbers, permute them so that they appear in increasing order?
 - Try all possible $n!$ permutations of the numbers.
 - For each permutation, check if it is sorted.
 - Running time is $n! n$. Unacceptable in practice!
- Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor c.
- An algorithm has a *polynomial* running time if there exist constants $c > 0$ and $d > 0$ such that on every input of size n, the running time of the algorithm is bounded by cn^d steps.
Polynomial Time

- Brute force algorithm: Check every possible solution.
- What is a brute force algorithm for sorting: given n numbers, permute them so that they appear in increasing order?
 - Try all possible $n!$ permutations of the numbers.
 - For each permutation, check if it is sorted.
 - Running time is $nn!$. Unacceptable in practice!
- Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor c.
- An algorithm has a *polynomial* running time if there exist constants $c > 0$ and $d > 0$ such that on every input of size n, the running time of the algorithm is bounded by cn^d steps.

Definition
An algorithm is *tractable* if it has a polynomial running time.
Comparing Functions

- Assume all functions take only positive values.
- Different algorithms for the same problem may have different (worst-case) running times.
- Example of sorting:
Comparing Functions

- Assume all functions take only positive values.
- Different algorithms for the same problem may have different (worst-case) running times.
- Example of sorting: bubble sort, insertion sort, quick sort, merge sort, etc.
Comparing Functions

- Assume all functions take only positive values.
- Different algorithms for the same problem may have different (worst-case) running times.
- Example of sorting: bubble sort, insertion sort, quick sort, merge sort, etc.
- Bubble sort and insertion sort take roughly n^2 comparisons while quick sort and merge sort take roughly $n \log_2 n$ comparisons.
 - “Roughly” hides potentially large constants, e.g., running time of merge sort may in reality be $100n \log_2 n$.

August 28, 2014
Analysis of Algorithms
Comparing Functions

- Assume all functions take only positive values.
- Different algorithms for the same problem may have different (worst-case) running times.
- Example of sorting: bubble sort, insertion sort, quick sort, merge sort, etc.
- Bubble sort and insertion sort take roughly n^2 comparisons while quick sort and merge sort take roughly $n \log_2 n$ comparisons.
 - “Roughly” hides potentially large constants, e.g., running time of merge sort may in reality be $100 n \log_2 n$.
- How can make statements such as the following?
 - “$100 n \log_2 n \leq n^2$”
 - “$10000 n \leq n^2$”
 - “$5 n^2 - 4 n \geq 1000 n \log n$”
"10000n ≤ n^2"
"10000n ≤ n²"

10000n vs. O(n²)

- 10000n
- n²
Upper Bound

Definition

Asymptotic upper bound: A function \(f(n) \) is \(O(g(n)) \) if for all \(n \), we have \(f(n) \leq c g(n) \).
Upper Bound

Definition

Asymptotic upper bound: A function $f(n)$ is $O(g(n))$ if there exists constant $c > 0$ such that for all n, we have $f(n) \leq cg(n)$.

![Graph showing $1000n$ is $O(n^2)$]
Upper Bound

Definition

Asymptotic upper bound: A function \(f(n) \) is \(O(g(n)) \) if there exist constants \(c > 0 \) and \(n_0 \geq 0 \) such that for all \(n \geq n_0 \), we have \(f(n) \leq cg(n) \).
100n log_2 n and n^2

10^6 100n log_2 n is O(n^2), c = 1, n_0 = 1500
$100n \log_2 n$ and n^2

$100n \log_2 n$ is $O(n^2)$, $c = 100$, $n_0 = 1$
Lower Bound

Definition

Asymptotic lower bound: A function \(f(n) \) is \(\Omega(g(n)) \) if for all \(n \geq n_0 \), we have \(f(n) \geq c \cdot g(n) \).
Lower Bound

Definition

Asymptotic lower bound: A function $f(n)$ is $\Omega(g(n))$ if there exists constant $c > 0$ such that for all n, we have $f(n) \geq cg(n)$.
Lower Bound

Definition

Asymptotic lower bound: A function \(f(n) \) is \(\Omega(g(n)) \) if there exist constants \(c > 0 \) and \(n_0 \geq 0 \) such that for all \(n \geq n_0 \), we have \(f(n) \geq cg(n) \).
Definition

Asymptotic lower bound: A function $f(n)$ is $\Omega(g(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ such that for all $n \geq n_0$, we have $f(n) \geq cg(n)$.

