NP and Computational Intractability

T. M. Murali

November 30, 2009
Algorithm Design

- Patterns
 - Greed. \(O(n \log n)\) interval scheduling.
 - Divide-and-conquer. \(O(n \log n)\) closest pair of points.
 - Dynamic programming. \(O(n^2)\) edit distance.
 - Duality. \(O(n^3)\) maximum flow and minimum cuts.
Algorithm Design

- Patterns
 - Greed. \(O(n \log n) \) interval scheduling.
 - Divide-and-conquer. \(O(n \log n) \) closest pair of points.
 - Dynamic programming. \(O(n^2) \) edit distance.
 - Duality.
 - Reductions.
 - Local search.
 - Randomization. \(O(n^3) \) maximum flow and minimum cuts.
Algorithm Design

Patterns

- Greed.
- Divide-and-conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

“Anti-patterns”

- NP-completeness.
- PSPACE-completeness.
- Undecidability.

\[O(n \log n) \] interval scheduling.
\[O(n \log n) \] closest pair of points.
\[O(n^2) \] edit distance.
\[O(n^3) \] maximum flow and minimum cuts.

\[O(n^k) \] algorithm unlikely.
\[O(n^k) \] certification algorithm unlikely.
No algorithm possible.
Computational Tractability

- When is an algorithm an efficient solution to a problem?
Computational Tractability

- When is an algorithm an efficient solution to a problem? When its running time is polynomial in the size of the input.
When is an algorithm an efficient solution to a problem? When its running time is polynomial in the size of the input.

A problem is *computationally tractable* if it has a polynomial-time algorithm.
Computational Tractability

- When is an algorithm an efficient solution to a problem? When its running time is polynomial in the size of the input.
- A problem is *computationally tractable* if it has a polynomial-time algorithm.

Polynomial time
- Shortest path
- Matching
- Minimum cut
- 2-SAT
- Planar four-colour
- Bipartite vertex cover
- Primality testing

Probably not
- Longest path
- 3-D matching
- Maximum cut
- 3-SAT
- Planar three-colour
- Vertex cover
- Factoring
Problem Classification

- Classify problems based on whether they admit efficient solutions or not.
- Some extremely hard problems cannot be solved efficiently (e.g., chess on an n-by-n board).
Problem Classification

- Classify problems based on whether they admit efficient solutions or not.
- Some extremely hard problems cannot be solved efficiently (e.g., chess on an n-by-n board).
- However, classification is unclear for a very large number of discrete computational problems.
Problem Classification

- Classify problems based on whether they admit efficient solutions or not.
- Some extremely hard problems cannot be solved efficiently (e.g., chess on an n-by-n board).
- However, classification is unclear for a very large number of discrete computational problems.
- We can prove that these problems are fundamentally equivalent and are manifestations of the same problem!
Polynomial-Time Reduction

- Goal is to express statements of the type “Problem \(X \) is at least as hard as problem \(Y \).”
- Use the notion of reductions.
- \(Y \) is polynomial-time reducible to \(X \) (\(Y \leq_P X \))
Polynomial-Time Reduction

- Goal is to express statements of the type “Problem X is at least as hard as problem Y.”
- Use the notion of *reductions*.
- Y is polynomial-time reducible to X ($Y \leq_P X$) if an arbitrary instance of Y can be solved using a polynomial number of standard operations, plus a polynomial number of calls to a black box that solves problem X.
- $Y \leq_P X$ implies that “X is at least as hard as Y.”
- Such reductions are *Cook reductions*. *Karp reductions* allow only one call to the black box that solves X.

T. M. Murali November 30, 2009 CS 4104: NP
Usefulness of Reductions

- Claim: If $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
Usefulness of Reductions

- Claim: If $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
- Contrapositive: If $Y \leq_P X$ and Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.
- Informally: If Y is hard, and we can show that Y reduces to X, then the hardness “spreads” to X.
Reduction Strategies

- Simple equivalence.
- Special case to general case.
- Encoding with gadgets.
Optimisation versus Decision Problems

- So far, we have developed algorithms that solve optimisation problems.
 - Compute the largest flow.
 - Find the closest pair of points.
 - Find the schedule with the least completion time.
Optimisation versus Decision Problems

- So far, we have developed algorithms that solve optimisation problems.
 - Compute the largest flow.
 - Find the closest pair of points.
 - Find the schedule with the least completion time.
- Now, we will focus on decision versions of problems, e.g., is there a flow with value at least k, for a given value of k?
Independent Set and Vertex Cover

- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is an *independent set* if no two vertices in S are connected by an edge.
- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is a *vertex cover* if every edge in E is incident on at least one vertex in S.
Independent Set and Vertex Cover

Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is an independent set if no two vertices in S are connected by an edge.

Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is a vertex cover if every edge in E is incident on at least one vertex in S.

Independent Set

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain an independent set of size k?

Vertex Cover

INSTANCE: Undirected graph G and an integer l

QUESTION: Does G contain a vertex cover of size l?
Independent Set and Vertex Cover

- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is an independent set if no two vertices in S are connected by an edge.
- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is a vertex cover if every edge in E is incident on at least one vertex in S.

Independent Set

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain an independent set of size at least k?

Vertex cover

INSTANCE: Undirected graph G and an integer l

QUESTION: Does G contain a vertex cover of size at most l?
Independent Set and Vertex Cover

- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is an \textit{independent set} if no two vertices in S are connected by an edge.
- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is a \textit{vertex cover} if every edge in E is incident on at least one vertex in S.

