Homework 4

CS 4104 (Spring 2014)

Assigned on Wednesday, March 5, 2014.

Submit PDF solutions on Scholar
by the beginning of class on Wednesday, March 19, 2014.

Instructions:

You can pair up with another student to solve the homework. You are allowed to discuss possible
algorithms and bounce ideas with your team-mate. Do not discuss proofs of correctness or
running time in detail with your team-mate. Please form teams yourselves. Of course, you can
ask me for help if you cannot find a team-mate. You may choose to work alone. Fach of you must
write down your solution individually, and write down the name of the other member in your team. If
you do not have a team-mate, please say so. If your solution is largely identical to that of your
team-mate or another student, we will return it ungraded.

Apart from your team-mate, you are not allowed to consult any sources other than your textbook, the
slides on the course web page, your own class notes, the TAs, and the instructor. In particular, do not
use a search engine.

Do not forget to typeset your solutions. Fvery mathematical expression must be typeset as a mathe-
matical expression, e.g., the square of n must appear as n® and not as “n"2”. Students can use the
ETEX version of the homework problems to start entering their solutions.

Describe your algorithms as clearly as possible. The style used in the book is fine, as long as your de-
scription is not ambiguous. Explain your algorithm in words. A step-wise description is fine. However,
if you submit detailed pseudo-code without an explanation, we will not grade your solutions.

Do not make any assumptions not stated in the problem. If you do make any assumptions, state them
clearly, and explain why the assumption does not decrease the generality of your solution.

Do not describe your algorithms only for a specific example you may have worked out.

You must also provide a clear proof that your solution is correct (or a counter-example, where appli-
cable). Type out all the statements you need to complete your proof. You must convince us that you
can write out the complete proof. You will lose points if you work out some details of the proof in your
head but do not type them out in your solution.

Describe an analysis of your algorithm and state and prove the running time. You will only get partial
credit if your analysis is not tight, i.e., if the bound you prove for your algorithm is not the best upper
bound possible.

Problem 1 (30 points) Let G = (V, E) be an undirected connected graph and let ¢ : E — RY be a function

specifying the costs of the edges, i.e., every edge has a positive cost. Assume that no two edges have
the same cost. Given a set S C V, where S contains at least one element and is not equal to V, let eg
denote the edge in F defined by applying the cut property to S, i.e.,

es = arg mineeCut(S)ce.

In this definition, the function “argmin” is just like “min” but returns the argument (in this case the
edge) that achieves the minimum. Let F be set of all such edges, i.e., F = {es,S C V,S # 0}. In
the definition of F', S ranges over all subsets of V other than the empty set and V itself. Answer the
following questions, providing proofs for all but the first question.



CS 4104 (Spring 2014): Homework 4

(i) (5 points) How many distinct cuts does G have? We will use the same definition as in class: a
cut is a set of edges whose removal disconnects G into two non-empty connected components.
Two cuts are distinct if they do not contain exactly the same set of edges. For this question, just
provide an upper bound.

(ii) (8 points) Consider the graph induced by the set of edges in F, i.e., the graph G' = (V, F). Is G’
connected?

(iii) (7 points) Does G’ contain a cycle?
(iv) (5 points) How many edges does F' contain?

(v) (5 points) What conclusion can you draw from your answers to the previous statements?

Problem 2 (25 points) You return home for Spring Break all agog with the exciting new ideas you have
discovered in the algorithms class. You tell your evil twin sibling about the Minimum Spanning Tree
(MST) problem and the clever algorithms for computing it. Your sibling pooh poohs your new-found
wisdom and proposes the following simple algorithm on to compute the MST of an undirected graph
G, assuming that no two edges have the same cost.

1. Maintain a set T" of edges. Initially T" is empty.
2. Process the edges of E in any order.
3. For each edge e € F,

(a) AddetoT.
(b) If T contains a cycle, delete e from T.

Something seems fishy. Could this algorithm really compute the MST? Show up your sibling by fixing
the algorithm so that T is indeed the MST at the end and prove that the modified algorithm computes
the MST of G. Notes: (a) The algorithm is not the same as Kruskal’s algorithm since it processes the
edges in any order. In contrast Kruskal’s algorithm processes the edges in increasing order of cost.
(b) In your fix, you decide not to sort the edges by cost or use any data structure such as the priority
queue to sort the edges by cost. (c) We are interested only in proving the correctness of this algorithm.
We are not interested in its running time.

Problem 3 (15 points) Consider the version of Dijkstra’s algorithm shown below written by someone (maybe
the same evil twin sibling) with access to a priority queue data structure that supports only the INSERT
and EXTRACTMIN operations. Due to this constraint, the difference between this version and the one
discussed in class is that instead of the CHANGEKEY(Q, x, d'(x)) operation in Step , this version simply
inserts the pair (z,d'(z)) into Q. The danger with this algorithm is that a node z may occur several
times in @ with different values of d’(z). Answer the following questions.

1. (5 points) What is the running time of this algorithm? Just state the bound in terms of the
number of nodes n and the number of edges m in G.

2. (5 points) When the algorithm inserts a pair (z,d;) into @, suppose the pair (z,ds) is already in
Q. What is the relationship between d; and ds?
3. (5 points) Using this relationship, how will you fix this algorithm? You just have to describe your

correction in words, e.g., by saying “I will add the following command after Step X: ...” You do
not have to prove the correctness of your algorithm.



CS 4104 (Spring 2014): Homework 4

Algorithm 1 DIJKSTRA’S ALGORITHM(G, 1, s)

1: INSERT(Q, s, 0).
2: while S #V do

3 (v,d'(v)) = EXTRACTMIN(Q)

4:  Add v to S and set d(v) = d’'(v)

5. for every node x € V — S such that (v,z) is an edge in G do
6: if d(v) + l(y,0) < d'(x) then

7 d/($> = d(v) + l(v,m)

8: INSERT(Q, =, d'(z))

9: end if

10: end for
11: end while

Problem 4 (30 points) You are given a graph G(V, E) and a minimum spanning tree (V,T) for G. You
now pick an edge e in E and change its cost from ¢ to ¢/. Describe an algorithm to update T so that
it is a minimum spanning tree for the graph with the new edge weight. Your algorithm must run in
time linear in the number of nodes and edges in G. There are multiple cases to consider, depending
on whether e is in T or not and whether c is larger or smaller than ¢’. Describe each case separately.
You can assume that all edge costs are distinct, both before and after the change.