Graph showing $n \log_2 n/10$ and $\Omega(n)$
Lower Bound

Definition

Asymptotic lower bound: A function \(f(n) \) is \(\Omega(g(n)) \) if there exist constants \(c > 0 \) and \(n_0 \geq 0 \) such that for all \(n \geq n_0 \), we have \(f(n) \geq cg(n) \).

\[n \log_2 n/10 \text{ is } \Omega(n), \quad c = 1, \quad n_0 = 1024 \]
Meaning of “Lower Bound” in Different Contexts

▶ Functions:

n is a lower bound for $n \log n / 10$, i.e.,

$$n \log n / 10 = \Omega(n).$$

This statement is purely about these two mathematical functions without relevance to any algorithm or problem.

▶ Algorithms: The lower bound on the running time of bubble sort is $\Omega(n^2)$.

There is some input of n numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g., input the numbers in decreasing order.

▶ Problems: The problem of sorting n numbers has a lower bound of $\Omega(n \log n)$.

For any comparison-based sorting algorithm, there is at least one input for which that algorithm will take $\Omega(n \log n)$ steps.
Meaning of “Lower Bound” in Different Contexts

- **Functions:** \(n \) is a lower bound for \(n \log n/10 \), i.e., \(n \log n/10 = \Omega(n) \).
Meaning of “Lower Bound” in Different Contexts

▶ Functions: n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$. This statement is purely about these two mathematical functions without relevance to any algorithm or problem.
Meaning of “Lower Bound” in Different Contexts

- Functions: n is a lower bound for $n \log n / 10$, i.e., $n \log n / 10 = \Omega(n)$. This statement is purely about these two mathematical functions without relevance to any algorithm or problem.
- Algorithms: The lower bound on the running time of bubble sort is $\Omega(n^2)$.

August 28, 2014 Analysis of Algorithms
Meaning of “Lower Bound” in Different Contexts

- Functions: n is a lower bound for $n \log n / 10$, i.e., $n \log n / 10 = \Omega(n)$. This statement is purely about these two mathematical functions without relevance to any algorithm or problem.

- Algorithms: The lower bound on the running time of bubble sort is $\Omega(n^2)$. There is some input of n numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g.,
Meaning of “Lower Bound” in Different Contexts

- **Functions:** n is a lower bound for $n \log n/10$, i.e., $n \log n/10 = \Omega(n)$. This statement is purely about these two mathematical functions without relevance to any algorithm or problem.

- **Algorithms:** The lower bound on the running time of bubble sort is $\Omega(n^2)$. There is some input of n numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g., input the numbers in decreasing order.
Meaning of “Lower Bound” in Different Contexts

- **Functions**: n is a lower bound for $n \log n / 10$, i.e., $n \log n / 10 = \Omega(n)$. This statement is purely about these two mathematical functions without relevance to any algorithm or problem.

- **Algorithms**: The lower bound on the running time of bubble sort is $\Omega(n^2)$. There is some input of n numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g., input the numbers in decreasing order.

- **Problems**: The problem of sorting n numbers has a lower bound of $\Omega(n \log n)$.
Meaning of “Lower Bound” in Different Contexts

- **Functions:** n is a lower bound for $n \log n / 10$, i.e., $n \log n / 10 = \Omega(n)$. This statement is purely about these two mathematical functions without relevance to any algorithm or problem.

- **Algorithms:** The lower bound on the running time of bubble sort is $\Omega(n^2)$. There is some input of n numbers that will cause bubble sort to take at least $\Omega(n^2)$ time, e.g., input the numbers in decreasing order.

- **Problems:** The problem of sorting n numbers has a lower bound of $\Omega(n \log n)$. For any comparison-based sorting algorithm, there is at least one input for which that algorithm will take $\Omega(n \log n)$ steps.
Definition

Asymptotic tight bound: A function $f(n)$ is $\Theta(g(n))$ if $f(n)$ is $O(g(n))$ and $f(n)$ is $\Omega(g(n))$.
Tight Bound

Definition
Asymptotic tight bound: A function \(f(n) \) is \(\Theta(g(n)) \) if \(f(n) \) is \(O(g(n)) \) and \(f(n) \) is \(\Omega(g(n)) \).