\textbf{Independent Set}

\textbf{INSTANCE:} Undirected graph G and an integer k

\textbf{QUESTION:} Does G contain an independent set of size at least k?

- Demonstrate simple equivalence between these two problems.

\textbf{Vertex cover}

\textbf{INSTANCE:} Undirected graph G and an integer l

\textbf{QUESTION:} Does G contain a vertex cover of size at most l?
Independent Set and Vertex Cover

- Given an undirected graph \(G(V, E) \), a subset \(S \subseteq V \) is an independent set if no two vertices in \(S \) are connected by an edge.
- Given an undirected graph \(G(V, E) \), a subset \(S \subseteq V \) is a vertex cover if every edge in \(E \) is incident on at least one vertex in \(S \).

Independent Set

INSTANCE: Undirected graph \(G \) and an integer \(k \)

QUESTION: Does \(G \) contain an independent set of size at least \(k \)?

Vertex Cover

INSTANCE: Undirected graph \(G \) and an integer \(l \)

QUESTION: Does \(G \) contain a vertex cover of size at most \(l \)?

- Demonstrate simple equivalence between these two problems.
- **Claim:** Independent Set \(\leq_P \) Vertex Cover and Vertex Cover \(\leq_P \) Independent Set.
Strategy for Proving Indep. Set \(\leq_P \) Vertex Cover

1. Start with an arbitrary instance of **Independent Set**: an undirected graph \(G(V, E) \) and an integer \(k \).

2. From \(G(V, E) \) and \(k \), create an instance of **Vertex Cover**: an undirected graph \(G'(V', E') \) and an integer \(l \).

3. Prove that \(G(V, E) \) has an independent set of size \(\geq k \) iff \(G'(V', E') \) has a vertex cover of size \(\leq l \).
Strategy for Proving Indep. Set \leq_P Vertex Cover

1. Start with an arbitrary instance of \textsc{Independent Set}: an undirected graph $G(V, E)$ and an integer k.

2. From $G(V, E)$ and k, create an instance of \textsc{Vertex Cover}: an undirected graph $G'(V', E')$ and an integer l.

3. Prove that $G(V, E)$ has an independent set of size $\geq k$ iff $G'(V', E')$ has a vertex cover of size $\leq l$.

- Transformation and proof must be correct for all possible graphs $G(V, E)$ and all possible values of k.

- Why is the proof an iff statement?
Strategy for Proving Indep. Set \leq_P Vertex Cover

1. Start with an arbitrary instance of INDEPENDENT SET: an undirected graph $G(V, E)$ and an integer k.

2. From $G(V, E)$ and k, create an instance of VERTEX COVER: an undirected graph $G'(V', E')$ and an integer l.

3. Prove that $G(V, E)$ has an independent set of size $\geq k$ iff $G'(V', E')$ has a vertex cover of size $\leq l$.

- Transformation and proof must be correct for all possible graphs $G(V, E)$ and all possible values of k.

- Why is the proof an iff statement? In the reduction, we are using black box for VERTEX COVER to solve INDEPENDENT SET.

 (i) If there is an independent set size $\geq k$, we must be sure that there is a vertex cover of size $\leq l$, so that we know that the black box will find this vertex cover.

 (ii) If the black box finds a vertex cover of size $\leq l$, we must be sure we can construct an independent set of size $\geq k$ from this vertex cover.
Proof that Independent Set \leq_P Vertex Cover

1. Arbitrary instance of **INDEPENDENT SET**: an undirected graph $G(V, E)$ and an integer k.
2. Let $|V| = n$.
3. Create an instance of **VERTEX COVER**: same undirected graph $G(V, E)$ and integer $n - k$.

▶ Same idea proves that **VERTEX COVER** \leq_P **INDEPENDENT SET**
Proof that Independent Set \leq_P Vertex Cover

1. Arbitrary instance of Independent Set: an undirected graph $G(V, E)$ and an integer k.

2. Let $|V| = n$.

3. Create an instance of Vertex Cover: same undirected graph $G(V, E)$ and integer $n - k$.

4. Claim: $G(V, E)$ has an independent set of size $\geq k$ iff $G(V, E)$ has a vertex cover of size $\leq n - k$.
 Proof: S is an independent set in G iff $V - S$ is a vertex cover in G.
Proof that Independent Set \(\leq_P \) Vertex Cover

1. Arbitrary instance of **INDEPENDENT SET**: an undirected graph \(G(V, E) \) and an integer \(k \).
2. Let \(|V| = n|\).
3. Create an instance of **VERTEX COVER**: same undirected graph \(G(V, E) \) and integer \(n - k \).
4. Claim: \(G(V, E) \) has an independent set of size \(\geq k \) iff \(G(V, E) \) has a vertex cover of size \(\leq n - k \).

 Proof: \(S \) is an independent set in \(G \) iff \(V - S \) is a vertex cover in \(G \).

▶ **Same idea proves that** Vertex Cover \(\leq_P \) Independent Set
Vertex Cover and Set Cover

- **Independent Set** is a “packing” problem: pack as many vertices as possible, subject to constraints (the edges).
- **Vertex Cover** is a “covering” problem: cover all edges in the graph with as few vertices as possible.
- There are more general covering problems.

Set Cover

INSTANCE: A set U of n elements, a collection S_1, S_2, \ldots, S_m of subsets of U, and an integer k.

QUESTION: Is there a collection of $\leq k$ sets in the collection whose union is U?