- In all these definitions, \(c \) and \(n_0 \) are constants independent of \(n \).
- Abuse of notation: say \(g(n) = O(f(n)) \), \(g(n) = \Omega(f(n)) \), \(g(n) = \Theta(f(n)) \).
Properties of Asymptotic Growth Rates

Transitivity

- If $f = O(g)$ and $g = O(h)$, then $f = O(h)$.
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.
Properties of Asymptotic Growth Rates

Transitivity
- If \(f = O(g) \) and \(g = O(h) \), then \(f = O(h) \).
- If \(f = \Omega(g) \) and \(g = \Omega(h) \), then \(f = \Omega(h) \).
- If \(f = \Theta(g) \) and \(g = \Theta(h) \), then \(f = \Theta(h) \).

Additivity
- If \(f = O(h) \) and \(g = O(h) \), then \(f + g = O(h) \).
- Similar statements hold for lower and tight bounds.
Properties of Asymptotic Growth Rates

Transitivity
- If $f = O(g)$ and $g = O(h)$, then $f = O(h)$.
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

Additivity
- If $f = O(h)$ and $g = O(h)$, then $f + g = O(h)$.
- Similar statements hold for lower and tight bounds.
- If k is a constant and there are k functions $f_i = O(h), 1 \leq i \leq k$, then $f_1 + f_2 + ... + f_k = O(h)$.

August 28, 2014
Properties of Asymptotic Growth Rates

Transitivity
- If \(f = O(g) \) and \(g = O(h) \), then \(f = O(h) \).
- If \(f = \Omega(g) \) and \(g = \Omega(h) \), then \(f = \Omega(h) \).
- If \(f = \Theta(g) \) and \(g = \Theta(h) \), then \(f = \Theta(h) \).

Additivity
- If \(f = O(h) \) and \(g = O(h) \), then \(f + g = O(h) \).
- Similar statements hold for lower and tight bounds.
- If \(k \) is a constant and there are \(k \) functions \(f_i = O(h), 1 \leq i \leq k \), then \(f_1 + f_2 + \ldots + f_k = O(h) \).
Properties of Asymptotic Growth Rates

Transitivity
- If \(f = O(g) \) and \(g = O(h) \), then \(f = O(h) \).
- If \(f = \Omega(g) \) and \(g = \Omega(h) \), then \(f = \Omega(h) \).
- If \(f = \Theta(g) \) and \(g = \Theta(h) \), then \(f = \Theta(h) \).

Additivity
- If \(f = O(h) \) and \(g = O(h) \), then \(f + g = O(h) \).
- Similar statements hold for lower and tight bounds.
- If \(k \) is a constant and there are \(k \) functions \(f_i = O(h), 1 \leq i \leq k \), then \(f_1 + f_2 + \ldots + f_k = O(h) \).
- If \(f = O(g) \), then \(f + g = \).
Properties of Asymptotic Growth Rates

Transitivity
- If \(f = O(g) \) and \(g = O(h) \), then \(f = O(h) \).
- If \(f = \Omega(g) \) and \(g = \Omega(h) \), then \(f = \Omega(h) \).
- If \(f = \Theta(g) \) and \(g = \Theta(h) \), then \(f = \Theta(h) \).

Additivity
- If \(f = O(h) \) and \(g = O(h) \), then \(f + g = O(h) \).
- Similar statements hold for lower and tight bounds.
- If \(k \) is a constant and there are \(k \) functions \(f_i = O(h), 1 \leq i \leq k \), then \(f_1 + f_2 + \ldots + f_k = O(h) \).
- If \(f = O(g) \), then \(f + g = \Theta(g) \).
Examples

- $f(n) = pn^2 + qn + r$ is
Examples

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
Examples

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
- Is $f(n) = pn^2 + qn + r = O(n^3)$?
Examples

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
- Is $f(n) = pn^2 + qn + r = O(n^3)$?
- $f(n) = \sum_{0 \leq i \leq d} a_i n^i =$
Examples

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
- Is $f(n) = pn^2 + qn + r = O(n^3)$?
- $f(n) = \sum_{0 \leq i \leq d} a_i n^i = O(n^d)$, if $d > 0$ is an integer constant and $a_d > 0$.
 - $O(n^d)$ is the definition of \textit{polynomial time}.
Examples

- \(f(n) = pn^2 + qn + r \) is \(\theta(n^2) \). Can ignore lower order terms.
- Is \(f(n) = pn^2 + qn + r = O(n^3) \)?
- \(f(n) = \sum_{0 \leq i \leq d} a_i n^i = O(n^d) \), if \(d > 0 \) is an integer constant and \(a_d > 0 \).
 - \(O(n^d) \) is the definition of polynomial time.
- Is an algorithm with running time \(O(n^{1.59}) \) a polynomial-time algorithm?
Examples