![Figure 8.2 An instance of the Set Cover Problem.](image-url)
Vertex Cover \leq_p Set Cover

- Input to Vertex Cover: an undirected graph $G(V, E)$ and an integer k.
- Let $|V| = n$.
- Create an instance $\{U, \{S_1, S_2, \ldots S_n\}\}$ of Set Cover where
Vertex Cover \(\leq_P \) Set Cover

- **Input to **\textsc{Vertex Cover}: an undirected graph \(G(V, E) \) and an integer \(k \).
- Let \(|V| = n \).
- Create an instance \(\{ U, \{ S_1, S_2, \ldots S_n \} \} \) of \textsc{Set Cover} where
 - \(U = E \),
 - for each vertex \(i \in V \), create a set \(S_i \subseteq U \) of the edges incident on \(i \).
Vertex Cover \(\leq_P\) Set Cover

- Input to **Vertex Cover**: an undirected graph \(G(V, E)\) and an integer \(k\).
- Let \(|V| = n\).
- Create an instance \(\{U, \{S_1, S_2, \ldots, S_n\}\}\) of **Set Cover** where
 - \(U = E\),
 - for each vertex \(i \in V\), create a set \(S_i \subseteq U\) of the edges incident on \(i\).
- Claim: \(U\) can be covered with fewer than \(k\) subsets iff \(G\) has a vertex cover with at most \(k\) nodes.
- Proof strategy:
 1. If \(G(V, E)\) has a vertex cover of size at most \(k\), then \(U\) can be covered with at most \(k\) subsets.
 2. If \(U\) can be covered with at most \(k\) subsets, then \(G(V, E)\) has a vertex cover of size at most \(k\).
Boolean Satisfiability

- Abstract problems formulated in Boolean notation.
- Often used to specify problems, e.g., in AI.
Boolean Satisfiability

- Abstract problems formulated in Boolean notation.
- Often used to specify problems, e.g., in AI.
- We are given a set $X = \{x_1, x_2, \ldots, x_n\}$ of n Boolean variables.
- Each variable can take the value 0 or 1.
- A term is a variable x_i or its negation $\overline{x_i}$.
- A clause of length l is a disjunction of l distinct terms $t_1 \lor t_2 \lor \cdots t_l$.
- A truth assignment for X is a function $\nu : X \rightarrow \{0, 1\}$.
- An assignment satisfies a clause C if it causes C to evaluate to 1 under the rules of Boolean logic.
- An assignment satisfies a collection of clauses C_1, C_2, \ldots, C_k if it causes $C_1 \land C_2 \land \cdots C_k$ to evaluate to 1.
 - ν is a satisfying assignment with respect to C_1, C_2, \ldots, C_k.
 - set of clauses C_1, C_2, \ldots, C_k is satisfiable.
SAT and 3-SAT

Satisfiability Problem (SAT)

INSTANCE: A set of clauses $C_1, C_2, \ldots C_k$ over a set $X = \{x_1, x_2, \ldots x_n\}$ of n variables.

QUESTION: Is there a satisfying truth assignment for X with respect to C?
SAT and 3-SAT

3-Satisfiability Problem (SAT)

INSTANCE: A set of clauses C_1, C_2, \ldots, C_k, each of length three, over a set $X = \{x_1, x_2, \ldots, x_n\}$ of n variables.

QUESTION: Is there a satisfying truth assignment for X with respect to C?
SAT and 3-SAT

3-Satisfiability Problem (SAT)

INSTANCE: A set of clauses $C_1, C_2, \ldots C_k$, each of length three, over a set $X = \{x_1, x_2, \ldots x_n\}$ of n variables.

QUESTION: Is there a satisfying truth assignment for X with respect to C?

- SAT and 3-SAT are fundamental combinatorial search problems.
- We have to make n independent decisions (the assignments for each variable) while satisfying a set of constraints.
- Satisfying each constraint in isolation is easy, but we have to make our decisions so that all constraints are satisfied simultaneously.
Examples of 3-SAT

Example:

1. \(C_1 = x_1 \lor 0 \lor 0 \)
2. \(C_2 = x_2 \lor 0 \lor 0 \)
3. \(C_3 = \overline{x_1} \lor \overline{x_2} \)
Examples of 3-SAT

Example:
- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $C_3 = \overline{x_1} \lor \overline{x_2}$

1. Is $C_1 \land C_2$ satisfiable?
Examples of 3-SAT

Example:

1. Is $C_1 \land C_2$ satisfiable? Yes, by $x_1 = 1$, $x_2 = 1$.

2. Is $C_1 \land C_3$ satisfiable? Yes, by $x_1 = 1$, $x_2 = 0$.

3. Is $C_2 \land C_3$ satisfiable? Yes, by $x_1 = 0$, $x_2 = 1$.

4. Is $C_1 \land C_2 \land C_3$ satisfiable? No.
Examples of 3-SAT

Example:
- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $C_3 = \overline{x_1} \lor \overline{x_2}$

1. Is $C_1 \land C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
2. Is $C_1 \land C_3$ satisfiable?
Examples of 3-SAT

Example:

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $C_3 = \overline{x_1} \lor \overline{x_2}$

1. Is $C_1 \land C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
2. Is $C_1 \land C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.
Examples of 3-SAT

Example:

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $C_3 = \overline{x_1} \lor \overline{x_2}$

1. Is $C_1 \land C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
2. Is $C_1 \land C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.
3. Is $C_2 \land C_3$ satisfiable?
Examples of 3-SAT