- \(f(n) = pn^2 + qn + r \) is \(\theta(n^2) \). Can ignore lower order terms.
- Is \(f(n) = pn^2 + qn + r = O(n^3) \)?
- \(f(n) = \sum_{0 \leq i \leq d} a_i n^i = O(n^d) \), if \(d > 0 \) is an integer constant and \(a_d > 0 \).
 - \(O(n^d) \) is the definition of polynomial time.
- Is an algorithm with running time \(O(n^{1.59}) \) a polynomial-time algorithm?
- \(O(\log_a n) = O(\log_b n) \) for any pair of constants \(a, b > 1 \).
- For every constant \(x > 0 \), \(\log n = O(n^x) \).
Examples

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
- Is $f(n) = pn^2 + qn + r = O(n^3)$?
- $f(n) = \sum_{0 \leq i \leq d} a_in^i = O(n^d)$, if $d > 0$ is an integer constant and $a_d > 0$.
 - $O(n^d)$ is the definition of polynomial time.
- Is an algorithm with running time $O(n^{1.59})$ a polynomial-time algorithm?
- $O(\log_a n) = O(\log_b n)$ for any pair of constants $a, b > 1$.
- For every constant $x > 0$, $\log n = O(n^x)$.
- For every constant $r > 1$ and every constant $d > 0$, $n^d = O(r^n)$.
Different functions of n

- n
- $n \log n$
- n^2
- n^3
- 2^n
More functions of n

- n
- $\log_2 n$
- $\log_3 n$
- $n^{0.5}$
Linear Time

- Running time is at most a constant factor times the size of the input.
Linear Time

- Running time is at most a constant factor times the size of the input.
- Finding the minimum, merging two sorted lists.
Linear Time

- Running time is at most a constant factor times the size of the input.
- Finding the minimum, merging two sorted lists.
- Sub-linear time.
Linear Time

- Running time is at most a constant factor times the size of the input.
- Finding the minimum, merging two sorted lists.
- Sub-linear time. Binary search in a sorted array of n numbers takes $O(\log n)$ time.
$O(n \log n)$ Time

- Any algorithm where the costliest step is sorting.
Quadratic Time

- Enumerate all pairs of elements.
Quadratic Time

- Enumerate all pairs of elements.
- Given a set of n points in the plane, find the pair that are the closest.
Quadratic Time

- Enumerate all pairs of elements.
- Given a set of n points in the plane, find the pair that are the closest. Surprising fact: will solve this problem in $O(n \log n)$ time later in the semester.
Does a graph have an independent set of size k, where k is a constant, i.e. there are k nodes such that no two are joined by an edge?
Does a graph have an independent set of size k, where k is a constant, i.e. there are k nodes such that no two are joined by an edge?

Algorithm: For each subset S of k nodes, check if S is an independent set. If the answer is yes, report it.
Does a graph have an independent set of size k, where k is a constant, i.e. there are k nodes such that no two are joined by an edge?

Algorithm: For each subset S of k nodes, check if S is an independent set. If the answer is yes, report it.

Running time is $O(n^k)$.
Does a graph have an independent set of size k, where k is a constant, i.e. there are k nodes such that no two are joined by an edge?

Algorithm: For each subset S of k nodes, check if S is an independent set. If the answer is yes, report it.

Running time is $O(k^2 \binom{n}{k}) = O(n^k)$.

$O(n^k)$ Time
Beyond Polynomial Time

- What is the largest size of an independent set in a graph with \(n \) nodes?
Beyond Polynomial Time

What is the largest size of an independent set in a graph with n nodes?

Algorithm: For each $1 \leq i \leq n$, check if the graph has an independent size of size i. Output largest independent set found.
Beyond Polynomial Time

- What is the largest size of an independent set in a graph with n nodes?
- Algorithm: For each $1 \leq i \leq n$, check if the graph has an independent size of size i. Output largest independent set found.
- What is the running time?

$O(n^2)$.

August 28, 2014 Analysis of Algorithms
Beyond Polynomial Time

- What is the largest size of an independent set in a graph with \(n \) nodes?
- Algorithm: For each \(1 \leq i \leq n \), check if the graph has an independent size of size \(i \). Output largest independent set found.
- What is the running time? \(O(n^22^n) \).