Example:

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $C_3 = \overline{x_1} \lor \overline{x_2}$

1. Is $C_1 \land C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
2. Is $C_1 \land C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.
3. Is $C_2 \land C_3$ satisfiable? Yes, by $x_1 = 0, x_2 = 1$.
Examples of 3-SAT

Example:

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $C_3 = \overline{x_1} \lor \overline{x_2}$

1. Is $C_1 \land C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
2. Is $C_1 \land C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.
3. Is $C_2 \land C_3$ satisfiable? Yes, by $x_1 = 0, x_2 = 1$.
4. Is $C_1 \land C_2 \land C_3$ satisfiable?
Examples of 3-SAT

Example:

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $C_3 = \overline{x_1} \lor \overline{x_2}$

1. Is $C_1 \land C_2$ satisfiable? Yes, by $x_1 = 1$, $x_2 = 1$.
2. Is $C_1 \land C_3$ satisfiable? Yes, by $x_1 = 1$, $x_2 = 0$.
3. Is $C_2 \land C_3$ satisfiable? Yes, by $x_1 = 0$, $x_2 = 1$.
4. Is $C_1 \land C_2 \land C_3$ satisfiable? No.
3-SAT and Independent Set

We want to prove 3-SAT \leq_P INDEPENDENT SET.
3-SAT and Independent Set

- We want to prove \(3\text{-SAT} \leq_P \text{INDEPENDENT SET}.\)

- Two ways to think about 3-SAT:
 1. Make an independent 0/1 decision on each variable and succeed if we achieve one of three ways in which to satisfy each clause.
 2. Choose (at least) one term from each clause. Find a truth assignment that causes each chosen term to evaluate to 1. Ensure that no two terms selected conflict, i.e., select \(x_i\) and \(\overline{x_i}\).
Proving 3-SAT \leq_p Independent Set

- We are given an instance of 3-SAT with k clauses of length three over n variables.
- Construct a graph $G(V, E)$ with $3k$ nodes.
 - For each clause C_i, $1 \leq i \leq k$, add a triangle of three nodes v_{i1}, v_{i2}, v_{i3} and three edges to G.
 - Label each node $v_{ij}, 1 \leq j \leq 3$ with the jth term in C_i.

Figure 8.3 The reduction from 3-SAT to Independent Set.
We are given an instance of 3-SAT with k clauses of length three over n variables.

Construct a graph $G(V, E)$ with $3k$ nodes.

- For each clause $C_i, 1 \leq i \leq k$, add a triangle of three nodes v_{i1}, v_{i2}, v_{i3} and three edges to G.
- Label each node $v_{ij}, 1 \leq j \leq 3$ with the jth term in C_i.
- Add an edge between each pair of nodes whose labels correspond to terms that conflict.
Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.

Figure 8.3 The reduction from 3-SAT to Independent Set.
Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.

Satisfiable assignment \rightarrow independent set of size $\geq k$:
Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.

Satisfiable assignment \rightarrow independent set of size $\geq k$: Each triangle in G has at least one node whose label evaluates to 1. These nodes form an independent set of size $\geq k$. Why?
Proving 3-SAT \(\leq_p \) Independent Set

- **Claim:** 3-SAT instance is satisfiable iff \(G \) has an independent set of size at least \(k \).

- **Satisfiable assignment \(\rightarrow \) independent set of size \(\geq k \):** Each triangle in \(G \) has at least one node whose label evaluates to 1. These nodes form an independent set of size \(\geq k \). Why?

- **Independent set of size \(\geq k \) \(\rightarrow \) satisfiable assignment:
Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.

Satisfiable assignment \rightarrow independent set of size $\geq k$: Each triangle in G has at least one node whose label evaluates to 1. These nodes form an independent set of size $\geq k$. Why?

Independent set of size $\geq k \rightarrow$ satisfiable assignment: the size of this set is k. How do we construct a satisfying truth assignment from the nodes in the independent set?
Transitivity of Reductions

Claim: If \(Z \leq_P Y \) and \(Y \leq_P X \), then \(Z \leq_P X \).
Transitivity of Reductions

- Claim: If $Z \leq_p Y$ and $Y \leq_p X$, then $Z \leq_p X$.
- We have shown

\[
3\text{-SAT} \leq_p \text{Independent Set} \leq_p \text{Vertex Cover} \leq_p \text{Set Cover}
\]
Finding vs. Certifying

- Is it easy to check if a given set of vertices in an undirected graph forms an independent set of size at least k?
- Is it easy to check if a particular truth assignment satisfies a set of clauses?
Finding vs. Certifying

▶ Is it easy to check if a given set of vertices in an undirected graph forms an independent set of size at least k?
▶ Is it easy to check if a particular truth assignment satisfies a set of clauses?
▶ We draw a contrast between finding a solution and checking a solution (in polynomial time).
▶ Since we have not been able to develop efficient algorithms to solve many decision problems, let us turn our attention to whether we can check if a proposed solution is correct.
Problems, Algorithms, and Strings

- Encode input to a computational problem as a finite binary string s of length $|s|$.
- Identify a decision problem X with the set of strings for which the answer is “yes”,

\[\text{PRIMES} = \{2, 3, 5, 7, 11, \ldots\} \]
Problems, Algorithms, and Strings

- Encode input to a computational problem as a finite binary string s of length $|s|$.
- Identify a decision problem X with the set of strings for which the answer is “yes”, e.g., PRIMES = \{2, 3, 5, 7, 11, \ldots\}.
Problems, Algorithms, and Strings

- Encode input to a computational problem as a finite binary string s of length $|s|$.
- Identify a decision problem X with the set of strings for which the answer is “yes”, e.g., $\text{PRIMES} = \{2, 3, 5, 7, 11, \ldots\}$.
- An algorithm A for a decision problem receives an input string s and returns $A(s) \in \{\text{yes, no}\}$.
- A solves the problem X if for every string s, $A(s) = \text{yes}$ iff $s \in X$.
Problems, Algorithms, and Strings

- Encode input to a computational problem as a finite binary string s of length $|s|$.
- Identify a decision problem X with the set of strings for which the answer is “yes”, e.g., $\text{PRIMES} = \{2, 3, 5, 7, 11, \ldots\}$.
- An algorithm A for a decision problem receives an input string s and returns $A(s) \in \{\text{yes}, \text{no}\}$.
- A solves the problem X if for every string s, $A(s) = \text{yes}$ iff $s \in X$.
- A has a *polynomial running time* if there is a polynomial function $p(\cdot)$ such that for every input string s, A terminates on s in at most $O(p(|s|))$ steps,
Problems, Algorithms, and Strings

- Encode input to a computational problem as a finite binary string \(s \) of length \(|s|\).
- Identify a decision problem \(X \) with the set of strings for which the answer is “yes”, e.g., \(\text{PRIMES} = \{2, 3, 5, 7, 11, \ldots\} \).
- An algorithm \(A \) for a decision problem receives an input string \(s \) and returns \(A(s) \in \{\text{yes, no}\} \).
- \(A \) solves the problem \(X \) if for every string \(s \), \(A(s) = \text{yes} \) iff \(s \in X \).
- \(A \) has a \textit{polynomial running time} if there is a polynomial function \(p(\cdot) \) such that for every input string \(s \), \(A \) terminates on \(s \) in at most \(O(p(|s|)) \) steps, e.g., there is an algorithm such that \(p(|s|) = |s|^8 \) for \(\text{PRIMES} \) (Agarwal, Kayal, Saxena, 2002).
Problems, Algorithms, and Strings

- Encode input to a computational problem as a finite binary string \(s \) of length \(|s|\).
- Identify a decision problem \(X \) with the set of strings for which the answer is “yes”, e.g., PRIMES = \{2, 3, 5, 7, 11, \ldots\}.
- An algorithm \(A \) for a decision problem receives an input string \(s \) and returns \(A(s) \in \{\text{yes}, \text{no}\} \).
- \(A \) solves the problem \(X \) if for every string \(s \), \(A(s) = \text{yes} \) iff \(s \in X \).
- \(A \) has a **polynomial running time** if there is a polynomial function \(p(\cdot) \) such that for every input string \(s \), \(A \) terminates on \(s \) in at most \(O(p(|s|)) \) steps, e.g., there is an algorithm such that \(p(|s|) = |s|^8 \) for PRIMES (Agarwal, Kayal, Saxena, 2002).
- \(\mathcal{P} \): set of problems \(X \) for which there is a polynomial time algorithm.
Efficient Certification

- A “checking” algorithm for a decision problem X has a different structure from an algorithm that solves X.
- Checking algorithm needs input string s as well as a separate “certificate” string t that contains evidence that $s \in X$.
Efficient Certification

- A “checking” algorithm for a decision problem X has a different structure from an algorithm that solves X.
- Checking algorithm needs input string s as well as a separate “certificate” string t that contains evidence that $s \in X$.
- An algorithm B is an efficient certifier for a problem X if
 1. B is a polynomial time algorithm that takes two inputs s and t and
 2. there is a polynomial function p so that for every string s, we have $s \in X$ iff there exists a string t such that $|t| \leq p(|s|)$ and $B(s, t) = yes$.
Efficient Certification

▶ A “checking” algorithm for a decision problem X has a different structure from an algorithm that solves X.

▶ Checking algorithm needs input string s as well as a separate “certificate” string t that contains evidence that $s \in X$.

▶ An algorithm B is an efficient certifier for a problem X if
 1. B is a polynomial time algorithm that takes two inputs s and t and
 2. there is a polynomial function p so that for every string s, we have $s \in X$ iff there exists a string t such that $|t| \leq p(|s|)$ and $B(s, t) = \text{yes}$.

▶ Certifier’s job is to take a candidate short proof (t) that $s \in X$ and check in polynomial time whether t is a correct proof.

▶ Certifier does not care about how to find these proofs.
\(\mathcal{NP} \)

- \(\mathcal{NP} \) is the set of all problems for which there exists an efficient certifier.
- \(3\text{-SAT} \in \mathcal{NP} \):
\[\mathcal{NP} \]

- \(\mathcal{NP} \) is the set of all problems for which there exists an efficient certifier.
- \(3\text{-SAT} \in \mathcal{NP} \): \(t \) is a truth assignment; \(B \) evaluates the clauses with respect to the assignment.
\[\mathcal{NP} \]

- \(\mathcal{NP} \) is the set of all problems for which there exists an efficient certifier.
- \(3\text{-SAT} \in \mathcal{NP} \): \(t \) is a truth assignment; \(B \) evaluates the clauses with respect to the assignment.
- **Independent Set** \(\in \mathcal{NP} \):
\[\mathcal{NP} \]

- \(\mathcal{NP} \) is the set of all problems for which there exists an efficient certifier.
- \(3\text{-SAT} \in \mathcal{NP} \): \(t \) is a truth assignment; \(B \) evaluates the clauses with respect to the assignment.
- \text{Independent Set} \in \mathcal{NP}: \(t \) is a set of at least \(k \) vertices; \(B \) checks that no pair of these vertices are connected by an edge.
\mathcal{NP}

- \mathcal{NP} is the set of all problems for which there exists an efficient certifier.
- 3-SAT $\in \mathcal{NP}$: t is a truth assignment; B evaluates the clauses with respect to the assignment.
- Independent Set $\in \mathcal{NP}$: t is a set of at least k vertices; B checks that no pair of these vertices are connected by an edge.
- Set Cover $\in \mathcal{NP}$:
\(\mathcal{NP} \)

- \(\mathcal{NP} \) is the set of all problems for which there exists an efficient certifier.
- \(3\text{-SAT} \in \mathcal{NP} \): \(t \) is a truth assignment; \(B \) evaluates the clauses with respect to the assignment.
- \text{Independent Set} \in \mathcal{NP} \): \(t \) is a set of at least \(k \) vertices; \(B \) checks that no pair of these vertices are connected by an edge.
- \text{Set Cover} \in \mathcal{NP} \): \(t \) is a list of \(k \) sets from the collection; \(B \) checks if their union is \(U \).
Claim: $\mathcal{P} \subseteq \mathcal{NP}$.

Is $\mathcal{P} = \mathcal{NP}$ or is $\mathcal{NP} - \mathcal{P} \neq \emptyset$? One of the major unsolved problems in computer science.
\[\mathcal{P} \text{ vs. } \mathcal{NP} \]

- Claim: \(\mathcal{P} \subseteq \mathcal{NP} \). If \(X \in \mathcal{P} \), then there is a polynomial time algorithm \(A \) that solves \(X \). \(B \) ignores \(t \) and returns \(A(s) \). Why is \(B \) an efficient certifier?
P vs. NP

- Claim: $P \subseteq NP$. If $X \in P$, then there is a polynomial time algorithm A that solves X. B ignores t and returns $A(s)$. Why is B an efficient certifier?
- Is $P = NP$ or is $NP - P \neq \emptyset$?
\textbf{P vs. NP}

- Claim: $P \subseteq NP$. If $X \in P$, then there is a polynomial time algorithm A that solves X. B ignores t and returns $A(s)$. Why is B an efficient certifier?
- Is $P = NP$ or is $NP - P \neq \emptyset$? One of the major unsolved problems in computer science.
Claim: \(P \subseteq NP \). If \(X \in P \), then there is a polynomial time algorithm \(A \) that solves \(X \). \(B \) ignores \(t \) and returns \(A(s) \). Why is \(B \) an efficient certifier?

Is \(P = NP \) or is \(NP - P \neq \emptyset \)? One of the major unsolved problems in computer science.
What are the hardest problems in \mathcal{NP}?

Claim: Suppose X is \mathcal{NP}-Complete. Then X can be solved in polynomial time iff $P = \mathcal{NP}$.

Corollary: If there is any problem in \mathcal{NP} that cannot be solved in polynomial time, then no \mathcal{NP}-Complete problem can be solved in polynomial time.
\(\mathcal{NP}\)-Complete Problems

- What are the hardest problems in \(\mathcal{NP}\)?
- A problem \(X\) is \(\mathcal{NP}\)-Complete if
 1. \(X \in \mathcal{NP}\) and
 2. for every problem \(Y \in \mathcal{NP}\), \(Y \leq_P X\).
\[\mathcal{NP}\text{-Complete Problems}\]

- What are the hardest problems in \(\mathcal{NP}\)?
- A problem \(X\) is **\(\mathcal{NP}\)-Complete** if
 1. \(X \in \mathcal{NP}\) and
 2. for every problem \(Y \in \mathcal{NP}\), \(Y \leq_P X\).
- Claim: Suppose \(X\) is \(\mathcal{NP}\)-Complete. Then \(X\) can be solved in polynomial time iff \(\mathcal{P} = \mathcal{NP}\).
\(\mathcal{NP}\)-Complete Problems

- What are the hardest problems in \(\mathcal{NP}\)?
- A problem \(X\) is \(\mathcal{NP}\)-Complete if
 1. \(X \in \mathcal{NP}\) and
 2. for every problem \(Y \in \mathcal{NP}\), \(Y \leq_p X\).
- Claim: Suppose \(X\) is \(\mathcal{NP}\)-Complete. Then \(X\) can be solved in polynomial time iff \(P = \mathcal{NP}\).
- Corollary: If there is any problem in \(\mathcal{NP}\) that cannot be solved in polynomial time, then no \(\mathcal{NP}\)-Complete problem can be solved in polynomial time.
NP-Complete Problems

What are the hardest problems in NP?

A problem \(X \) is NP-Complete if

1. \(X \in \mathcal{NP} \) and
2. for every problem \(Y \in \mathcal{NP} \), \(Y \leq_p X \).

Claim: Suppose \(X \) is \(\mathcal{NP} \)-Complete. Then \(X \) can be solved in polynomial time iff \(\mathcal{P} = \mathcal{NP} \).

Corollary: If there is any problem in \(\mathcal{NP} \) that cannot be solved in polynomial time, then no \(\mathcal{NP} \)-Complete problem can be solved in polynomial time.

Are there any \(\mathcal{NP} \)-Complete problems?

1. Perhaps there are two problems \(X_1 \) and \(X_2 \) in \(\mathcal{NP} \) such that there is no problem \(X \in \mathcal{NP} \) where \(X_1 \leq_p X \) and \(X_2 \leq_p X \).
2. Perhaps there is a sequence of problems \(X_1, X_2, X_3, \ldots \) in \(\mathcal{NP} \), each strictly harder than the previous one.
Circuit Satisfiability

- **Cook-Levin Theorem**: \textsc{Circuit Satisfiability} is \$\mathcal{NP}\$-Complete.
Circuit Satisfiability

- **Cook-Levin Theorem:** Circuit Satisfiability is \(\mathcal{NP} \)-Complete.
- A circuit \(K \) is a labelled, directed acyclic graph such that
 1. the sources in \(K \) are labelled with constants (0 or 1) or the name of a distinct variable (the inputs to the circuit).
 2. every other node is labelled with one Boolean operator \(\wedge \), \(\vee \), or \(\neg \).
 3. a single node with no outgoing edges represents the output of \(K \).

![Circuit Diagram](image-url)

Figure 8.4 A circuit with three inputs, two additional sources that have assigned truth values, and one output.
Circuit Satisfiability

- **Cook-Levin Theorem:** Circuit Satisfiability is \(\mathcal{NP} \)-Complete.

- A circuit \(K \) is a labelled, directed acyclic graph such that
 1. the sources in \(K \) are labelled with constants (0 or 1) or the name of a distinct variable (the inputs to the circuit).
 2. every other node is labelled with one Boolean operator \(\land, \lor, \text{ or } \neg \).
 3. a single node with no outgoing edges represents the output of \(K \).

Figure 8.4 A circuit with three inputs, two additional sources that have assigned truth values, and one output.
Proving Circuit Satisfiability is \mathcal{NP}-Complete
Proving Circuit Satisfiability is \mathbb{NP}-Complete

- Take an arbitrary problem $X \in \mathbb{NP}$ and show that $X \leq_{P} \text{Circuit Satisfiability}$.
Proving Circuit Satisfiability is \mathcal{NP}-Complete

- Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{Circuit Satisfiability}$.
- Claim we will not prove: any algorithm that takes a fixed number n of bits as input and produces a yes/no answer
 1. can be represented by an equivalent circuit and
 2. if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.
Proving Circuit Satisfiability is \mathcal{NP}-Complete

- Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_p \text{Circuit Satisfiability}$.
- Claim we will not prove: any algorithm that takes a fixed number n of bits as input and produces a yes/no answer
 1. can be represented by an equivalent circuit and
 2. if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.
- To show $X \leq_p \text{Circuit Satisfiability}$, given an input s of length n, we want to determine whether $s \in X$ using a black box that solves Circuit Satisfiability.
Proving Circuit Satisfiability is \(\text{NP}\)-Complete

- Take an arbitrary problem \(X \in \text{NP} \) and show that \(X \leq_p \text{Circuit Satisfiability} \).
- Claim we will not prove: any algorithm that takes a fixed number \(n \) of bits as input and produces a yes/no answer
 1. can be represented by an equivalent circuit and
 2. if the running time of the algorithm is polynomial in \(n \), the size of the circuit is a polynomial in \(n \).
- To show \(X \leq_p \text{Circuit Satisfiability} \), given an input \(s \) of length \(n \), we want to determine whether \(s \in X \) using a black box that solves \(\text{Circuit Satisfiability} \).
- What do we know about \(X \)?
Proving Circuit Satisfiability is \mathcal{NP}-Complete

- Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_p \text{Circuit Satisfiability}$.
- Claim we will not prove: any algorithm that takes a fixed number n of bits as input and produces a yes/no answer
 1. can be represented by an equivalent circuit and
 2. if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.
- To show $X \leq_p \text{Circuit Satisfiability}$, given an input s of length n, we want to determine whether $s \in X$ using a black box that solves Circuit Satisfiability.
- What do we know about X? It has an efficient certifier $B(\cdot, \cdot)$.
Proving Circuit Satisfiability is \mathcal{NP}-Complete

- Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{Circuit Satisfiability}$.

- Claim we will not prove: any algorithm that takes a fixed number n of bits as input and produces a yes/no answer
 1. can be represented by an equivalent circuit and
 2. if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.

- To show $X \leq_P \text{Circuit Satisfiability}$, given an input s of length n, we want to determine whether $s \in X$ using a black box that solves Circuit Satisfiability.

- What do we know about X? It has an efficient certifier $B(\cdot, \cdot)$.

- To determine whether $s \in X$, we ask “Is there a string t of length $p(n)$ such that $B(s, t) = \text{yes}$?”
Proving Circuit Satisfiability is \mathcal{NP}-Complete

To determine whether $s \in X$, we ask “Is there a string t of length $p(|s|)$ such that $B(s, t) = \text{yes}$?”
Proving Circuit Satisfiability is \(\mathcal{NP} \)-Complete

- To determine whether \(s \in X \), we ask “Is there a string \(t \) of length \(p(|s|) \) such that \(B(s, t) = \text{yes} \)?

- View \(B(\cdot, \cdot) \) as an algorithm on \(n + p(n) \) bits.

- Convert \(B \) to a polynomial-sized circuit \(K \) with \(n + p(n) \) sources.
 1. First \(n \) sources are hard-coded with the bits of \(s \).
 2. The remaining \(p(n) \) sources labelled with variables representing the bits of \(t \).
Proving Circuit Satisfiability is \(\mathcal{NP} \)-Complete

- To determine whether \(s \in X \), we ask “Is there a string \(t \) of length \(p(|s|) \) such that \(B(s, t) = \text{yes} \)?”
- View \(B(\cdot, \cdot) \) as an algorithm on \(n + p(n) \) bits.
- Convert \(B \) to a polynomial-sized circuit \(K \) with \(n + p(n) \) sources.
 1. First \(n \) sources are hard-coded with the bits of \(s \).
 2. The remaining \(p(n) \) sources labelled with variables representing the bits of \(t \).
- \(s \in X \) iff there is an assignment of the input bits of \(K \) that makes \(K \) satisfiable.
Example of Transformation to Circuit Satisfiability

- Does a graph G on n nodes have a two-node independent set?
Example of Transformation to Circuit Satisfiability

- Does a graph G on n nodes have a two-node independent set?
- s encodes the graph G with $\binom{n}{2}$ bits.
- t encodes the independent set with n bits.
- Certifier needs to check if
 1. at least two bits in t are set to 1 and
 2. no two bits in t are set to 1 if they form the ends of an edge (the corresponding bit in s is set to 1).
Example of Transformation to Circuit Satisfiability

- Suppose G contains three nodes $u, v,$ and w with v connected to u and w.
Example of Transformation to Circuit Satisfiability

Suppose G contains three nodes $u, v,$ and w with v connected to u and w.

Figure 8.5 A circuit to verify whether a 3-node graph contains a 2-node independent set.
A problem X is \mathcal{NP}-Complete if

1. $X \in \mathcal{NP}$ and
2. for every problem $Y \in \mathcal{NP}$, $Y \leq_P X$.

Claim: If Z is \mathcal{NP}-Complete and $X \in \mathcal{NP}$ such that $Z \leq_P X$, then X is \mathcal{NP}-Complete.

Given a new problem X, a general strategy for proving it \mathcal{NP}-Complete is

1. Prove that $X \in \mathcal{NP}$.
2. Select a problem Z known to be \mathcal{NP}-Complete.
3. Prove that $Z \leq_P X$.

If we use Karp reductions, we can refine the strategy:

1. Prove that $X \in \mathcal{NP}$.
2. Select a problem Z known to be \mathcal{NP}-Complete.
3. Consider an arbitrary instance s_Z of problem Z. Show how to construct, in polynomial time, an instance s_X of problem X such that
 (a) If $s_Z \in Z$, then $s_X \in X$ and
 (b) If $s_X \in X$, then $s_Z \in Z$.

Proving Other Problems \mathcal{NP}-Complete

- A problem X is \mathcal{NP}-Complete if
 1. $X \in \mathcal{NP}$ and
 2. for every problem $Y \in \mathcal{NP}$, $Y \leq_P X$.

- Claim: If Z is \mathcal{NP}-Complete and $X \in \mathcal{NP}$ such that $Z \leq_P X$, then X is \mathcal{NP}-Complete.
Proving Other Problems \mathbf{NP}-Complete

- A problem X is \mathbf{NP}-Complete if
 1. $X \in \mathbf{NP}$ and
 2. for every problem $Y \in \mathbf{NP}$, $Y \leq_P X$.
- Claim: If Z is \mathbf{NP}-Complete and $X \in \mathbf{NP}$ such that $Z \leq_P X$, then X is \mathbf{NP}-Complete.
- Given a new problem X, a general strategy for proving it \mathbf{NP}-Complete is
Proving Other Problems \mathcal{NP}-Complete

A problem X is \mathcal{NP}-Complete if

1. $X \in \mathcal{NP}$ and
2. for every problem $Y \in \mathcal{NP}$, $Y \leq_P X$.

Claim: If Z is \mathcal{NP}-Complete and $X \in \mathcal{NP}$ such that $Z \leq_P X$, then X is \mathcal{NP}-Complete.

Given a new problem X, a general strategy for proving it \mathcal{NP}-Complete is

1. Prove that $X \in \mathcal{NP}$.
2. Select a problem Z known to be \mathcal{NP}-Complete.
3. Prove that $Z \leq_P X$.
Proving Other Problems \(\mathcal{NP} \)-Complete

- A problem \(X \) is \(\mathcal{NP} \)-Complete if
 1. \(X \in \mathcal{NP} \) and
 2. for every problem \(Y \in \mathcal{NP} \), \(Y \leq_p X \).

- Claim: If \(Z \) is \(\mathcal{NP} \)-Complete and \(X \in \mathcal{NP} \) such that \(Z \leq_p X \), then \(X \) is \(\mathcal{NP} \)-Complete.

- Given a new problem \(X \), a general strategy for proving it \(\mathcal{NP} \)-Complete is
 1. Prove that \(X \in \mathcal{NP} \).
 2. Select a problem \(Z \) known to be \(\mathcal{NP} \)-Complete.
 3. Prove that \(Z \leq_p X \).

- If we use Karp reductions, we can refine the strategy:
 1. Prove that \(X \in \mathcal{NP} \).
 2. Select a problem \(Z \) known to be \(\mathcal{NP} \)-Complete.
 3. Consider an arbitrary instance \(s_Z \) of problem \(Z \). Show how to construct, in polynomial time, an instance \(s_X \) of problem \(X \) such that
 (a) If \(s_Z \in Z \), then \(s_X \in X \) and
 (b) If \(s_X \in X \), then \(s_z \in z \).